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Abstract 

Consider a set of linear one sided or two sided inequal- 
ity constraints on a real vector X .  The problem of 
interest is selection of X so as to maximize the number 
of constraints that are simultaneously satisfied, or 
equivalently, combinatorial selection of a maximum 
cardinality subset of feasible inequalities. Special 
classes of this problem are of interest in a variety of 
areas such as pattern recognition, machine learning, 
operations research, and medical treatment planning. 
This problem is generally solvable in exponential time. 
A heuristic polynomial time algorithm is presented 
in this paper. The algorithm relies on an iterative 
constraint removal procedure where constraints are 
eliminated from a set proposed by solutions to min- 
max linear programs. The method is illustrated by 
a simulated example of a linear system with double 
sided bounds and a case from the area of radiation 
therapy. 

1 Introduction 

Consider the set { X T a i l a i , X  E Rp,i = l , . . . , N }  
where typically N >> p .  Assume that for each ele- 
ment, X T a i ,  a one sided or two sided bound is given. 
The problem of interest is selection of X so as to max- 
imize the number of elements that simultaneously lie 
within their corresponding bounds. Special classes of 
this problem are of interest in areas such as pattern 
recognition [l], machine learning [2, 31, and medical 
treatment planning. The numerical study of the paper 
considers a problem from the area of medical treatment 
planning. 

The problem may be formulated as a combinatorial op- 
timization with the objective of selecting a maximum 
cardinality subset of { X T a i }  that together with their 
corresponding bounds define a feasible system. The 
variable X is then found as a point in the selected feasi- 
ble region. This combinatorial problem is solvable only 
in exponential time [4]. In [l] an algorithm is proposed 

for a particular class of pattern recognition problems 
which is better than exhaustive search. The problem 
may alternatively be formulated as a continuous search 
over X where the objective function is the number of 
elements that lie within the given bounds. The con- 
tinuous formulation does not remedy the complexity of 
the problem since the objective function is discontinu- 
ous and typically exhibits numerous local optima. As a 
result, the usual gradient based algorithms are not ap- 
propriate. Techniques such as genetic algorithm may 
be useful but not very efficient. Other heuristic search 
procedures have been proposed that apply to particu- 
lar classes of the above problem [2]. The problem has 
been studied from a linear programming infeasibility 
analysis point of view [5]. [S] presents an algorithm 
based on alternative formulation of the problem as a 
minimum weight cover for irreducible inconsistent sub- 
systems (an infeasible subsystem with smallest number 
of elements). The approach of [6] relies on integer pro- 
gramming and suffers from complexity and difficulty of 
implementation. The approach followed in this paper 
is in spirit close to the work of [5, 71. In both ap- 
proaches a polynomial time algorithm is proposed that 
at each iteration solves a linear program to determine 
candidate inequalities for removal from the set. These 
candidates are removed and the procedure is repeated 
until a feasible subset is rendered. The main difference 
between the approach here and the work of [5, 71 is 
in the constraint removal technique. While [7] deter- 
mines removal candidates for elimination by solving an 
elastic linear program [8] obtained by minimizing the 
sum of positive violations from the bounds, the con- 
straint removal of the present work relies on solutions 
to minmax linear programs. The advantage is reduced 
number of variables for the linear programs (solved at 
each iteration) and much fewer number of candidates 
for removal. Moreover, should there at each iteration 
exist a single constraint whose elimination renders a 
feasible subset, that single constraint will be identified 
by the elimination process of the algorithm. 

The rest of the paper is organized as follows. The al- 
gorithm is presented in Section 2 and illustrated by 
two numerical examples in Section 3 which contains a 
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simulated linear system with two sided bounds and a 
case from radiation therapy planning. Section 4 offers 
concluding remarks. 

2 Maximum feasible subset algorithm 

In this section, the algorithm for maximum feasible 
subset selection is presented. As mentioned in the in- 
troduction, the algorithm relies on iterative solutions 
to minmax linear programs. 

Let S denote {(ai, Li, Ui)li = 1, . . . , N }  and consider 
double sided bounds of the form Li 5 XTai  5 Ui 
on X .  Generalization to the case where some or all 
constraints are one sided is straightforward. The prob- 
lem of interest is maximization (with respect to X )  
of c I ( L i  5 XTai  5 Vi) where the indicator func- 

tion I ( . )  is equal to 1 if its argument is true and 0 
otherwise. The above optimization problem is equiva- 
lent to minimization of the sum Ea:, q + O + ,  where 

a; = max{O,max{XTai - vi, ~i - xTai}} ,  ie largest 
positive deviation from the bounds for the i'th con- 
straint (note that a:' is zero if ai = 0 and 1 otherwise). 
Hence, the problem may be regarded as minimizing the 
O+-norm of the (deviation) sequence {ai} with respect 
to X .  The objective function Ea: is non-convex for 

0 < q < 1 and exhibits an increasing number of local 
optima as q + O + .  We present a heuristic polynomial 
time algorithm in the following. 

i 

i 

I 

Algorithm 1 Initialize SO = S and k = 0. 

