
Scene Independent Real-Time Indirect Illumination
Jeppe Revall Frisvad∗ Rasmus Revall Frisvad† Niels Jørgen Christensen‡ Peter Falster§

Informatics and Mathematical Modelling
Technical University of Denmark

ABSTRACT

A novel method for real-time simulation of indirect illumination is
presented in this paper. The method, which we call Direct Radiance
Mapping (DRM), is based on basal radiance calculations and does
not impose any restrictions on scene geometry or dynamics. This
makes the method tractable for real-time rendering of arbitrary dy-
namic environments and for interactive preview of feature anima-
tions. Through DRM we simulate two diffuse reflections of light,
but can also, in combination with traditional real-time methods for
specular reflections, simulate more complex light paths. DRM is a
GPU-based method, which can draw further advantages from up-
coming GPU functionalities. The method has been tested for mod-
erately sized scenes with close to real-time frame rates and it scales
with interactive frame rates for more complex scenes.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gener-
ation I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism

Keywords: direct radiance mapping, global illumination, hard-
ware acceleration, programmable graphics hardware, real-time ren-
dering

1 INTRODUCTION

A difficult step along the path towards real-time global illumination
is to model indirect light which is reflected diffusely.

In this paper we introduce a method for real-time simulation of
indirect illumination. We call the method Direct Radiance Map-
ping (DRM) and it models two diffuse reflections of light, that is,
a single diffuse bounce of indirect light. In order to simulate more
complex light paths DRM can be combined with traditional real-
time methods for specular reflections.

Recently PDI/DreamWorks have successfully incorporated a sin-
gle bounce of indirect light in a micro-polygon based scan line ren-
derer [26]. Since we simulate the same part of the global illumina-
tion problem, DRM may be useful for a real-time preview before an
expensive micro-polygon based rendering. The idea of a real-time
method approximating a single bounce of indirect light is especially
motivated by figure 6 in [26], which shows that the first bounce is
indeed most visually significant.

Another area of application is computer games. Games often
make use of Light Mapping which provides a static global illumina-
tion of the background scenery. DRM makes dynamic diffuse indi-
rect illumination available for real-time applications such as games.
Even though DRM does not offer full global illumination, it is one
step along the way and the implementation is easily accomplished
using fragment programs.

∗e-mail: jrf@imm.dtu.dk
†e-mail: rasmus@revall.dk
‡e-mail: njc@imm.dtu.dk
§e-mail: pfa@imm.dtu.dk

c©IEEE, 2005. This is the authors’ version of the work. It is posted here
for your personal use. Not for redistribution. The definitive version was
published in Proceedings of Computer Graphics International 2005.

2 RELATED WORK

An extensive survey of techniques for interactive global illumina-
tion is given in [3]. Most of these techniques handle only few scene
changes. An example could be that only the camera and a few rigid
objects are allowed to move, while light sources, surface attributes,
object shapes, etc. are static. Such interactive methods usually re-
sort to interactive refinement of traditional global illumination solu-
tions or rely on parallel computations using multiple processors. To
the contrary the method presented in this paper imposes no restric-
tions on scene changes, therefore we call our method scene inde-
pendent, and it recomputes the entire solution for each frame using
a single CPU in cooperation with a GPU.

Light Mapping, originating in [22], is an approach which im-
poses a minimum of restrictions on scene changes. The tradeoff is,
as previously mentioned, that Light Mapping provides only static
global illumination. A disadvantage of Light Mapping and real-
time or interactive Radiosity approaches (such as those reviewed in
[3]) is that they depend on mapping of textures onto objects. This
complicates shape animation and such methods are, therefore, not
scene independent.

Other approaches to global illumination on a single CPU cooper-
ating with a GPU includes methods such as Precomputed Radiance
Transfer [25, 24] and Cube Map Rendering [14, 18], where radi-
ance transfer functions are computed and represented in spherical
harmonics. The former relies on heavy precomputation of transfer
functions for individual objects, which results in support of rigid
objects only and limitations when several objects start interacting
with their surroundings. The latter recomputes the spherical har-
monics coefficients each frame by rendering cube maps at regularly
spaced points throughout the scene. The placing of the cube maps
and the following interpolation of the spherical harmonics coeffi-
cients may give problems in oddly shaped scenes. Both methods
assume low-frequency lighting environments since they represent
their transfer functions in a spherical harmonics basis as proposed
previously in [23].

