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TRAINING RECURRENT NETWORKS 
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Technical University of Denmark, DK-2800 Lyngby, Denmark 

email: mwp@imm.dtu.dk 
Phone: + 45 45253920 Fax: -t 45 45872599 

Abstract - Training recurrent networks is generally believed to be a 
difficult task. Excessive training times and lack of convergence to an 
acceptable solution are frequently reported. In this paper we seek to 
explain the reason for this from a numerical point of view and show 
how to avoid problems when training. In particular we investigate ill- 
conditioning, the need for and effect of regularization and illustrate the 
superiority of second-order methods for training. 

INTRODUCTION 
Recurrent neural networks are an interesting class of models for signal pro- 
cessing as they are able to build up internal memory suited for the task at 
hand and thus often lead to compact model representations. However, it is 
generally believed to be a difficult task to train this type of networks. Several 
authors have addressed the learning problem for recurrent networks, e.g., in 
the context of sequence classification when required to store information for 
an arbitrary period of time [l, 51 but to the best of the authors knowledge no 
one have treated the problem from a general numerical point of view. 

Feedforward networks were treated extensively from a numerical point 
of view in [7] where it was illustrated how training forms an extremely ill- 
conditioned optimization problem. In this contribution we extend this analy- 
sis to  include recurrent networks. In particular we identify redundant connec- 
tions and illustrate how ill-conditioning may otherwise arise, which motivates 
the use of regularization. 

Having acknowledged the need for regularization makes way for the highly 
effective second-order methods for training. In this contribution we partic- 
ulary focus on the dumped Gauss-Newton method and illustrate how this 
method by far outperforms gradient descent on a time series prediction prob- 
lem, namely the Santa Fe laser data. The focus in this contribution is on 
time series prediction, but the results generalize to other applications as well. 

ARCHITECTURE 
The general architecture of the networks considered here are fully connected 
feedback networks with one hidden layer of nonlinear units and a single linear 
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output unit. The output y(t) of the network is linear in order to  allow for 
arbitrary dynamical range, and is given by 

where Nh is the number of hidden units, w,i is the weight to  the output unit 
from hidden unit j and Wob is a bias weight. The output s i ( t )  from hidden 
unit i at time t is computed as 

1 N I  

sz(t) = f  C w i j s j ( t - - ) + w i o Y ( t - l )  + x w % k z k ( t )  +wib (2) 
( N h  j=1 k=l 

where wij is the weight to  hidden unit i from hidden unit j ,  wio is the weight 
to  hidden unit i from the output unit and 'Wib is the bias weight for hidden 
unit i. zk(t) is the k'th element in the external input vector x(t) at time t 
and NI  is the total number of external inputs. f(.) is the nonlinear activation 
function, in this work we use f(z) = tanh(z). 

Note that the update of the recurrent network presented above is layered, 
as the outputs s i ( t )  from the hidden units are computed immediately before 
the computation of the output unit output. This is opposed to the update 
presented in e.g. [lo] where all the units are updated simultaneously. In [6] it 
was shown that when using fully recurrent networks for forecasting, layered 
update is preferable since synchronous update of the units effectively results 
in a two-step ahead predictor. Note also that the linear output unit does not 
have feedback of its own previous value. This is in order to avoid stability 
problems that are otherwise likely to occur. 

Training 
In this work we focus on time series prediction in which case the input vector 
contains delayed elements of the time series, x(t) = [z(t) ,  . . . , z ( t  - NI  + l)] ,  
and the network output is a prediction of the next value in the series, P ( t + l )  = 
y(t). Training the network means adjusting the weights so as to  minimize a 
cost function. Most applications are based on the sum of squared errors, 

m 

(3) 

where T denotes the number of training examples and w is the concatenated 
set of parameters. The adjustment of the parameters is done off line by an 
iterative sheme, wk+l = wk - VAwk, where Aw, indicates the direction of 
change and 17 is the (adaptive) size of the step. When training recurrent 
neural networks the most commonly used scheme is gradient descent, where 
the direction Awk is equal to the gradient g, gi = dE(wk)/dwi. Unfortu- 
nately this method suffers from extremely slow convergence, and the quality 
of resulting solutions is often not satisfactory. 
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Experiments have shown that much more efficient training can be obtained 
by using second-order methods [6]. Here we focus on the damped Gauss- 
Newton method [3],  in which the search direction Aw, is determined by 

