

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Training Recurrent Networks

Pedersen, Morten With

Published in:
IEEE Workshop on Neural Networks for Signal Processing VII

Link to article, DOI:
10.1109/NNSP.1997.622416

Publication date:
1997

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Pedersen, M. W. (1997). Training Recurrent Networks. In IEEE Workshop on Neural Networks for Signal
Processing VII (pp. 355-364). Piscataway, New Jersey: IEEE. DOI: 10.1109/NNSP.1997.622416

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13727884?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/NNSP.1997.622416
http://orbit.dtu.dk/en/publications/training-recurrent-networks(ab8d8469-fe6a-4531-ba80-3fec9d93a93b).html

TRAINING RECURRENT NETWORKS

Morten With Pedersen
CONNECT, Department of Mathematical Modelling, Building 321
Technical University of Denmark, DK-2800 Lyngby, Denmark

email: mwp@imm.dtu.dk
Phone: + 45 45253920 Fax: -t 45 45872599

Abstract - Training recurrent networks is generally believed to be a
difficult task. Excessive training times and lack of convergence to an
acceptable solution are frequently reported. In this paper we seek to
explain the reason for this from a numerical point of view and show
how to avoid problems when training. In particular we investigate ill-
conditioning, the need for and effect of regularization and illustrate the
superiority of second-order methods for training.

INTRODUCTION
Recurrent neural networks are an interesting class of models for signal pro-
cessing as they are able to build up internal memory suited for the task at
hand and thus often lead to compact model representations. However, it is
generally believed to be a difficult task to train this type of networks. Several
authors have addressed the learning problem for recurrent networks, e.g., in
the context of sequence classification when required to store information for
an arbitrary period of time [l, 51 but to the best of the authors knowledge no
one have treated the problem from a general numerical point of view.

Feedforward networks were treated extensively from a numerical point
of view in [7] where it was illustrated how training forms an extremely ill-
conditioned optimization problem. In this contribution we extend this analy-
sis to include recurrent networks. In particular we identify redundant connec-
tions and illustrate how ill-conditioning may otherwise arise, which motivates
the use of regularization.

Having acknowledged the need for regularization makes way for the highly
effective second-order methods for training. In this contribution we partic-
ulary focus on the dumped Gauss-Newton method and illustrate how this
method by far outperforms gradient descent on a time series prediction prob-
lem, namely the Santa Fe laser data. The focus in this contribution is on
time series prediction, but the results generalize to other applications as well.

ARCHITECTURE
The general architecture of the networks considered here are fully connected
feedback networks with one hidden layer of nonlinear units and a single linear

7803-4256-9/97/$10.00 0 1 997 IEEE 355

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:50:43 UTC from IEEE Xplore. Restrictions apply.

~

I

I
I
I

I

I

I
I

I

I

I
I
I
I
,
I

I
I
I
I

I

I
I
I
I
I
I
~

I
I

output unit. The output y(t) of the network is linear in order to allow for
arbitrary dynamical range, and is given by

where Nh is the number of hidden units, w,i is the weight to the output unit
from hidden unit j and Wob is a bias weight. The output s i (t) from hidden
unit i at time t is computed as

1 N I

sz(t) = f C w i j s j (t - -) + w i o Y (t - l) + x w % k z k (t) +wib (2)
(N h j=1 k=l

where wij is the weight to hidden unit i from hidden unit j , wio is the weight
to hidden unit i from the output unit and 'Wib is the bias weight for hidden
unit i. zk(t) is the k'th element in the external input vector x(t) at time t
and NI is the total number of external inputs. f(.) is the nonlinear activation
function, in this work we use f(z) = tanh(z).

Note that the update of the recurrent network presented above is layered,
as the outputs s i (t) from the hidden units are computed immediately before
the computation of the output unit output. This is opposed to the update
presented in e.g. [lo] where all the units are updated simultaneously. In [6] it
was shown that when using fully recurrent networks for forecasting, layered
update is preferable since synchronous update of the units effectively results
in a two-step ahead predictor. Note also that the linear output unit does not
have feedback of its own previous value. This is in order to avoid stability
problems that are otherwise likely to occur.

Training
In this work we focus on time series prediction in which case the input vector
contains delayed elements of the time series, x(t) = [z(t) , . . . , z (t - NI + l)] ,
and the network output is a prediction of the next value in the series, P (t + l) =
y(t). Training the network means adjusting the weights so as to minimize a
cost function. Most applications are based on the sum of squared errors,

m

(3)

where T denotes the number of training examples and w is the concatenated
set of parameters. The adjustment of the parameters is done off line by an
iterative sheme, wk+l = wk - VAwk, where Aw, indicates the direction of
change and 17 is the (adaptive) size of the step. When training recurrent
neural networks the most commonly used scheme is gradient descent, where
the direction Awk is equal to the gradient g, gi = dE(wk)/dwi. Unfortu-
nately this method suffers from extremely slow convergence, and the quality
of resulting solutions is often not satisfactory.

