
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Exact, almost and delayed fault detection
an observer based approach

Niemann, Hans Henrik; Saberi, Ali; Stoorvogel, Anton A.; Sannuti, Peddapullaiah

Published in:
Proceeding of the American Control Conference

Link to article, DOI:
10.1109/ACC.1999.782748

Publication date:
1999

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Niemann, H. H., Saberi, A., Stoorvogel, A. A., & Sannuti, P. (1999). Exact, almost and delayed fault detection:
an observer based approach. In Proceeding of the American Control Conference (Vol. 1, pp. 99-103). DOI:
10.1109/ACC.1999.782748

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13727885?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/ACC.1999.782748
http://orbit.dtu.dk/en/publications/exact-almost-and-delayed-fault-detection(1b7a9b2b-5337-4ee3-98ee-df0b78f19bf8).html


Proceedings of the American Control Conference 
San Diego, California - lune 1999 

Exact, Almost and Delayed Fault Detection 
An Observer based Approach 

Henrik Niemann' 
Department of Automation 

Technical University of Denmark 
Building 326, DK-2800 Lyngby, Denmark 

E-mail: hhn@ iau.dtu.dk 

Anton A. Stoorvogel 
Dept of Math. and Computing Science 

Eindhoven Univ. of Technology 
P.O.Box 513,5600 MB Eindhoven 

The Netherlands 
E-mail: wscoas Q win.tue.nl 

Abstract 

This paper considers the problem of fault detection and 
isolation while using zero or almost zero threshold. A 
number of different fault detection and isolation prob- 
lems using exact or almost exact disturbance decoupling 
are formulated. Solvability conditions are given for the 
formulated design problems. The &step delayed fault 
detection problem is also considered for discrete-time 
systems. 

1 Introduction 
This paper is concerned with fault detection and iso- 

lation (FDI) in dynamic systems. The increasing use 
of fault detectors in different connections has stimulated 
over the last two decades an extensive study of fault de- 
tection and isolation methods. Some of the first fault 
detection methods have been described in a survey pa- 
per by Willsky [ lo]. A recent paper by Patton and Chen 
[5] give a good overview of more modern model-based 
fault detection methods. Such a study has been enhanced 
by the developments in modern control theory that has 
brought forth powerful techniques of mathematical mod- 
eling, H2 and Hm optimal control, state estimation, pa- 
rameter identification, etc. 

Fault detection can be done in a number of diCferent 
levels, where the high level fault detection is an exact 
estimation of the faults and the low level one is just an 
indication of faults somewhere in the system [IO]. High 
level fault detection is in general achieved by applying 
observer based fault detectors. 

In a model based approach, most fault detectors have 
been based on observers, see e.g. [4]. By using an ob- 
server as a fault detector, the fault detection design prob- 
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lem more or less reduce to an estimation problem. 
In the paper of Massoumnia et.al. [2], a number of 

fundamental problems in fault detection are considered. 
These fundamental problems are characterized by using 
the direction of the fault vector. These problems are im- 
portant, because if they can be solved, it is possible to ap- 
ply fault detectors with zero or almost zero threshold. As 
is well known, the selection of thresholds is in general a 
major problem as it always involves some trade-offs be- 
tween false alarms and non-detected faults as soon as the 
threshold is unequal to zero [ 1 ,  61. 

The focus of this paper is to examine the fundamen- 
tal problems of fault detection and isolation based on a 
direct estimation of the fault vector which is obviously 
a subset of the fundamental problems formulated in [2]. 
Fault detection and isolation problems without using a 
direct estimation of the fault vector are considered in 
[SI. We give the solvability conditions of the considered 
problems in a general setup. 

Both continuous as well as discrete-time systems are 
considered in this paper. We would like to emphasize 
that the design problems that are considered in this paper 
are very general and are very interesting from a theoret- 
ical point of view. 

A full version of this paper with proofs can be found 
in [3]. 

2 Definitions and Problem Formulations 
Considcr the following statc space description for a 

plant or a systcm given by 

where 0 is a n  opcrator indicating thc timc derivation 
& for continuous-time systems and a forward unit time 
shift for discrctc-time systems. Also, x is thc state vec- 
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tor, f is a fault signal vector, p is a disturbance signal 
vector, and y is the measurement vector. 

The above can be rewritten in a transfer function form 
as 

where a! is the Laplace operator s for continuous-time 
systems and the z-transform z for discrete-time systems. 

