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EXTRACTING T H E  RELEVANT DELAYS IN 
T I M E  SERIES MODELLING 
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Phone: f45 4525 3921 

Fax: +45 4587 2599 
E-mail: cgQimm. dtu. dk 

Abstract. In this contribution, we suggest a convenient way to 
use generalisation error to extract the relevant delays from a time- 
varying process, i.e. the delays that lead to the best prediction per- 
formance. We design a generalisation-based algorithm that takes 
its inspiration from traditional variable selection, and more pre- 
cisely stepwise forward selection. The method is compared to other 
forward selection schemes, as well as to a non-parametric tests 
aimed at estimating the embedding dimension of time series. The 
final application extends these results to the efficient estimation of 
FIR filters on some real data. 

OVERVIEW 

In system identification as well as in time series modelling, the choice of the 
inputs to  our model plays a crucial role. In order to obtain good performance, 
one shall model future behaviour from a set of relevant past measurements. 
An insufficient amount of inputs will prevent the model from capturing the 
underlying mapping. On the other hand, including irrelevant inputs will lead 
to poor prediction performance, as suggested by the “curse of dimensional- 
ity”. 

In this contribution, we consider a method aimed at finding a set of rel- 
evant delays. For that purpose, we use a suboptimal iterative method that 
minimises the estimated generalisation error, and bears resemblance to  the 
usual statistical variable selection methods [6]. However, this Extraction of 
Relevant Delays (ERD) method is original in the fact that 1) it assesses the 
relevance of possible inputs on the basis of generalisation, and 2) it is adapted 
to time dependant problems. 

The organisation of this paper is as follows: first we give a short pre- 
sentation of the topic of statistical variable selection, and describe our ERD 
method. We then introduce briefly a class of methods estimating the em- 
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bedding dimension of time series. The second part of the paper contains 
a number of experiments conducted on the well-known H h o n  map, on a 
real time series, and finally on a FIR filtering problem. We conclude with a 
discussion of the results. 

INPUT SELECTION 

Let us consider a standard time series modelling problem. A sequence x 
of measurements is collected, and we try to predict xt from a set of past 
values X t - d .  Note that in that setting, the length of the basic time delay (i.e. 
difference between t and t + I) is imposed on us. Extracting the relevant 
delays consists in finding a set of m delays ( X t - d l ,  . . . , Xt -d , )  that, given as 
input to  a model, yields the best prediction. 

This is a special case of variable selection, which in turn can be seen as 
part of the more general problem of analysing the structure in the data [6]. 
An important assumption in conventional variable selection is that all neces- 
sary variables are available, i.e. a sufficient subset of inputs actually exists. 
Provided that data are sampled correctly, this assumption is usually satisfied 
in the case of time series1. We will use the terms ‘variable’, ‘input’ or ‘delay’ 
indifferently when addressing our time series modelling problem. 

An exhaustive search through all possible subsets of inputs is usually 
impossible for combinatorial reasons. A number of suboptimal techniques 
have thus been designed, among them stepwise methods: 

Forward selection methods consists in starting from an empty set of 
inputs, and adding variables one after the other according to a given 
selection criteria, until a chosen stopping condition is fulfilled. 

On the contrary, backward elimination methods start with the full set of 
inputs, and proceed by deleting one variable at a time according to the 
selection criteria, until the stopping condition is reached. In the field of 
neural computation, variable selection techniques based on pruning [2] 
are a typical example of backward elimination. 

Stepwise regression usually refers to a combination of both (in the linear 
case). For both methods, the crucial parts are the design of the selection 
criteria, and the stop condition. Conventional methods in linear regression 
rely on e.g. correlation coefficients, information content or F-testing. 

EXTRACTION OF RELEVANT DELAYS 

We present here a method of Extraction of Relevant Delays (ERD) that 
relies upon generalisation error. It draws its inspiration from forward selec- 

lIt breaks down in the case where a long-term delay is needed, that ranges further than 
the time period spanned by the data. However, the relevance of such long-term prediction 
is questionable, and there would be no data to identify the associated parameter(s) anyway. 
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tion methods, combined with generalisation estimation. Consider a model 
f providing a mapping from an input vector containing m delays dt) = 

to  output zt, and assume Gaussian perturbation on the out- 
put. We define the generalisation error (or expected risk) for this model 
as : 

Obviously, equation (1) can not be used directly as the joint input-output 
probability is unknown. We will thus resort to  estimating this error, or rather 
its average over all possible training sets of a given size N .  There are mainly 
two classes of such estimators: methods such as cross-validation [17] resample 
the available data, while algebraic estimators [l] rely on statistical arguments. 