356

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:50:43 UTC from IEEE Xplore. Restrictions apply.

Experiments have shown that much more efficient training can be obtained
by using second-order methods [6]. Here we focus on the damped Gauss-
Newton method [3], in which the search direction Aw, is determined by

A w ~ = H-lg (4)
where H is the positive semidefinite approximation to the Hessian,

In each iteration k the step size 7 is determined by line search which makes
the method globally convergent [3]; here we recommend a simple approach
where 7 is halved until a decrease in the cost is obtained [3] . The iterations are
continued until convergence, determined by a sufficiently small length of the
gradient, (lgI(2 < E. The Gauss-Newton method involves finding the solution
to a linear system of equations Hawk = g in each iteration, but the increased
computational burden is justified by a dramatic increase in convergence and
thus reduction of overall training time, even for large networks as we shall see.
However, the success of the damped Gauss-Newton method relies heavily on
the conditioning of the training problem, as is the case for gradient descent.

ILL- C ONDITIONING
When training using either gradient descent or the Gauss-Newton method,
a measure of great importance for the convergence is the condition number
of the Hessian H. For a symmetric positive definite matrix H, the condition
number is defined as K(H) = X m a z / X m i n , the ratio between the largest and
smallest eigenvalue of H. If the condition number is large, the Hessian be-
comes ill-conditioned. The convergence rate will suffer and the solution to the
linear system of equations (4) in the Gauss-Newton method becomes unreli-
able. As a rule of thumb the solution may not be trustworthy if n(H) >
where E denotes the machine precision [3]. For the IEEE 64-bit floating point
representation this is equivalent to n (H) > 6.7. IO7. This may seem as a large
number, but this order of magnitude is not uncommon in the framework of
either feedforward networks [7] or recurrent networks as we shall see.

In [2] it was shown that an eigenvalue of the order of the number of
input variables could be avoided if the mean waq subtracted from each of the
input variables z k (t) and if a symmetric activation function is used. However,
these simple countermeasures are not adequate for avoiding ill-conditioning
in recurrent networks, as the analysis in the following will show.

The Hessian (5) can also be written as

621 (4 H = JTJ , Jti = -- aw,
where J is the Jacobian matrix, whose columns axe the partial derivatives
of the network output at each timestep in the training series. If J is rank-
deficient some of the columns are linearly dependent, which is indicated by

357

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:50:43 UTC from IEEE Xplore. Restrictions apply.

singular values with the value zero in an SVD analysis. This again leads to a
singular Hessian and thus an infinite condition number. In practice it is rare to
find columns in J that are exactly dependent and thus singular values that are
exactly zero [7]. However, it is often the case that columns are nearly linearly
dependent, which leads to very small singular values of J and thus large
condition numbers for the Hessian H. In the following sections we describe
situations leading to ill-conditioning of J for recurrent networks, arising from
both exact and approximate linearly dependencies between columns in J.

Exact dependency

For the type of recurrent networks defined by (1) and (2) there is built-in rank
deficiency in the Jacobian since it is easy to show that some of the columns
in J will always be linear combinations of each other. This is illustrated by
an example for a small network, but the result apply for networks with an
arbitrary number of hidden units. The network considered here involves only
one external input and one hidden unit, and the output is thus defined as

,

Y (t) = wols l (t) fwob (7)
sl(t) = f (wlls l (t - 1) + wloy(t - 1) + wlzx(t) + W l b) (8)

= f ((w11 + ~ l 0 ~ 0 1) ~ l (t - 1) + wlzz(t) f (Wlb + W l o w o b)) (9)

where (9) is obtained by insertion of (7) in (8). We see that the network
output will remain unchanged as long as the total weighting IC1 of sl(t - l),
IC1 = w11 + wlow01, and the total bias k2 on the hidden unit, lc2 = W l b +
WloWobl remains constant. wol and Wob can not be changed without directly
affecting the network output (7) and are therefore kept fixed which we denote
by *. However, changes in w11, wlo and W l b that satisfies both expressions

(10)
2011 + w;z ' W l o + 0 = IC1

0 + w:b ' w l o + W l b k2

will leave the network output unchanged. The expressions (10) form hyper-
planes in parameter space spanned by w11, wlo and W l b and their line of
intersection is computed as (~ 1 1 ~ w l ~ , W l b) = (Ic l ,O, Ic2) + t (- - ~ ~ ~ , l , - - w ~ b) ,
parametrized by t . The line defines a direction in parameter space in which
the network output is constant. The constant network output means that
derivatives are zero in this direction. Thus, columns in the Jacobian corre-
sponding to (~ 1 1 , wlo, W l b) are linearly dependent.