A w ~  = H-lg (4) 
where H is the positive semidefinite approximation to the Hessian, 

In each iteration k the step size 7 is determined by line search which makes 
the method globally convergent [3]; here we recommend a simple approach 
where 7 is halved until a decrease in the cost is obtained [3] .  The iterations are 
continued until convergence, determined by a sufficiently small length of the 
gradient, (lgI(2 < E. The Gauss-Newton method involves finding the solution 
to a linear system of equations Hawk = g in each iteration, but the increased 
computational burden is justified by a dramatic increase in convergence and 
thus reduction of overall training time, even for large networks as we shall see. 
However, the success of the damped Gauss-Newton method relies heavily on 
the conditioning of the training problem, as is the case for gradient descent. 

ILL- C ONDITIONING 
When training using either gradient descent or the Gauss-Newton method, 
a measure of great importance for the convergence is the condition number 
of the Hessian H. For a symmetric positive definite matrix H, the condition 
number is defined as K(H) = X m a z / X m i n ,  the ratio between the largest and 
smallest eigenvalue of H. If the condition number is large, the Hessian be- 
comes ill-conditioned. The convergence rate will suffer and the solution to  the 
linear system of equations (4) in the Gauss-Newton method becomes unreli- 
able. As a rule of thumb the solution may not be trustworthy if n(H) > 
where E denotes the machine precision [3]. For the IEEE 64-bit floating point 
representation this is equivalent to n ( H )  > 6.7. IO7. This may seem as a large 
number, but this order of magnitude is not uncommon in the framework of 
either feedforward networks [7] or recurrent networks as we shall see. 

In [2] it was shown that an eigenvalue of the order of the number of 
input variables could be avoided if the mean waq subtracted from each of the 
input variables z k ( t )  and if a symmetric activation function is used. However, 
these simple countermeasures are not adequate for avoiding ill-conditioning 
in recurrent networks, as the analysis in the following will show. 

The Hessian (5 )  can also be written as 

621 (4 H = JTJ , Jti = -- aw, 
where J is the Jacobian matrix, whose columns axe the partial derivatives 
of the network output at each timestep in the training series. If J is rank- 
deficient some of the columns are linearly dependent, which is indicated by 
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singular values with the value zero in an SVD analysis. This again leads to a 
singular Hessian and thus an infinite condition number. In practice it is rare to  
find columns in J that are exactly dependent and thus singular values that are 
exactly zero [7]. However, it is often the case that columns are nearly linearly 
dependent, which leads to very small singular values of J and thus large 
condition numbers for the Hessian H. In the following sections we describe 
situations leading to  ill-conditioning of J for recurrent networks, arising from 
both exact and approximate linearly dependencies between columns in J.  

Exact dependency 

For the type of recurrent networks defined by (1) and (2) there is built-in rank 
deficiency in the Jacobian since it is easy to show that some of the columns 
in J will always be linear combinations of each other. This is illustrated by 
an example for a small network, but the result apply for networks with an 
arbitrary number of hidden units. The network considered here involves only 
one external input and one hidden unit, and the output is thus defined as 

, 

Y ( t )  = wols l ( t )  fwob ( 7) 
sl(t) = f (wlls l ( t  - 1) + wloy(t - 1) + wlzx(t)  + W l b )  ( 8 )  