Another approach is Real-Time Simulation of Photon Mapping
using the GPU. The method described in [20, 4] cannot afford a fi-
nal gathering step and uses a filtered direct evaluation of a global
photon map instead. This results in significant low-frequency noise
and the frame rates are hardly real-time. A method for real-time
photon mapping, which includes a final gathering step, was pre-
sented in [13]. This method is, however, dependent on scene
changes, since appropriate points must be chosen on the surfaces
in the scene. Additionally a ray tracer is used for selective photon
tracing and therefore each dynamic object must be pointed out for
efficient BSP (Binary Space Partitioning) tree optimized ray trac-
ing. The use of precalculated BSP trees means that all objects must
be rigid.

Through DRM we seek a method which needs no time consum-
ing precomputations, no restrictions on scene dynamics such as
rigid objects only, and no placement of sample points throughout
the scene requiring one or several rendering passes each. In other
words we seek a method which is independent of scene dynamics
and scene geometry while still able to simulate some of the light
paths encompassed in global illumination.



PSfrag replacements

∆ω′

θ′

r
Ap

A′
p

α
β

a
b
V

Direct Radiance Map

Image plane

photonphotonphotonphoton

importon

L

D

D

D E

LDDE
LDE

Figure 1: An illustration of the conceptual idea.

3 THE CONCEPT

Think of the final gathering step employed in most multi-pass meth-
ods for global illumination. Through a mapping of the radiance ar-
riving directly from the light sources to the surfaces in a scene, we
can perform a simple final gathering using rasterization only. This
simple final gathering captures a smooth approximation to single
bounce indirect illumination.

Explained differently the idea is on one hand to have a photon
map (see eg. [10, 9]), containing photons emitted directly from the
light sources only, and on the other hand an importon1 map, con-
taining importons emitted directly from the observer only. In light
transport notation (introduced by Heckbert in [8]) the photon map
we describe will represent the light paths LD while the importon
map will represent the light paths DE.

Suppose we let each direct importon receive a contribution from
each direct photon according to a suitable BRDF, then we have per-
formed the final gathering and accounted for the light paths LDDE.
In order to avoid tracing a ray from each photon to each importon,
we must assume visibility between all photons and all importons.
This means that our method does not account for indirect shadows.

Instead of ray tracing we employ a rasterization approach to con-
struct the photon map and the importon map. The data structure of
a photon essentially contains a position, an RGB power value, and
an incident direction (see [9]). Instead of photon (or importon) ob-
jects, each containing the aforementioned data fields, we might as
well consider a texture holding positions of the direct photons, a
texture holding the power of the direct photons, and the position in
space from where the photons were emitted (this is sufficient since
we consider direct photons only).

When taking a picture from the observer, each fragment of that
picture provides sufficient information to represent an importon. If
we supply a fragment program with the textures mentioned above
or samples from the textures uploaded as uniform parameters, it be-
comes possible for each direct importon (that is, each fragment) to
receive a contribution from each direct photon. Figure 1 illustrates
the concept.

Note that no textures are mapped onto objects in the scene. In-
stead the textures we use comprise a ‘direct radiance map’ (see
fig. 6), which maps a pair of coordinates (s, t) ∈ [0, 1]2 to the
different data fields describing a photon. This map is used merely
as an alternative way to provide sufficient information for the sim-
ple final gathering. Picking regularly spaced coordinate pairs (s, t)
gives direct photons spaced regularly throughout the scene.

1The term ‘importon’ was coined by Peter and Pietrik in [19] to denote
photons emitted from the observer. They also describe an importance map,
a notion fitting better the dual of a photon map is perhaps an importon map
as we call it.

4 THE RESULTING METHOD

Combining our method with stenciled planar reflections (see [12])
and cube environment mapping (see [1]) as described in [17],
we will in the following describe how to model the light paths
LD?Srt*E and LSrt*DDSrt*E in real-time, where Srt denotes re-
flections under the usual limitations of the real-time reflection meth-
ods mentioned above and ? denotes one or zero events.

To model the mentioned light paths we take a brief look at the
rendering equation, which was introduced in [11] and is given as
follows:

Lo(x,ω) = Le(x,ω) + Lr(x,ω) (1)

where Lo is outgoing (or exitant) radiance at the surface location
x in the direction ω, Le is emitted radiance, and Lr is reflected
radiance. While Le is often merely modeled as a constant, the re-
flected radiance (Lr) is an infinitely recursive term, which is given
as follows:

Lr(x,ω) =

∫

Ω

fr(x,ω
′,ω)Li(x,ω

′) cos θ dω′ (2)

where Li is incident radiance at the surface location x from the
direction ω

′ and Ω is the hemisphere, which we integrate all in-
coming directions across. θ is the angle between the normal n at
the surface location x and the direction towards the incoming light.
fr is the BRDF as described in [15].

In [9] it is shown how the rendering equation can be split up
into four different terms: Direct illumination, specular and glossy
reflections, caustics, and multiple diffuse reflections. In this paper
we partly simulate the direct illumination term, the reflections term,
and the multiple diffuse reflections. The caustics term is ignored.
In other words DRM compromises the image quality and gain flex-
ibility and speed as compared to the methods mentioned in section
2.