Various types of fault detection and isolation problems 
are defined rigorously later on in this section. In all such 
problems, fault isolation consists of essentially generat- 
ing what is known as a residual signal or a residual vector 
r which is then utilized to detect and isolate a fault. The 
residual r is generated from the measured output y of the 
given process by a dynamic system known as a residual 
generator whose transfer function is F ,  

In what follows, we first formally define what we mean 
by fault detection and isolation, and then pose four types 
of fault isolation problems. Solvability conditions for 
such problems and methods of designing appropriate 
residual generators are considered in the subsequent sec- 
tions. Before we proceed to the definitions, we introduce 
the notation, 

r = F G f  f + F G p p  = Trf f + TrWp. (3) 

We now start with the definition of fault detection and 
isolation. 

Definition 1 Given the residual generator F E RX-, 
the residual r is said to achieve fault detection (FD) 
without disturbance if a non-zero fault vector f and 
p = 0 results in a non-zero residual r. 

Definition 2 Given the residual generator F E 3 X W ,  
the residual r is said to achieve fault detection and iso- 
lation (FDI) without disturbance iffor any two difSerent 
fault vectors fi and f ,  and p = 0 the corresponding 
residuals ri and r,, are diflerent. 

Definitions 1 and 2 are elementary and basic defini- 
tions concerned with fault detection and isolation. The 
real issue is however whether the above can still be 
achieved when the disturbance p affects the system. In 
other words, we need to have a residual generator which 
is insensitive to external disturbance p. That is, some 
specified norm of Tr, has to be small. 

As argued by Willsky (see [lo]) a very desirable case 
is if we can reconstruct the fault signal f using a suit- 
able observer. Willsky considered the case that this re- 
construction should be exact even in the presence of the 
disturbances. In this paper we will consider two relax- 
ations which will turn out to weaken significantly the 

solvability conditions. First of all we allow for almost 
reconstruction but with an arbitrarily high level of accu- 
racy. Secondly wc consider the case that the reconstruc- 
tion can be performed using delayed measurements. 

There are many definitions of fault detection and iso- 
lation (see e.g. [2, 5, 91) and corresponding problems in 
the literature. The one posed here turns out (see for de- 
tails the next section) to be quite fundamental. A more 
general and structural analysis of the problems in fault 
detection and analysis will be considered in another pa- 
per, see [8]. 

In what follows, we pose two different problems each 
imposing certain specified and desired conditions on 
QT,, and QTrt ,  where Q is a diagonal matrix with 0 
or 1 on the diagonal which describes the subset of faults 
that are going to be detected and isolated. Note that 
Q = I is a special case when all fault are detected and 
isolated. The discrete-time versions of the following de- 
sign problems appear by using e lw  instead of jo. 

Problem 1 The problem of partial exact fault detection 
and isolation (PEFDI Problem) is dejined as a problem 
of jinding, if existent, a residual generator F E 3 X W  
such that we have 

Clearly, the exact fault detection and isolation problem 
imposes strong conditions. If it is solvable, any fault can 
be detected without any false alarm. In fact, the resid- 
ual signal then will be a perfect estimate of the fault. As 
such, exact fault detection and isolation may not always 
be solvable. The following problem addresses almost ex- 
act fault detection and isolation which seeks to relax the 
perfect estimation condition imposed in the exact fault 
detection and isolation problem. 

Problem 2 The problem ofpartial almost exactfault de- 
tection and isolation (PAFDI Problem) is defined as a 
problem of jinding, if existent, a parameterized family 
of residual generators Fp E 334, parameterized in p 
such that for  any E > 0 there exists U p* such that for 
any p < p* we lzave 

I I Q ( T r r , p  - I ) l l ~  < E and IIQ Trp .p l lH  < E ,  

where, as usual, 11 . I I H  is a suitable norm. Here, Trf.p 
and Trp,p correspond to the expressions given in (3) for  
Trj and T,, respectively with Fp replacing F .  

In connection with Problem 2, one can use any norm. 
Norms that are commonly used in the literature are the 
H2 and Hw norms. But one can also use the so-called 
Ll norm that measures the L ,  induced operator norm. 

A time delay in detecting faults in a dynamic system 
can be accepted in a large number of cases. This will, of 
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course, depend on the type of fault to be detected and in 
which connection the information is going to be used. 

For discrete-time systems, let us consider the 1-step 
delayed fault detection problem. In an l-step fault de- 
tector, we get a detection of the fault signal f (k - l )  
rather than f ( k )  at time k .  The exact and almost exact 
fault detection design problems given above can now be 
rewritten for the case when a 1-step delayed fault detec- 
tor is applied. The problem formulation given above was 
based on making the estimation error eQ(k)  given by 

e ~ ( k )  = Q ( f  ( k )  - r ( k ) )  (4) 

equal to zero or almost equal to zero independent of the 
inputs as time goes to infinity. In the C-step delayed fault 
detection case, the equation for the estimation error in 
(4) takes then the form, 

e d k )  = Q ( f  ( k  - e) - r ( k ) ) .  ( 5 )  

Based on this equation, we get the following two 1-step 
delayed fault detection problems. 