= f ((w11 + ~ l 0 ~ 0 1 ) ~ l  (t - 1) + wlzz( t )  f (Wlb  + W l o w o b ) )  (9) 

where (9) is obtained by insertion of (7) in (8). We see that the network 
output will remain unchanged as long as the total weighting IC1 of sl(t - l), 
IC1 = w11 + wlow01, and the total bias k2 on the hidden unit, lc2 = W l b  + 
WloWobl  remains constant. wol and Wob can not be changed without directly 
affecting the network output (7) and are therefore kept fixed which we denote 
by *. However, changes in w11, wlo and W l b  that satisfies both expressions 

(10) 
2011 + w;z ' W l o  + 0 = IC1 

0 + w:b ' w l o  + W l b  k2 

will leave the network output unchanged. The expressions (10) form hyper- 
planes in parameter space spanned by w11, wlo and W l b  and their line of 
intersection is computed as ( ~ 1 1 ~ w l ~ , W l b )  = ( Ic l ,O, Ic2)  + t ( - - ~ ~ ~ , l , - - w ~ b ) ,  
parametrized by t .  The line defines a direction in parameter space in which 
the network output is constant. The constant network output means that 
derivatives are zero in this direction. Thus, columns in the Jacobian corre- 
sponding to ( ~ 1 1 ,  wlo, W l b )  are linearly dependent. 

When investigating Jacobians for the dependency problem outlined above 
it is however uncommon to encounter singular values exactly equal to  zero; 
but according to the derivations this clearly ought to be the case. The rea- 
son for this is the initialization of previous state values when starting up the 
network. If the recurrent network starts iteration at time t = 1 it is common 
practice [lo] to set the previous states of the hidden units as well as their 
derivatives to  zero, sz(0) = 0 , as,(O)/aw = 0. This startup procedure 
clearly marks an initial discontinuity in the recursive equations (7) and (8) 
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governing the feedback network. Thus initially the partial derivatives wrt. 
the involved weights in the Jacobian will generally not be linearly dependent. 
But after a few iterations indicating a transient, the dependency arises with 
increasing accuracy. The linear dependency is eliminated if we omit the feed- 
back weights wio from the output to the hidden units i, as the degeneracy 
can then no longer occur. This elimination has no influence on the modeling 
capabilities of the network since the remaining weights can be adjusted so 
that the network output remains unaffected. 

Approximate dependency 

Even though removal of the feedback weights wio leading from the linear out- 
put to the hidden units removes the problem of almost exact rank-deficiency 
in the Jacobian for recurrent networks it does not eliminate ill-conditioning 
as experiments show. In [7] the problem of ill-conditioning was analyzed for 
feedforward networks by careful examination of the components entering the 
partial derivatives ay(t)/awi of the network output and it w'as found that 
ill-conditioning in the Jacobian can arise from at least these three reasons 
(assuming that the external inputs are not proportional): 

1. The output from a hidden unit is saturated and constant (z fl). 
2. The outputs from two hidden units are approximately proportional. 
3. The derivatives of two hidden unit outputs wrt. their activations are 

Theoretical and empirical examinations of the components entering the par- 
tial derivatives for recurrent networks reveal that ill-conditioning may arise 
here from the same reasons; such analysis is however not included here. 

Situation 2 where the outputs of two hidden units are proportional and 
thus highly correlated often occurs in practice; e.g., in 193 high correlation 
between hidden unit outputs was found and studied for feedforward networks. 

The effects of situation 2 are similar to the effects of exact dependen- 
cies described above, as we can determine directions in parameter space in 
which the cost function is approximately constant. For recurrent networks 
this situation is much more severe than for feedforward networks since the 
degeneracy will not only affect weights leading to the output, but also many 
weights connecting the hidden units as the experiments will show. 