Many estimators have been 
proposed in the literature, e.g. Final Prediction Error (FPE) [l], Generalised 
Prediction Error (GPE) [ll], Final Prediction Error for Regularised problems 
(FPER) [7] or Network Information Criterion (NIC) [12]. We will here settle 
for an expression similar to GPE, i.e. a FPE whereJhe number of parameters 
is replaced by the number of e f ic ien t  parameters P:  

Consider for example the second option. 

where ( S )  is the average training error (over all training sets of size N ) .  As 
such an average is not available, we plug the measured training error (or 
empirical risk) S(f) instead. For quadratic risk, S ( f )  = (f (~(‘1’) - zt) . 
The calculation of depends on the regularisation method used during train- 
ing (see e.g. [7, 31). 

The proposed ERD method is a forward method taking all delays in their 
natural order (which bypasses the selection criteria),  and adds a candidate 
input if and only if it corresponds to  a significant decrease in generalisation 
error. The algorithm can be described as follows: 

2 

1. Initialise: d = 0; Gmin = 0 2 ;  no input selected. 
2. Model: d = d -t- 1; add delay t - d to  selected inputs; estimate 

3.  Test: if e is significantly smaller than Gmin, keep delay t - d; 

4. Iterate: Go to step 2 until stop condition is reached. 

generalisation error 6 for resulting model. 

Gmin = e. Discard otherwise. 

Significant decrease in error. When a candidate delay yields a decrease 
in (estimated) generalisation error, step 3 requires that we assess the sig- 
nificance of this decrease. We take advantage of the fact that the generali- 
sation estimators mentioned above are based on averaging a statistics, and 
test whether the statistics associated with two different generalisation esti- 
mators have statistically significantly distinct means by performing a paired 
t-test [15, 81. 

94 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 09:10:57 UTC from IEEE Xplore.  Restrictions apply. 



In our case, the estimated (average) generalisation error given by FPE 
can be expressed as the following average: 

where e?) is the local risk (e.g. squared residuals) for training example k 
and a model parameterised by w. Get us consider two models trained on the 
same set of examples, and and Pz the numbers of eficient parameters for 
the first and second model (respectively). The distribution of the corrected 
residuals (s) e?? (resp. (e) N-Pz e?:) has mean (el) (resp. (e2)). We 

thus test whether (e2) is significantly smaller than (el) by using a paired 
t-test on the corrected residuals. 

The case of cross-validation is somewhat more straightforward. The Zeave- 
one-out (LOO) cross-validation score is calculated by averaging the predic- 
tion error on one example for a model trained on the remaining sample: 

Where ft is the model trained without example ( x ( ~ ) , x ~ ) .  For two different 
models, the residuals are paired according to  the example left out, so that 
a (paired) t-test can be used to  determine whether these residuals come 
from distribution with different mean, i.e. correspond to  different average 
generalisation errror. Extension to m-fold cross-validation is straightforward. 

EMBEDDING DIMENSION 

In the study of non-linear dynamical systems, and time series in particular, 
an important problem lies in finding the embedding dimension [16], which 
is essentially equivalent to finding the set of primary delays in time series. 
In the realm of neural computation, the recently proposed &test method[l4] 
addresses this issue. In a different field, a method for identifying the order 
of non-linear input-output systems was proposed [5], that relies on the use 
of “Lipschitz quotients” i.e. ratio between output and input distances. A 
similar method applied to time series (called ‘geometrical technique’) was 
presented last year at this workshop [lo]. 

Though different in practice, these methods rely on a common assumption 
on the continuity of the underlying mapping, and use a geometrical approach 
based on the data alone. The continuity argument means that if there is a 
mapping between x ( ~ )  and xt, then close inputs x ( ~ )  and x(’) should corre- 
spond to  close outputs xy and xu. Accordingly, as long as the input space 
is insufficient (i.e. missing delays), close inputs can correspond to  arbitrarily 
distant outputs. Quantifying this is done either by measuring empirical prob- 
abilities that two outputs are close given that the corresponding inputs are 
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close (6-test), or by calculating the ratio between output and input distances 
(Lipschitz quotients). 

It should be noted that these methods are non-parametric. They rely on 
the data alone, and need not specify a given model (contrary to the ERD 
method). This can turn out to be a disadvantage since for a given data set, 
they always select the same set of relevant delays, regardless of the ability 
of our model to actually implement the underlying mapping. It could very 
well be that for the model at hand, the estimation would benefit from the 
inclusion of a secondury delay, as shown in the next section and discussed 
further down. Furthermore, these geometrical techniques require extensive 
calculations, as they consider all pairs of data. They are thus computationally 
expensive. 