Direct Illumination

To simulate direct illumination (light paths LD?E) we take two dif-
ferent cases into account. (a) Direct illumination from isotropic
point light sources and (b) direct illumination from isotropic area
light sources assuming that the area light is very distant from the
objects that it illuminates. In the following we let the subscript 0
denote case (a) described above and we let 1 denote case (b). We
also assume invariance of radiance along straight paths (which is in
fact the case in a vacuum, see eg. [5]) and we omit function argu-
ments for simplicity of notation.

Since a point light source is a hypothetical invention, which has
no areal extension, the emitted radiance term Le,0 of the render-
ing equation in case (a) is non-existent. Therefore Lo,0 = Lr,0.
Since light intensity (I = dΦ/dω) is flux dependent solely on a
differential solid angle dω describing a directional volume, we can
define an isotropic point light source as a point in space emitting a
constant light intensity, Ie,0, in all directions.

Suppose the point light source emits a constant fluxΦs in all di-
rections, then by a simple integration over the unit sphere we obtain
the result that:

Ie,0 =
Φs

4π
(3)

In [6] the following relation between intensity I and irradiance
E = dΦ/dA is derived:

E = I
cos θ

r2
(4)

where r is the distance between the point of the intensity I and
the surface location of the irradiance E and θ is the angle between



the direction towards the point of I and the normal at the surface
location of E.

Inserting (3) in (4) we obtain the irradiance incident on the sur-
faces surrounding an isotropic point light source:

Ei,0 = Ie,0

cos θ

r2
=
Φs

4π

cos θ

r2

where it is assumed that no occluding objects lie between the point
light and the surface location of the incident irradiance. To include
visibility in our calculations a simple visibility term V is intro-
duced. V is one if the point of emission and the surface location
of incidence are mutually visible and zero otherwise.

In [15] it is shown that:

fr =
dLr

dEi

and, since we consider direct illumination only, an integration gives
the following exitant radiance resulting from isotropic point light
sources only:

Lo,0 = Lr,0 =

N0
∑

j=1

fr

Φs,j cos θj

4πr2j
Vj (5)

where N0 is the number of point light sources.
As derived in [5] we can find a formula for the incident radi-

ance Li,1 resulting from the constant radiance Le,1 emitted from
an isotropic area light source:

Li,1 = Le,1 =
Φs

πA
(6)

where A is the area of the light source.
In order to calculate the integral of the reflected radiance (2) re-

sulting from light emitted from an area, we can use the following
relation between a differential area and a differential solid angle,
which is derived eg. in [16]:

dω′ =
cos θ′dA

r2
(7)

where θ′ is the angle between the normal at the surface location
of light emission and the direction towards the surface location of
incident light, and r is the distance between the two locations. If
we let S denote the union of all surface areas, (7) results in the
following area formulation of (2):

Lr =

∫

S

frLi

cos θ cos θ′

r2
V dA (8)

Considering the direct illumination resulting from isotropic area
light sources assumed to be very distant, we obtain the following:

Lo,1 = Le,1 +

N1
∑

j=1

fr

Φs,j cos θj cos θ
′
j

πr2j
Vj (9)

which is comparable to (5).
To include shadows in our direct illumination term, that is, to

estimate the visibility term V , we employ a version of the shadow
mapping method originally proposed in [27].

The direct illumination can, now, easily be typed into a fragment
program using a suitable BRDF (it could be the BRDF for perfectly
diffuse surfaces, fr = ρd/π, the modified Blinn-Phong model, or
more advanced models) inserted in (5) and (9).

Illumination Reflected Diffusely Twice

In order to include a single diffuse bounce of indirect illumination
we assume as mentioned previously that the direct photons and the
direct importons are mutually visible and therefore (according to
the invariance of radiance along straight paths) that

Li,importon(x,ω
′) = Lo,photon(y,−ω

′)

which implies that the indirect radiance reflected diffusely twice
can be calculated by integration over Li,importon according to (2).

To construct the textures for the direct radiance map, we take
pictures from the light source (as done in shadow mapping).

To find the position of each direct photon we make a simple ver-
tex program (or fragment program) that scales the position of each
vertex (in world coordinates) to the interval [0, 1]. This is accom-
plished using an AABB (Axis Aligned Bounding Box) of the scene
to be rendered. The scaled vertex position is then used as the color
of the vertex (or fragment) when a picture is taken from the light
source. This results in a texture holding positions of the direct pho-
tons (cf. fig. 6a). If floating point buffers are available the scaling is
not necessary.