The scenarios listed above lead to  nearly linearly dependencies between 
the columns of J and thus to small eigenvalues in H. However, the condition 
number of a matrix is determined by the ratio between the largest and smallest 
eigenvalues, thus problems do not only arise from small singular values but 
also from large values. As mentioned, the situations described above will lead 
to  directions in parameter space where the cost is approximately constant, 
thus when training using the Gauss-Newton method the search direction will 
be dominated by these directions leading to an unrestrained growth in the 
magnitude of the affected weights. This again lea,ds to a significant growth in 

approximately proportional. 
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the magnitude of several of the columns in the Jacobian since many derivatives 
are dominated by terms of the form [lo] 

which becomes large if the weights wkj become large. The large elements in 
the Jacobian lead to an overall upward scale of the elements in JT J and thus 
to  an upward shift of the eigenvalues. I 

REGULARIZATION 
A traditional method for handling ill-conditioning is by regularizing the cost 
function [3, 41. A simple yet highly effective regularization can be obtained , 
by augmenting the cost function by a simple quadratic weight decay [4], 

(12) 
a C(W) = E(w) + -WTW 
2 

Simple weight decay is often primarily considered as a means for avoiding 
overfitting as it puts constraints on the parameters and thus reduces the 
degrees of freedom. Weight decay should however also be considered from 
its regularizing effects. The immediate effect is that a gets added to  the 
diagonal of the Hessian which puts a lower bound on the smallest eigenvalues, 
since it is easy to show that X(H + a l )  = X(H) + a. Another effect is the 
limit imposed on the growth of the weights which prevents near singular 
directions in parameter space from dominating the search directions obtained 
by the Gauss-Newton method, thus greatly improving the efficiency of the 
optimization. The constraints put on the weights by the regularization has 
a smoothing effect on the cost function which was clearly illustrated in [6]. 
Here it was also demonstrated that the significance of the second ordeb term 
ignored in ( 5 )  diminishes when using simple weight decay as regularization. 

EXPERIMENTS 
In the first experiment we illustrate how ill-conditioning results from some of 
the situations described herein and how regularization improves training. For 
this experiment we used a simple recurrent network to  predict the laser data 
from the Santa Fe time series prediction competition [8]. The data were scaled 
so that the first 1000 points used for training had zero mean and unit variance 
and the following 100 values were used as a test set. The network used had 
one external input and three hidden units; there were no feedback from the 
linear output unit to  the hidden units as found appropriate above. Training 
was performed initially using five iterations of gradient descent followed by 
the damped Gauss-Newton method. In the left panel of Figure 1 is shown the 
evolution of the mean squared errors normalized by the variance of the sets 
(NMSE, [a]) when training without regularization. It seems that training is 
converging to  a solution, but this is not the case as the evolution of the weights 

I 
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Figure 1: Training without regularization. Left panel: Evolution of training and 
test errors. Right panel: Evolution of the weight values. 
in the right panel of Figure 1 shows. What happens is that the outputs of 
two hidden units become almost proportional; this is revealed by the cosine 
to the angle 8 between vectors containing their outputs on the training set 
which at iteration 100 is cos 8 = 0.9998. This corresponds to situation 2 listed 
above. The weights that grow in magnitude are the pairs of weights leading 
from these two units to  every unit in the network including the output. Note 
that the error and thus the network output is unaffected since the effects of 
the changes in the growing weights cancel out due to the dependency between 
the hidden units. 

The condition number during training is shown in the left panel of Fig- 
ure 2 and is seen to  grow enormously. The rapid increase occurs shortly after 
the initiation of the second-order method which quickly ‘discovers’ the depen- 
dency between the hidden unit outputs. The near singular Hessian H leads 
to  very large weight changes in some directions when solving (4). The large 
steps are however handled by the line search which returns very small step 
sizes, indicated by the smooth increase in the weight magnitudes. In the right 
panel of Figure 2 is shown the eigenvalues of the Hessian after iterations 7,20  
and 100. At each of the iterations it is seen that the condition number results 
from both very small as well as very large eigenvalues and we note that as 

Figure 2: Training without regularization. Left panel: Evolution of the condition 
number for H. Right panel: Eigenvalues after iterations 7, 20 and 100. 
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Figure 3: Training with regularization, cy = 
and test errors. Right panel: Evolution of the weight values. 

training progresses the eigenvalues extend both upward and downward. 
The training was then repeated using the exact same initial weights and 

the same training approach, but now with a regularization term added to  the 
cost function, using a: = In the left panel of Figure 3 is shown the 
resulting evolution of the errors. The positive effect of the regularization is 
evident, as the final errors are several orders of magnitude below the levels 
shown in Figure 1 obtained without regularization. Furthermore the stopping 
criterion llgllz < was satisfied; in the previous experiment using no 
regularization the gradient norm grew proportional to the condition number. 