TIME SERIES EXPERIMENTS 

This section is devoted to two simple experiments. First we use an artificial 
problem (the H6non map), for which a large validation set confirms the re- 
sults obtained by our ERD method. In the second experiment, we discover 
interesting long term dependencies on a real time series. 

The HQnon map is implemented by the following mapping: xt = 1 - 
1 . 4 ~ ; ~ ~  +0.3~~--2 .  We generate a training set containing 500 data, and a test 
set of 10000 elements for assessing generalisation abilities. We experiment 
on non-noisy as well as noisy data, with $- = 0.1. Two different models 
are used: a linear model (obviously ill-suited to this purpose) and a non- 
parametric kernel smoother. The generalisation estimators are the FPE and 
LOO respectively. 

In order to check whether the delays are wisely chosen, experiments are 
performed comparing the ERD method and other selection methods (table 1): 

1. a forward selection methods using a large validation set (distinct from 
the test set) of 10000 data; 

2 .  the Fgg-inclusion, a selection scheme based on the F-statistics [6]; 

3. the b-test [14] 

As shown on table 1, all forward selection methods outperform the 6-test 
in the linear case: a linear combination of the first two delays is obviously 
insufficient to model the mapping. The performance is rather homogeneous 
among forward selection methods, though the ERD method tends to favour 
parsimonious models, while keeping good generalisation abilities. 

On the non-noisy data, the kernel smoother captures thc underlying map- 
ping in all cases. When the training data is noisy, the F-inclusion scheme 
displays a severe case of curse of dimensionality. The other methods select 
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HBnon map: 

Table 1: Results on the noisy arid non-noisy HCnon map data, for two models: a 
linear model and a non parametric Kernel smoother. MSE is the Mean Squared 
(training) Error, generalisation is estimated on 10000 non-noisy data. 

one additional delay t - 3. As we will discuss later, this theoretically unnec- 
essary input leads to an improved prediction accuracy on both the training 
and generalisation set. 

No noise Noisy 
Linear I Kernel Linear 1 Kernel 

Fraser river data. As an example of real time series processing, we will use 
a publicly available dataset2 containing the mean monthly flow of the Fraser 
River in Hope, British Columbia, from march 1913 to December 1990 [9]. 
It is a roughly periodic data set containing 946 measurements with maxima 
every 11 to 13 months. We split the data set so that we have half the data 
for training and half for testing the prediction abilities of the model. In the 
following experiments, we use the log values of the data, and estimate the 
parameters by minimising the Mean Squared Error on the transformed data. 

The use of a large validation set is not possible here as is (unfortunately) 
the case with most real life problem. We will compare the result of the ERD 
scheme to the results provided by the non-parametric d-test. According to 
this test, the embedding space of the time series involves 6 delays. 

Note that the ERD method once again outperforms the method based on 
estimating the embedding dimension. The linear model probes further into 
the past, and spots relevant delays up to t - 48, i.e. four times the time span 
covered by the b-test. The kernel smoother seems to be experiencing some 
problems coping with the dimensionality of the data-they could probably 
be minimised using a variable metric. The neural networks model selects the 
same amount of delays than the 8-test. However, the selection is targeted 
towards minimisation of generalisation error, which is reflected in the sizeably 
smaller test error. Noticeably, the non-linear neural network model, though 

2available on Statlib at http://lib. stat. cmu.edu/datasets/ 
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Fraser river : 
Delays 

Linear Kernel Neural net 
1,2,4-7,10,11, 1,2,4,7,11,13 1,2,4,7,11,23 
23.26.35.48 

ERD 

Table 2: Results for the Raser river data set, and three different models. MSE is 
the Mean Squared Error. 

using a combination of regularised cost optimisation and OBS pruning [4], 
does not manage to extract longer-term delay, and is outperformed by the 
simpler linear model. 

MSE 0.0529 1 0.0389 0.0425 
Generalisation 0.0439 I 0.0547 0.488 
Delays 1,2,4,7,8,11 

OPTIMISING FIR FILTERS 

6-test 
1141 

We will now extend the method and apply it to  fMRI signal modelling. The 
fMRI signal measures the hemodynamic response to  focal neuronal activation. 
The data is collected as a 504 steps time-series containing measurements 
corresponding to  the hemodynamic response to a series of periodic baseline 
and activation periods (7 periods in all). The data is corrupted by a very 
high level of noise. 

Modelling this response as a function of the activation signal is the object 
of active current research [13]. We extend the above method to optimise the 
choice of relevant delays when trying to  model the response with a FIR filter 
applied on the excitation signal. Current attempts at doing so use a fixed lag 
of 7 delays. 