Instead of the power of the photon, which is stored in the tradi-
tional photon map, we rather need sufficient information to solve
(5) and (9). In other words we need a mapping of the directly re-
flected radiance, hence the name of the method: Direct Radiance
Mapping. If the scene contains Lambertian surfaces only, the ex-
itant radiance from each photon will be the same in all directions.
In that case a picture is taken from the light source using (5) and/or
(9) for calculation of the exitant direct radiance at each photon po-
sition. This picture constitutes the second texture needed for the
calculation of indirect illumination (cf. fig. 6b).

If the scene contains non-Lambertian surfaces, textures holding
sufficient information for calculation of the directly reflected radi-
ance should be constructed. Usually two textures: (a) a texture pic-
turing the normals encountered at each photon position (cf. fig. 6c)
and (b) a texture picturing the true color of the surface where the
photon is stored, will replace the texture storing exitant radiance
(fig. 6b) from the case of Lambertian surfaces only. We consider all
the textures needed (positions, normals, true color, or the like) to be
a part of the direct radiance map.

Having the direct radiance map available in a fragment program
(that is, having the mentioned textures available or samples from
the textures uploaded as uniform parameters) enables us to approx-
imate Li in (2). In the simple case Li is given for each direct photon
as a texture look-up. In order to establish cos θ in (2) another tex-
ture look-up is needed (using the same texture coordinates), which
retrieves the position of the photon from where the incident radi-
ance came. To approximate the integration we sum the contribu-
tions from an arbitrary number of photons, M :

Lr,importon ≈

M
∑

j=1

frLo,photon,j cos θj ∆ω′
j (10)

the difficult, and hitherto unaddressed, part of (10) is the approxi-
mation of the differential solid angle ∆ω′

j , which is the solid an-
gle subtended by the surface area that photon j represents. In the
following the subscript j will denote that the variable is different
for each photon and the subscript k will denote that the variable
is different for each importon (meaning that the variable must be
recalculated for each fragment).

The magnitude of a solid angle is given as the ratio of the
spherical-surface area As, which the solid angle intercepts, to the
square radius of the sphere r2, see eg. [16]:

ω =
As

r2



PSfrag replacements

∆ω′

θ′

r

Ap

A′
p

α

β

a

b

V
Direct Radiance Map

Image plane
photon

importon
L
D
E

LDDE
LDE

Figure 2: The area Ap pictured by a texel (representing a photon).

First we can assume that the radiance is incident on a locally flat
surface area and that the incident radiance, therefore, at most covers
the unit hemisphere, (∆ω′

max = 2π). The simplest approximation
of∆ω′ is then to split up the unit hemisphere into M equally sized
solid angles (one for each photon):

∆ω′ ≈
2π

M
(11)

Since a photon is practically stored as texels at the same position
in a few different low-resolution textures (found as rasterized pic-
tures taken from the light source), we can more correctly estimate
the surface area Ap that a single photon/texel represents. Consider
the case sketched in figure 2. First we can calculate the area A′

p

which is perpendicular to the direction towards the light source:

aj = bj tan
(

γ

2w

)

(12)

A′
p,j = (2aj)

2

where w is the width of the textures measured in number of texels
and b is the distance between the photon and the light source. For
the calculation of Ap we can assume that the frustum of texel j
is constrained by nearly parallel planes (since the light source was
assumed to be very distant), this assumption leads to the following:

Ap,j ≈
A′

p,j

cosαj

(13)

where α is the angle between the incoming direction of the photon
and the normal at the surface location where the photon impinges.

Having a surface area, such as Ap, the usual approximation to
the solid angle is a simple projection to the tangent plane of the unit
sphere as given in (7):

∆ω′
j,k ≈

cos θ′j,kAp,j

r2j,k

Considering a differential solid angle this expression is exact at
the limit, but in an approximation we must take Lambert’s “five
times rule of thumb” into account. In [21] this is done using the
following approximation instead:

∆ω′
j,k ≈ cos θ

′
j,k

Ap,j

Ap,j + r2j,k

(14)

To evaluate (14) two additional cosine terms (cosαj in (13) and
cos θ′j,k in (14)) must be calculated meaning that the normals en-
countered by the photons at the surface areas must be pictured from

the light source and stored in a texture as a part of the direct radi-
ance map. Note that the tangent term in (12) does not need to be
calculated in the fragment program.

To avoid the two extra cosine terms (and the picture of the nor-
mals) an inexpensive compromise between (11) and (14) is simply
to say that A′

p ≈ Ap and the distance between a photon and an im-
porton can be approximated by a constant. In many cases the scene
diagonal is an appropriate choice of constant, meaning that if Bmax
and Bmin denotes the maximum and minimum points of the AABB
containing the scene, the third possible approximation of∆ω′ is as
follows:

∆ω′
j ≈

A′
p,j

‖Bmax −Bmin‖2
(15)

In the preceding we have presented three alternative ways of cal-
culating approximate solutions for (10). (11) is the simple, inex-
pensive, and imprecise solution, (14) is the most correct and also
the most expensive approximation presented, and (15) is a compro-
mise.