Step 1: Solve the linear program 

( ~ ( ~ 1 ,  ~ ( ~ 1 )  = arg minx,p p, 
Li - p  5 aTX 5 Vi +p ,  
PLO, 

(2.1) 

where (a;, Lj, U j )  E S k .  

Step 2: If P ( k )  = 0 (or smaller than a predetermined 
positive threshold) then propose X ( k )  and S k  as 
the solution and terminate. Otherwise continue. 

Step 3: Determine all the elements of s k  that are in- 
volved in at  least one of the p + 1 active con- 
straints of the linear program (2.1). These ele- 
ments constitute candidates for removal from the 
set (ie there is a maximum number of p + 1 ele- 
ments in the candidate set at  each iteration). 

Step 4: Select one element of the candidate set for 
removal from s k .  Update k to k + 1 and go to 
Step 1. 

The algorithm may be explained as follows. At each it- 
eration, say iteration k, the linear program (2.1) mini- 
mizes the maximum positive deviation from the bounds 
for the inequalities induced by s k  , or more precisely, 
minimizes max { 0, max;{XTai - Vi, Li - XTai}} for 
(ai, Li, Ui) E s k .  The constraints of the h e a r  pro- 
gram (2.1) are obviously feasible (since p should merely 
be selected large enough for the inequalities to hold) 
and the feasibility of the subsystem Li 5 XTai  5 Vi, 
(ai, Li, Ui) E s k ,  holds iff p(k)  = 0 (the termination 
criterion of Step 2) . The algorithm then proceeds by 
removing an element from s k  that results in a small 
value for P ( k + l ) .  Removal of an element that is not 
a candidate proposed by Step 3 will obviously leave 
the optimal value of ,dk+') unchanged relative to P ( k ) .  
Hence, we only consider removal of s k ' s  elements that 
are contained in the candidate set (Step 4). One way of 
selecting among candidate elements is removal of each 
candidate at  a time, solving the linear program fol- 
lowed by the removal, and selecting the element whose 
removal results in the smallest value for /3(k+1). Note 
that this approach is optimal in a one step ahead sense 
meaning that if removal of only one element renders 
a feasible subset then that element will be identified 
by the procedure. Note that this technique requires 
solutions to (at most) p +  1 linear programs a t  each it- 
eration. Other techniques might be proposed to speed 
up calculations, eg removal of the element involved in 
an equality with largest Lagrange multiplier value at  
the solution to  (2.1). 

3 Numerical Examples 

In this section, we present two numerical examples to 
illustrate the performance of the algorithm. The first 
one is a simulated case where it is of interest to max- 
imize the number of feasible two sided bounds. The 
second example is an application from the area of ra- 
diotherapy planning. 

A two sided case: Consider the system of two sided 
inequalities 19.5 5 a:X 5 20.5, i = 1 , .  . ., 100, where 
the elements of ai E RZo are randomly sampled from a 
uniform distribution between 0.75 and 1.25. Denoting 
ai = rnax{0,max{XTai - vi, Li - xTai}} ,  we apply 
Algorithm 1 to minimize Cap' where the removal is 

optimal in a one step ahead sense. The percentage of 
satisfied constraints upon termination of the algorithm 
is 88% and the computations take about 3; minutes 
on a HP-PA8000 work station using MATLAB 5.2 soft- 
ware. Further, we apply linear programming to min- 
imize Cai as a convex approximation to the original 

problem. The percentage of satisfied constraints for 

i 

i 
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the solution of the linear program is 74% which is no- 
ticeably lower than the result obtained by Algorithm 
1 .  

Radiotherapy planning: Coronary angioplasty is 
a minimally invasive technique for treatment of 
atherosclerosis, the principle process of heart disease. 
Despite its wide acceptance, coronary angioplasty is 
limited by rates of restenosis (renarrowing of the ves- 
sel) of 30-60% [9]. A major component of the restenosis 
process is intimal hyperplasia which refers to the pro- 
liferative response to vascular injury. While coronary 
stents virtually remove recoil and remodeling (other 
components of the restenosis process) they do not de- 
crease the proliferative response caused by angioplasty. 
Recent studies show that ionizing radiation, adminis- 
tered during or after angioplasty, can inhibit the pro- 
liferative component of restenosis [lo]. Possible ra- 
diation techniques are temporary or high dose rate 
catheter-based brachytherapy using radioactive seeds, 
wire, or liquid filled balloons, permanent or low dose 
rate brachytherapy using radioactive stents, and exter- 
nal beam radiation. Treatment planning is essential 
since low doses of radiation stimulate neointimal pro- 
liferation and high doses may cause vascular complica- 
tions [Ill. 