The ERD method is simply extended by testing sequentially chosen delays 
in the excitation signal rather than the time series itself. We applied the 
method on 5 voxels that were identified as being particularly responsive to 
the excitation. Out of the 504 measurements, we set the last two periods, 
or 144 data, aside for testing the generalisation abilities. The first 5 periods, 
containing 360 points, are used for identifying the relevant delay and the filter 
coefficients. The FPE is used as a generalisation estimate. 

On the 5 fMRI time series studied, we extracted from 1 to 4 delays, 
ranging from t - 1 to t - 22. On voxel number 3 for example, our experiments 
surprinsingly select only t - 1, but we can see on figure 1 (left panel) that 
this actually leads to a slight decrease in generalisation error compared to the 
fixed 7 delay filter. Overall, the results displayed on the left panel of figure 1 
suggest that on the extremely noisy data, the method leads to  performance 
that is comparable to the fixed FIR filter, while using less parameters. 

On the first voxel, the extraction of relevant delays leads to  a noticeable 
decrease in generalisation error. The right panel of figure 1 plots the response 
of voxel 1 together with both FIR estimation. 

, I , , ,  

MSE 0.0680 1 0.0441 1 0.452 
Generalisation 0.0609 I 0.0530 1 0.627 
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Comparison between fixed lag and extracted lag 
240 

P 

140 

1 2 3 4 5 6  
1200 

Voxel no. 

FIR filters vs. actual response (voxel 1) 

fMRl signal 
- - 7 delay FIR filter 
- FIR filter with extracted delays 

300 350 400 450 500 
-60’ ’ 

Time step 

Figure 1: Left: performance comparison. For each voxel the 7 delays FIR filter is on 
the left, while the FIR filter with extracted delays is on the right. Right: behaviour 
of the 7 delay filter and the extracted filter on the fMRI time series measured in 
the first voxel. 
DISCUSSION 

The FIR example above illustrates the fact that using a parcimonious model, 
with delays appropriately chosen, is a good way of obtaining good modelling 
abilities. This can be of great help when facing a problem on which we 
have no-or little-physical insight. In that context, the ERD is a principled 
model-dependent approach that has the ability to select the inputs that lead 
to the best expected prediction error. 

It should also be emphasised that it seeks to optimise the actual criteria 
of interest, i.e. generalisation error. Indeed, at the end of the day we are 
interested in obtaining the best possible predictions. Reconstructing the 
dynamics of a time series, as suggested by the methods aimed at  estimating 
the embedding dimension, is only a way of reaching this ultimate goal. On 
the contrary, the ERD method that we present here tries to optimise the 
relevant performance criterion directly. 

This has an interesting effect: by essence, the ERD method takes into 
account the fact that modelling is performed on a limited amount of data. 
On the Henon map example, this leads to the selection of an additional 
delay. It has no link to the actual dynamics of the system, but gives a 
clear decrease in error. Furthermore, when the model is not flexible enough 
to implement the system mapping, we will probe further into the past, and 
possibly discover higher-order dependencies that will ease the modelling. This 
is well illustrated by the two time series examples. 

Another aspect of the delay extraction procedure as proposed here is that 
it relies on the estimation of the generalisation error. It is expected that the 
more accurate the prediction is, the more relevant the delays selected will be. 
It should be noted however that we are only interested in finding minima of 
the generalisation error, so an estimator will be usefull as long as it gives the 
right “trend” in generalisation. 

Lastly, let us recall that this method is inspired from the forward selection 

99 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 09:10:57 UTC from IEEE Xplore.  Restrictions apply. 



methods in statistical variable selection. A natural extension of this is the 
use of backward elimination steps, in a manner similar to stepwise regression. 
Similarly, pruning techniques can be used to remove inputs of the model that 
are potentially harmful1 with respect to generalisation error. 

SUMMARY 

We have presented a generalisation-based method for finding the relevant 
delays in time series modelling. It relates to stepwise variable selection pro- 
cedures in classical (linear) regression. This ‘Extraction of Relevant De- 
lays’ method is straightforward to implement and leads to interesting results. 
When the model is not flexible enough to implement the underlying map- 
ping, it selects additional delays in order to minimise estimated generalisation 
performance. Noticeably, it outperforms some non-parametric methods for 
determining the embedding dimension when applied to insufficiently flexible 
models. 

Directions for future work include refinement of the relevance criterion, 
as well as the extension of this scheme to different problems such as system 
identification, with more than one temporal inputs. 
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fellowship from the Technical University of Denmark. 
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