To include two diffuse reflections of light in a traditional picture
from the observer each fragment must evaluate a version of (10).
As mentioned in section 3 each fragment conceptually represents
an importon, but direct importons always have the importance 1
and therefore:

Lo = Lo,0 + Lo,1 + Lr,importon

which includes both direct light and a single diffuse bounce of in-
direct light.

Perfectly Specular Reflections

As mentioned previously multiple perfectly specular reflections can
be obtained in real-time. To include more than just the light paths
LDDE in our indirect illumination term, we can merely include
these techniques in our picture capturing direct illumination as seen
from the light source (giving LSrt*D) and in our final rendering
from the observer. The resulting indirect illumination term will
include the light paths LSrt*DDSrt*E and the direct illumination
term will include the paths LD?Srt*E.

Creating the cube environment map for perfectly specular reflec-
tions is rather expensive if it also must include the calculation of
two diffuse reflections of light. The eye, however, quickly discov-
ers the error if we use only direct illumination for the reflection.
One inexpensive way to trick the untrained eye into believing the
reflected image with no indirect illumination, is to let the indirect
illumination affect the specular object as if it were diffuse. The trick
is illustrated in figure 8 and also used for the images in figure 9.

5 IMPLEMENTATION

Summing up the rendering procedure, the following steps are car-
ried out for each frame:

1. For each light source:

• Generate a depth cube map for shadow mapping.
• Generate a direct radiance map consisting of

(a) a picture of positions seen from the light source.
(b) a picture of direct radiance (or true colors) seen

from the light source.
(c) a picture of normals seen from the light source (if

needed).

2. Sample the pictures and bind the sampled values to a fragment
program for calculation of indirect illumination. If the number
of registers for uniform parameters is insufficient for storage
of all the values, bind some of the pictures as textures instead.



3. For each curved specular object; generate a cube environment
map for specular reflections. Each face of the cube is rendered
as in steps 4, 5 and 6.

4. For each planar specular object; render a mirrored scene
where the object should have been using steps 5 and 6.

5. Render the scene to the accumulation buffer using a fragment
program calculating (5) to account for point light sources and
(9) to account for area light sources. Use the depth cube maps
to estimate visibility. Swap the fragment program with one
sampling the cube environment map when a curved specular
object is rendered.

6. Render the scene again using the fragment program for indi-
rect illumination, where (10) is evaluated using either (11),
(14), or (15). Add the result to the accumulation buffer.

7. Return the final result from the accumulation buffer.

The summation needed for evaluation of (10) in step 6 is an ex-
pensive process in a fragment program, therefore we can not ac-
count for each texel of the direct radiance map in our estimate of
Lr,importon. The most sensible choice is then to pick out a number
of regularly spaced sample photons. Experimenting with the num-
ber of samples we found that M = 2 × 2, though better than a
constant ambient term, were too few to catch details such as chang-
ing shades of color bleeding across a surface. M = 4× 4 were too
many to keep up real-time frame rates and the result, though more
detailed, was not markedly better than the final choice of M = 3×3
sample photons. It should also be noted that when M = 3 × 3 we
reach the limit of uniform parameters that can be uploaded to the
fragment program and some calculations must (though it is not nec-
essary in theory) be moved from the CPU to the GPU2. When the
size of the grid exceeds M = 5×5 samples we surpass the limit of
the number of instructions allowed in fragment programs available
for our current graphics card.

To improve the frame rates only variables having the subscript
k in (11), (14), and (15) are calculated in the fragment program.
The variables having the subscript j are found using the CPU and
uploaded to the fragment program as uniform parameters once for
each frame as indicated in step 2. If the CPU is needed for other
purposes all texture look-ups and calculations can be performed on
the GPU.

The relatively few sample photons have the result that the indi-
rect illumination may flash when some samples suddenly find a dif-
ferent surface. To improve on this issue the texture capturing direct
radiance (or true color) can be MIP mapped3 to a level where the
few samples will cover an interpolation of almost the entire texture.

Few sample photons also result in an issue when multiple light
sources are needed. At the moment we work with a single light
source only. When it is a point light source we give it a spotlight
direction in our modeling tool. This provides it with a direction in
which the pictures from the light source should be taken. Hence, the
spotlight direction decides in which direction from the light source
the sample photons should be found.