Problem 3 The problem of partial exact fault detection 
and isolation with 1-step delay (1-step delayed PEFDI 
Problem) is dejined as a problem ofjinding, if existent, a 
residual generator F E R3fW such that we have 

Q Tr,f(e,iw) = e-.iewQ I and 
Q Trg(dw)  = 0 VO E [ 0 , 2 ~ ) .  

Problem 4 The problem of partial almost exact fault de- 
tection and isolation with l - s tep  delay (1-step delayed 
PAFDI Problem) is dejined as a problem ofjinding, if 
existent, a parameterized family of residual generators 
Fp E R3fm parameterized in p such that for any E > 0 
there exists a p* such that for  any p < p* we have 

IlQ(Tr,f,p - J ) l l ~  < E  and llQTrp.pII~ < E ,  

where J ( j w )  = e-jewI and, as usual, 11 . I I H  is a suit- 
able norm. Here, Trf,p and Trg.p correspond to the ex- 
pressions given in (3 )  for Tr,f and Trg respectively, with 
Fp replacing F. 

3 Analysis of and Design for Solving (Partial) Exact 
or Almost Exact Fault Detection and Isolation 

In this section, we will develop the necessary and suf- 
ficient conditions under which (partial) exact or almost 
exact fault detection and isolation is possible. 

Since all four problems are related to estimation the- 
ory, it is natural to come up with a mathematically uni- 
fied framework to develop the solvability conditions for 
them as well as to construct appropriate residual genera- 
tors solving them. 

Before we proceed further we need some notation. Let 

B := ( B f  B P ) ,  D : =  ( D f  O w ) .  (6) 

Also, denote the output variable that is to he estimated 
as 

:= Q f  = Q (L) where Q := ( Q  0 ) .  (7) 

Further, let us define 

c =  (c D ) ,  Q = (0 Q) 

Without the loss of generality, we use the following 
assumption throughout this section. 

Assumption 3 The eigenvalues of A are in the open left- 
half complex plane for continuous-time systems, and are 
inside the unit circle for discrete-time systems. 

The argument why the above definition is without loss 
of generality can for instance be found in [7]. 

3.1 Solvability Conditions for (Partial) Exact or Al- 
most Exact Fault Detection and Isolation Problems 

In this subsection, we present the solvability condi- 
tions for the (partial) exact or almost exact fault Detec- 
tion and isolation problems. 

An observer in general has the form, 

(8) 
(Tu = Lu + M y  
2 = N U +  Py.  

From [7], we have that the partial exact or almost ex- 
act fault detection and isolation problem can only be 
solved by utilizing only a proper (as opposed to a strictly 
proper) observer, and even then one must at least satisfy 
the necessary condition: 

Ker D Ker Q. 

The following two theorems establish the necessary and 
sufficient conditions under which the partial exact or al- 
most exact fault detection and isolation problems for 
continuous- and discrete-time systems can he solved. 
For the definitions of the geometric subspaces 4* ,  V * ,  
etc., we refer to any standard texthook on geometric the- 
ory of linear systcms. 

Theorem 4 Consider the continuous-time system C 
given in ( I ) ,  arid characterized b y  the quadruple 
( A ,  B ,  C ,  D )  with the eigenvalues of A in the open left- 
half plane. We have the following: 

1. The partial exact fault detection and isolation 
problem is solvahle if arid only if 

( 4 K ( Z )  @ R(n'+s) ) n Ker c C Ker Q. 
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2.  The partial almost exact,fault detecticm und isola- 
tion problem while utilizing the H2 ~ i o r m  is solv- 
able ifand only if' 

E KcrQ. (9) 

3. The partial almost exact fault detection and isola- 
tion problem while utilizing the Ho0 norm is solv- 
able if and only if the filllowing conditions are sat- 
isfied. 

(a) (9) is satisfled, 

(b )  f o r  any invariant zero so of I= on the imagi- 
nary axis we have 

KerC(so1 - A ) - ' B  + D c Ker Q. 

We emphasize that the above theorem can easily be 
used to find the solvability conditions for the exact 
fault detection and isolation problems by defining Q as 
(Im 0). Next, consider the discrete-time version of the 
above theorem. 

Theorem 5 Consider the discrete-time system C given 
in ( I ) ,  and characterized by the quadruple ( A ,  E ,  C ,  D )  
with the eigenvalues of A inside the unit disc. We have 
the following: 

I .  The partial exact fault detection and isolation 
problem is solvable if and only if 

2. The partial exact fault detection and isolation 
problem while utilizing the H2 norm is solvable 
ifand only if 

3. The partial exact fault detection and isolation 
problem while utilizing the Hm norm is solvable if 
and only if the following conditions are satisjied. 