In the right panel of Figure 3 we see that the regularization term limits the 
growth of the weights compared to Figure 1. Some however still grow large as 
does the condition number shown in the left panel of Figure 4. Even though 
the condition number grows to lo8 the damped Gauss-Newton method still 
manages to find a minimum. Experience shows that for this method successful 
training to  a (local) minimum can be obtained for condition numbers up t o ,  
about lo8 in magnitude. This may depend on the decomposition algorithm 
used when solving (4), here we use the fast and stable Cholesky factorization 
[3] .  From the right panel of Figure 4 we learn that the reduction in condition 
number is obtained only from an increase in the smallest eigenvalues resulting 1 

Left panel: Evolution of training 

10s . . , , , , , , , 

0 20 40 60 Bo 1w 120 
ITERATION 8 

1 0' 

Figure 4: Training with regularization, cy = Left panel: Evolution of the 
condition number for H. Right panel: Eigenvalues after iterations 7, 20 and 100. 
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from the regularization. The largest eigenvalues are of the same order of 
magnitude as when training without weight decay, see Figure 2. This is due 
to  the still fairly large weight magnitudes. If the regularization term Q is 
further increased the larger eigenvalues will also be affected; but so will the 
modeling capabilities of the network, leading to increased errors. 

In the final experiment we compare the performance of damped Gauss- 
Newton with a gradient descent algorithm also using the step-size halving 
line search. The problem is still prediction of the laser series but using larger 
networks with a single input and nine hidden units, 109 weights in total (no 
feedback from the output to  the hidden units). Thus, each iteration using 
damped Gauss-Newton involved solution of a 109 by 109 linear system of 
equations. Six initial networks were generated by initializing their weights 
with values drawn from a uniform distribution over the interval [-0.3; 0.31. 
The training algorithms were then compared when starting from the same six 
initial networks, both using regularization Q = 0.02. The resulting evolution 
of errors is shown in Figure 5 ;  in the left panel we see the resulting errors 
using the damped Gauss-Newton method, in the right panel using gradient 
descent. Using both methods the stopping criteria was set to (lg112 < or 
maximum 10000 iterations. 

ITEPATMN I 

Figure 5:  Evolution of errors using different optimization methods. Left panel: 
Damped Gauss-Newton method. Right panel: Gradient descent with line search. 

For the damped Gauss-Newton method the stopping criterion was met in 
all six runs. The average training error (Normalized Mean Squared Error) was 
7.7.10-4, the average test error was 4.9.10-3. The average time for a complete 
training run was 200 seconds. For gradient descent the stopping criterion was 
never met, the termination of the algorithm in each run was due to maximum 
number of iterations reached. The average training error obtained after the 
maximum allowed 10000 iterations wa 4.0.  lW3, the average test error was 
7.8 . The average time used for obtaining these error levels was 8140 
seconds. Note that the levels of both training and test errors obtained using 
gradient descent are much higher than the levels obtained using the damped 
Gauss-Newton method even though gradient descent used a factor of 50 times 
more iterations and a factor of 40 times more computer time. Thus, even 
though an iteration of the damped Gauss-Newton method is computationally 
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more costly than an iteration of gradient descent, the additional cost is highly 
justified by the vastly increased convergence rate. Similar justification has 
been observed for networks with up to  300 parameters. 

CONCLUSION 
In this paper we have focused on sources of ill-conditioning and thus the need 
for regularization when training recurrent networks especially using second- 
order methods. Once this need is recognized dramatic improvement in con- 
vergence rate and quality of solution is obtained, even for large size problems. 
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