The bottleneck of the method is the expensive fragment pro-
gram which accumulates the contributions from the sample pho-
tons. This means that the method will improve gradually as frag-
ment programs get faster in general and as better facilities for loop-
ing emerges. We also believe that our method could draw advantage
from an upcoming GPU functionality (which is currently not avail-
able to us) called “multiple render targets”4.

2This is the case if we evaluate (14). It is not necessary in order to
evaluate (11) or (15).

3MIP mapping originates in [28].
4Multiple render targets is, for example, used in deferred shading, see

eg. [7]

a b c
Figure 3 769.231 137.300 48.622
Figure 4 48.622 48.622 20.870
Figure 8 15.178 15.178 9.898
Figure 9 20.761 11.888 7.695

Table 1: Frame rates (frames/second) for the pictures presented in
the different figures.

Our rendering method employs no particular vertex processing
and the number of triangles that can be rendered in real-time is
solely dependent on the number of triangles that the GPU can pro-
cess. The scalability of the method is substantiated by this fact.

6 RESULTS AND DISCUSSION

The Cornell box [2] is a benchmark scene for calculation of dif-
fusely reflected indirect illumination. Figure 3 shows different ren-
derings of a Cornell box. Figure 4 compares the three different
methods for calculation of ∆ω′. Figure 8 shows a scene includ-
ing perfectly specular surfaces and indirect illumination calculated
using (10) and (14). Figure 9 shows the effect of our method in a
more complex scene containing 39,956 triangles.

Frame rates of the different pictures using a 1.7 GHz Pentium4
CPU and a GeForce FX 5950 GPU are given in table 1. Resolution
is 512 × 512. The textures used for the direct radiance map are
shown in figure 6. We chose a resolution of 16×16 for the textures.
The frame rates for the cave scene (fig. 9) are (a) 48.0, (b) 18.4, and
(c) 10.3 if the mirrors are not activated. To indicate the scalability
of DRM it should be mentioned that a rendering of The Stanford
Dragon consisting of 871,414 triangles results in interactive frame
rates (0.92 fps using (14) and 1.8 fps using (15)).

The constant approximation of ∆ω′ given in (11) has the result
that the indirect illumination gets overexposed when objects come
close to the light source, see figure 7. The reason is that the surface
area a photon/texel covers depends on how close the surface is to the
light source. One small triangle being sufficiently close to the light
source can, for example, cover all the texels in the direct radiance
map, therefore it is quite important to account for the area that a
texel covers. A constant approximation also has the result that the
indirect illumination is more globally affected by the exact spots
where the sample photons are chosen.

Both the approximation in (11) and (15) suffers from the fact that
they do not account for the normal where the indirect illumination
is reflected. The result is that indirect illumination is reflected on
the backside of the surface as well as at the front. (15), however,
more closely resembles the more correct solution provided by (14)
and as shown in table 1 it is not more expensive to evaluate (15)
instead of (11).

Figure 5 compares DRM (fig. 5c) with a standard radiosity solu-
tion (fig. 5a) and a direct visualization of a photon map (fig. 5b). To
emphasize that it is the quality of the indirect illumination we wish
to compare, the shadows are hard in the photon mapping reference.
The overall indirect illumination is, not surprisingly, more crude in
the DRM approximation. The different shades of color bleeding are
considerably more mixed across the floor, ceiling, and back wall.
Missing indirect shadows result in too bright shadow regions. The
bright spot above the tall box, which shows in the photon mapping
reference is not visible, since the samples are too few. Because of
Gouraud shading, the spot does not show in the radiosity reference
either. The color bleeding captured by DRM is best at the tall box.
The reason why the tall box is more green at the front using DRM,
is that the area light source does not contribute to the surface. This
happens since in DRM all light is emitted from the center of the
light source, while the reference methods distribute the emission



over the entire surface. Nevertheless we find that DRM offers a
reasonable approximation considering that this image was rendered
thousands of times faster than the references.

7 CONCLUSION

In this paper we have shown how basal radiance calculations can
lead to a GPU based method for simulation of indirect illumina-
tion reflected diffusely twice. We also include traditional real-time
techniques for perfectly specular reflections in our solution and
are thereby able to account for the light paths LSrt*DDSrt*E and
LD?Srt*E. The method presented relies on pictures taken from the
light source(s) and is called Direct Radiance Mapping (DRM).

DRM is independent of scene changes both with respect to ge-
ometry and dynamics. This means that the particular shape, move-
ment, and deformation of the scene contents is of no consequence
to the method. The number of light sources is the limiting factor
and too few samples can result in sudden shifts in the indirect illu-
mination. With MIP mapping and improved efficiency of graphics
cards, we expect that these problems will fade away. Conceptual
limitations of DRM are that it models no more than two diffuse
reflections and no indirect shadows.