The first step in the design of an optimal treatment 
plan is outlining points on tomographic sections of the 
vessel (obtained by eg ultrasonography) that should re- 
ceive proper amounts of radioactive dose. These points 
are typically selected on an inner and an outer sur- 
face that circumscribe a smooth muscle cell layer of 
the vessel [9]. The next step is determination of the 
treatment variables so as to deliver desirable dose val- 
ues to the outlined points. In this example, we consider 
the common technique of high dose rate radiation de- 
livery where an afterloader is used to step a train of 
seeds along the vessel path. The train of seeds dwells 
at predetermined positions (dwell positions) along the 
path for predetermined durations of time (dwell times). 
The treatment variable consists of delivery configura- 
tion parameters (relative positioning of the seeds within 
a train, initial and final positions of the trains on the 
paths, stepping lengths, seed geometry, etc.) and the 
sequence of dwell times. Here we consider dwell time 
optimization for a fixed delivery configuration. With 
the assumption that the total irradiation times are 
much smaller than seeds half lives, the dose delivery 
rates may be assumed constant within the time inter- 
vals of radiation. Then for a train of seeds dwelling at 
a certain position along its path, the amount of deliv- 
ered dose to a point is equal to the dwell time of the 
train multiplied by the dose delivery rate to the point 
of interest for that dwell position. Moreover, the dose 
delivered during transition between consequent dwell 

positions may be ignored due to fast afterloading (neg- 
ligible transition times). Hence, the dose delivered to 

a point, say v, is given by #J;(v)Z where d,(v) is 

dose delivery rate at point v from the dwell position 
i, Ti is the dwell time i, and p is the total number of 
dwell positions. Since the dose delivery rate to a point 
is only affected by the delivery configuration (which is 
assumed to be fixed), the problem of treatment plan- 
ning concerns optimal selection of T = (TI,. .., Tp)T.  
The desirable dose values are most commonly given as 
bounds on delivered radioactive dose to the outlined 
points. The ideal dose bounds for treatment of intimal 
hyperplasia are usually given as maximum &ax = 30 
Gy (radiation unit) for the points on the inner surface 
and minimum Dmin = 8 Gy for the points on the outer 
surface [9]. These objectives may be stated as 

P 

i = l  

P 
4; (.)Ti 5 Dmax Vv E inner surface, 

i= l  
P 

#Jj(v)Z 2 Dmjn Vv E outer surface. (3.2) 
i = l  

Under infeasibility of the above prescribed bounds, an 
alternative will be maximization of the fraction of out- 
lined points that receive dose values within the pre- 
scribed bounds, ie maximum feasible subset problem 
for the system (3.2).  Indeed, numbers such as fraction 
of a volume or surface receiving desirable dose values 
are commonly used in clinical practice for assessment 
of a treatment plan and are closely related to the so 
called dose-volume histograms (DVH) or dose-surface 
histograms (DSH). DVH's and DSH's are cumulative 
versions of histogram over delivered dose to the volume 
or surface of interest and are widely accepted figures of 
merit for evaluation of a treatment plan [12]. 

Optimization results are presented for a vessel with 
tubular inner and outer surfaces where the inner sur- 
face narrows in the middle of the vessel (see Figure 1) 
and the delivery configuration and point sampling are 
identical to those of the numerical study of [13]. The 
point sampling and delivery configuration used here re- 
sult in a system of 288 inequalities and 6 variables (ie 
N = 288 and p = 6).  Similar to [13], calculation of dose 
rates are based on line source approximation follow- 
ing the American Association of Physicists in Medicine 
(AAPM) task group 43 (TG43) formalism [14] as rec- 
ommended by the AAPM-TG6O [15] for photon emit- 
ting sources. 

Denoting ai = nias{O,max{XTni - U, ,L i  - X T a ; } } ,  

we apply Algorithm 1 to minimize xi  a:' where the 
removal is optimal in a one step ahead sense. The per- 
centage of satisfied constraints upon termination of the 
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Figure 1: Longitudinal cross section of the vessel under 
radiation delivery. Seeds (marked by X) travel 
in a train of two (represented by the box con- 
taining the X marks). The train of seeds travels 
along the center line of the vessel (represented 
by the dashed line) and dwells at the positions 
marked by o along its path. 

algorithm is 70% and the computations take about 7; 
minutes on a HP-PA8000 work station using MATLAB 
5.2 software. Further, we apply linear programming to 
minimize a, as a convex approximation to the origi- 

nal problem. The percentage of satisfied constraints for 
the solution of the linear program is 62% which is again 
noticeably lower than the result obtained by Algorithm 
1. 

i 

Finally, it should be noted that the planning problems 
arising in connection with radiotherapy of cancer are 
very similar to the planning problem considered here. 
The approach is therefore expected to be of enormous 
importance in radiotherapy of cancer. 

4 Conclusion 

We have presented a heuristic polynomial time algo- 
rithm for maximum feasible subset selection. The per- 
formance of the algorithm has been illustrated on a 
simulated linear system with double sided bounds and 
a case from radiation therapy planning for treatment 
of intimal hyperplasia. It will be of interest to test 
the performance of the algorithm versus existing other 
techniques and apply the maximum feasible subset ap- 
proach to various treatment planning problems, eg ra- 
diotherapy of cancer. 
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