(a )  ( I O )  is satisBed, 

(b) For any invariant zero so of C on the unit 
circle we have 

KerC(soZ - A)- 'B  + D c Ker Q. 

3.2 Solvability Conditions for [-step Delayed (Par- 
tial) Exact or Almost Exact Fault Detection and Iso- 
lation problems 

In order to give the necessary and sufficient solvability 
conditions for the e-step delayed fault detection prob- 
Icms, the estimation error given in (5) needs to be in a 
state space form. Denoting the output variable that is 
to be estimated by z ,  the C-step delayed fault detection 
problem for the original system is equivalent with the 
design of a proper fault detector for the following sys- 
tem 

with 

A 0 0 . . .  0 0  
0 0 0 . . .  0 0  
I 0 0 . . .  0 0 
0 I 0 . . '  0 0  

0 . . .  0 I O 0  

O 0) 3T QT 0 . . .  
z 0 0 . . .  0 0)  
1 0 0 ' . .  0 I )  

where X E IR('z+"'+S)e assuming that the original system 
has a state space of dimension n and input space of order 
in + s (for f and p). Also, the definition of E ,  D and z 
are as given in (6) and (7). 

The C-step delayed fault detection problem is now 
equivalent to designing a fault detector for the extended 
system given in (1 1) that will satisfy either exact or al- 
most exact fault detection. However, these fault detec- 
tion design problems are not exactly equivalent with the 
problems solved in Section 3. The reason is that the fault 
detection problem is now not an estimation of the exter- 
nal fault directly, but instead an estimation of a subset of 
the state vector described by z .  As a consequence of this, 
it is possible also to apply strictly proper fault detectors 
for this setup. Furthermore, the solvability conditions 
given in Section 3 cannot be applied directly, because 
the design problem is now a state estimation problem in- 
stead of an input estimation problem. 

It can be easily seen that using proper fault detectors 
when [-step delay is introduced in estimation is equiva- 
lent to using strictly proper fault detectors when + 1- 
step delay is introduced in estimation. Therefore we will 
only focus on using proper fault detectors i n  the follow- 
ing results. Based on the recent work on estimation the- 
ory [7], our study of e-step delayed partial exact and 
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almost fault detection and isolation problems yields the 
following results. 

Theorem 6 Consider the discrete-time system C given 
in ( I ) ,  and characterized by the quadruple ( A ,  B ,  C ,  D )  
with the eigenvalues of A inside the unit disc. Let an 
integer l 2 0 be given. We have the following: 

1. The l-step delayed partial exact fault detection 
and isolation problem is solvable using a proper 
fuult detector ifand only ;f 

n ( A  B)-' V,*(E) E Ker (0 Q) . 

2. The e-step delayed partial ulmost exact fault de- 
tection and isolation problem while utilizing the 
H2 norm is solvable using a proper fault detector 
if and only if 

3. The L-step delayed partial almost exact fault de- 
tection and isolation problem while utilizing the 
Hm norm is solvable using a proper fault detector 
if and only i f  the following conditions are satisfied. 

(a)  (12) is satisfed, 
(b)  For any invariant zero so of C on the unit 

circle we have 

Ker C(s0Z - A)- 'B + D c Ker Q. 

Since we know that V,*(E) = V*(E) for L 2 0, 
Theorem 6 can be rewritten by using V * ( C )  instead of 
V,*(Z>. 

4 Conclusion 
For both continuous- and discrete-time systems, a 

number of fundamental problems that arise in fault de- 
tection and isolation (FDI) are investigated via estima- 
tion theory utilizing various types of observers or esti- 
mators. 

Our primary focus is on solving exact and almost exact 
fault detection and isolation problems by direct estima- 
tion of fault signals. Exact estimation of a fault signal 
requires that the transfer function from the fault signal 
to its estimate is an identity matrix, while the transfer 
function from any disturbance to the estimate of the fault 
signal is identically zero. In contrast to this, almost csti- 
mation o f a  fault signal requires that the transler function 

from the fault to its estimate be as close as desired to the 
identity matrix in a certain norm (H2 or Hm),  while a 
chosen norm (H2 or H,) of the transfer function from 
any disturbance to the estimate of the fault signal is as 
small as required. Necessary and sufficient conditions 
for the solvability of the exact fault detection and isola- 
tion problem as well as the almost exact fault detection 
and isolation problem are established. The notion of al- 
most exact fault detection and isolation, as opposed to 
the exact fault detection and isolation, weakens the re- 
quired solvability conditions considerably. Furthermore, 
for discrete-time systems, another significant notion of 
using a fixed delay in estimating a fault signal is in- 
troduced here. That is, at time step k ,  one obtains the 
estimate of the fault signal at k - e where l is a fixed 
nonnegative integer. Again, introduction of such a delay 
weakens the required solvability conditions. 
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