Our frame rates are close to real-time rates and we have confi-
dence that graphics cards already available on the market can im-
prove our frame rates significantly.

We think that DRM is quite useful for real-time applications in
general since it features, in choice of calculation method and choice
of number of samples (M ), a quality/quantity trade of between im-
age correctness and rendering frame rate. This means that it can
be adapted to the performance level of the particular machine it is
running on.

Finally all it takes to implement DRM is for the renderer to
take a few different low-resolution pictures from the light source(s)
(picturing eg. positions and direct radiance), make a few regularly
spaced look-ups in these pictures, and do a summation over the
look-ups in a fragment program according to formulas given in this
paper.

8 ACKNOWLEDGEMENT

Thanks to Bent Dalgaard Larsen for the suggestion of MIP mapping
to improve on the sudden shifts in the indirect illumination.

REFERENCES

[1] James F. Blinn and Martin E. Newell. Texture and reflection in com-
puter generated images. Communications of the ACM, 19(10):542–
547, October 1976.

[2] Cornell University Program of Computer Graphics. The Cornell Box.
http://www.graphics.cornell.edu/online/box/, January 1998. Accessed
25th of August 2004.

[3] Cyrille Damez, Kirill Dmitriev, and Karol Myszkowski. State of the
art in global illumination for interactive applications and high-quality
animations. Computer Graphics Forum, 22(1):55–77, 2003.

[4] Craig Donner and Henrik Wann Jensen. Faster GPU computations
using adaptive refinement. In Proceedings of SIGGRAPH 2004, Tech-
nical Sketches, August 2004.

[5] Philip Dutré, Philippe Bekaert, and Kavita Bala. Advanced Global
Illumination. A K Peters, Natick, Massachusetts, 2003.

[6] Pat Hanrahan. Rendering concepts. Chapter 3. In M. F. Cohen and J.
R. Wallace: Radiosity and Realistic Image Synthesis. Academic Press
Professional, 1993.

[7] Shawn Hargreaves and Mark Harris. Deferred shading. NVIDIA Pre-
sentation, 2004. http://developer.nvidia.com.

[8] Paul S. Heckbert. Adaptive radiosity textures for bidirectional
ray tracing. Computer Graphics (SIGGRAPH ’90 Proceedings),
24(4):145–154, August 1990.

[9] Henrik Wann Jensen. Realistic Image Synthesis Using Photon Map-
ping. A K Peters, Natick, Massachusetts, 2001.

[10] Henrik Wann Jensen and Niels Jørgen Christensen. Photon maps in
bidirectional monte carlo ray tracing of complex objects. Computers
& Graphics, 19(2):215–224, March 1995.

[11] James T. Kajiya. The rendering equation. Computer Graphics (SIG-
GRAPH ’86 Proceedings), 20(4):143–150, August 1986.

[12] Mark J. Kilgard. Improving shadows and reflections via
the stencil buffer. NVIDIA White Paper, November 1999.
http://developer.nvidia.com.

[13] Bent Dalgaard Larsen and Niels Jørgen Christensen. Simulating pho-
ton mapping for real-time applications. In H. W. Jensen and A. Keller,
editors, Eurographics Symposium on Rendering, 2004.

[14] Rafal Mantiuk, Sumanta Pattanaik, and Karol Myszkowski. Cube-
map data structure for interactive global illumination computation in
dynamic diffuse environments. In Proceedings of International Con-
ference on Computer Vision and Graphics, pages 530–538, September
2002.

[15] F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and
T. Limperis. Geometrical considerations and nomenclature for re-
flectance. Technical report, National Bureau of Standards (US), Octo-
ber 1977.

[16] Fred E. Nicodemus, editor. Self-Study Manual on Optical Radia-
tion Measurements. National Institute of Standards and Technol-
ogy, U.S. Department of Commerce, 1976–1985. NBS Technical
notes, Series 910-1 through 8. Chapters were published as completed.
http://physics.nist.gov/Divisions/Div844/manual/studymanual.html.

[17] Kasper Høy Nielsen and Niels Jørgen Christensen. Real-time recur-
sive specular reflections on planar and curved surfaces using graphics
hardware. Journal of WSCG, 3:91–98, 2002.

[18] Mangesh Nijasure, Sumanta Pattanaik, and Vineet Goel. Interactive
global illumination in dynamic environments using commodity graph-
ics hardware. In Proceedings of the 11th Pacific Conference on Com-
puter Graphics and Applications, pages 450–454, 2003.

[19] Ingmar Peter and Georg Pietrek. Importance driven construction of
photon maps. In G. Drettakis and N. Max, editors, Rendering Tech-
niques ’98 (Proc. of the Ninth Eurographics Workshop on Rendering),
pages 269–280, Vienna: Springer-Verlag, 1998.

[20] Timothy J. Purcell, Craig Donner, Mike Cammarano, Henrik Wann
Jensen, and Pat Hanrahan. Photon mapping on programmable graph-
ics hardware. In M Doggett, W. Heidrich, W. Mark, and A. Schilling,
editors, Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Con-
ference on Graphics Hardware, pages 41–50. Eurographics Associa-
tion, 2003.

[21] Alexander D. Ryer. Light Measurement Handbook. International
Light Inc., 1998. http://www.intl-light.com/handbook/.

[22] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, and
Paul Haeberli. Fast shadows and lighting effects using texture map-
ping. Computer Graphics (SIGGRAPH ’92 Proceedings), 26:249–
252, 1992.

[23] François X. Sillion, James R. Arvo, Stephen H. Westin, and Donald P.
Greenberg. A global illumination solution for general reflectance
distributions. Computer Graphics (SIGGRAPH ’91 Proceedings),
25(4):187–196, August 1991.

[24] Peter-Pike Sloan, Jesse Hall, John Hart, and John Snyder. Clustered
principal components for precomputed radiance transfer. ACM Trans-
actions on Graphics, 22(3):382–391, July 2003.

[25] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precomputed radiance
transfer for real-time rendering in dynamic, low-frequency lighting
environments. ACM Transactions on Graphics, 21(3):527–536, July
2002.

[26] Eric Tabellion and Arnauld Lamorlette. An approximate global il-
lumination system for computer generated films. In Proceedings of
SIGGRAPH 2004, 2004.

[27] Lance Williams. Casting curved shadows on curved surfaces. Com-
puter Graphics (SIGGRAPH ’78 Proceedings), pages 270–274, Au-
gust 1978.

[28] Lance Williams. Pyramidal parametrics. Computer Graphics (SIG-
GRAPH ’83 Proceedings), 17(3):1–11, July 1983.



PSfrag replacements

∆ω′

θ′

r
Ap

A′
p

α
β

a
b
V

Direct Radiance Map
Image plane

photon
importon

L
D
E

LDDE
LDE

Figure 3: Different renderings of a Cornell box. From left to right: (a)
A standard Blinn-Phong shaded rendering, (b) direct illumination as
described in (9), and (c) direct illumination and indirect illumination
reflected diffusely twice using (9), (10) and (15).

PSfrag replacements

∆ω′

θ′

r
Ap

A′
p

α
β

a
b
V

Direct Radiance Map
Image plane

photon
importon

L
D
E

LDDE
LDE

Figure 4: Comparison of the different methods for calculation of∆ω′.
From left to right: (a) Using (11), (b) using (15), and (c) using (14).

PSfrag replacements

∆ω′

θ′

r
Ap

A′
p

α
β

a
b
V

Direct Radiance Map
Image plane

photon
importon

L
D
E

LDDE
LDE

Figure 5: Comparison of DRM with traditional methods for global
illumination. Here the images have been gamma corrected. From
left to right: (a) Radiosity, (b) Photon Mapping, and (c) DRM using
(14).

PSfrag replacements

∆ω′

θ′

r
Ap

A′
p

α
β

a
b
V

Direct Radiance Map
Image plane

photon
importon

L
D
E

LDDE
LDE

Figure 6: The textures found as pictures taken from the light source
in the Cornell box. These textures comprise the direct radiance map.
The picture representing the normals is only used when (14) is eval-
uated. From left to right: (a) Positions, (b) direct radiance, and (c)
normals.

PSfrag replacements

∆ω′

θ′

r
Ap

A′
p

α
β

a
b
V

Direct Radiance Map
Image plane

photon
importon

L
D
E

LDDE
LDE

Figure 7: Problems resulting from the less accurate approximations
of∆ω′. From left to right: (a) Using (11), (b) using (15), and (c) using
(14).

PSfrag replacements

∆ω′

θ′

r
Ap

A′
p

α
β

a
b
V

Direct Radiance Map
Image plane

photon
importon

L
D
E

LDDE
LDE

Figure 8: A Cornell box containing two mirror balls obtained by real-
time calculation of perfectly specular reflections. From left to right:
(a) Excluding indirect illumination in the mirror reflections, (b) using a
visual trick, and (c) including indirect illumination in the mirror reflec-
tions.

PSfrag replacements

∆ω′

θ′

r
Ap

A′
p

α
β

a
b
V

Direct Radiance Map
Image plane

photon
importon

L
D
E

LDDE
LDE

Figure 9: A cave scene consisting of 39,956 triangles. The scene
includes a planar mirror and a mirror ball. The light source is in a
lantern held by an animated character. From top to bottom: (a) Di-
rect illumination, (b) indirect illumination using (15), and (c) indirect
illumination using (14).