When investigating Jacobians for the dependency problem outlined above
it is however uncommon to encounter singular values exactly equal to zero;
but according to the derivations this clearly ought to be the case. The rea-
son for this is the initialization of previous state values when starting up the
network. If the recurrent network starts iteration at time t = 1 it is common
practice [lo] to set the previous states of the hidden units as well as their
derivatives to zero, sz(0) = 0 , as,(O)/aw = 0. This startup procedure
clearly marks an initial discontinuity in the recursive equations (7) and (8)

358

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:50:43 UTC from IEEE Xplore. Restrictions apply.

governing the feedback network. Thus initially the partial derivatives wrt.
the involved weights in the Jacobian will generally not be linearly dependent.
But after a few iterations indicating a transient, the dependency arises with
increasing accuracy. The linear dependency is eliminated if we omit the feed-
back weights wio from the output to the hidden units i, as the degeneracy
can then no longer occur. This elimination has no influence on the modeling
capabilities of the network since the remaining weights can be adjusted so
that the network output remains unaffected.

Approximate dependency

Even though removal of the feedback weights wio leading from the linear out-
put to the hidden units removes the problem of almost exact rank-deficiency
in the Jacobian for recurrent networks it does not eliminate ill-conditioning
as experiments show. In [7] the problem of ill-conditioning was analyzed for
feedforward networks by careful examination of the components entering the
partial derivatives ay(t)/awi of the network output and it w'as found that
ill-conditioning in the Jacobian can arise from at least these three reasons
(assuming that the external inputs are not proportional):

1. The output from a hidden unit is saturated and constant (z fl).
2. The outputs from two hidden units are approximately proportional.
3. The derivatives of two hidden unit outputs wrt. their activations are

Theoretical and empirical examinations of the components entering the par-
tial derivatives for recurrent networks reveal that ill-conditioning may arise
here from the same reasons; such analysis is however not included here.

Situation 2 where the outputs of two hidden units are proportional and
thus highly correlated often occurs in practice; e.g., in 193 high correlation
between hidden unit outputs was found and studied for feedforward networks.

The effects of situation 2 are similar to the effects of exact dependen-
cies described above, as we can determine directions in parameter space in
which the cost function is approximately constant. For recurrent networks
this situation is much more severe than for feedforward networks since the
degeneracy will not only affect weights leading to the output, but also many
weights connecting the hidden units as the experiments will show.

The scenarios listed above lead to nearly linearly dependencies between
the columns of J and thus to small eigenvalues in H. However, the condition
number of a matrix is determined by the ratio between the largest and smallest
eigenvalues, thus problems do not only arise from small singular values but
also from large values. As mentioned, the situations described above will lead
to directions in parameter space where the cost is approximately constant,
thus when training using the Gauss-Newton method the search direction will
be dominated by these directions leading to an unrestrained growth in the
magnitude of the affected weights. This again lea,ds to a significant growth in

approximately proportional.

359

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:50:43 UTC from IEEE Xplore. Restrictions apply.

the magnitude of several of the columns in the Jacobian since many derivatives
are dominated by terms of the form [lo]

which becomes large if the weights wkj become large. The large elements in
the Jacobian lead to an overall upward scale of the elements in JT J and thus
to an upward shift of the eigenvalues. I

REGULARIZATION
A traditional method for handling ill-conditioning is by regularizing the cost
function [3, 41. A simple yet highly effective regularization can be obtained ,
by augmenting the cost function by a simple quadratic weight decay [4],

(12)
a C(W) = E(w) + -WTW
2

Simple weight decay is often primarily considered as a means for avoiding
overfitting as it puts constraints on the parameters and thus reduces the
degrees of freedom. Weight decay should however also be considered from
its regularizing effects. The immediate effect is that a gets added to the
diagonal of the Hessian which puts a lower bound on the smallest eigenvalues,
since it is easy to show that X(H + a l) = X(H) + a. Another effect is the
limit imposed on the growth of the weights which prevents near singular
directions in parameter space from dominating the search directions obtained
by the Gauss-Newton method, thus greatly improving the efficiency of the
optimization. The constraints put on the weights by the regularization has
a smoothing effect on the cost function which was clearly illustrated in [6].
Here it was also demonstrated that the significance of the second ordeb term
ignored in (5) diminishes when using simple weight decay as regularization.

EXPERIMENTS
In the first experiment we illustrate how ill-conditioning results from some of
the situations described herein and how regularization improves training. For
this experiment we used a simple recurrent network to predict the laser data
from the Santa Fe time series prediction competition [8]. The data were scaled
so that the first 1000 points used for training had zero mean and unit variance
and the following 100 values were used as a test set. The network used had
one external input and three hidden units; there were no feedback from the
linear output unit to the hidden units as found appropriate above. Training
was performed initially using five iterations of gradient descent followed by
the damped Gauss-Newton method. In the left panel of Figure 1 is shown the
evolution of the mean squared errors normalized by the variance of the sets
(NMSE, [a]) when training without regularization. It seems that training is
converging to a solution, but this is not the case as the evolution of the weights

I

360

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:50:43 UTC from IEEE Xplore. Restrictions apply.

100

w

I

10-

- i

I
10 20 30 10 YI W 70 80 W I m

IlERATlMl I

Figure 1: Training without regularization. Left panel: Evolution of training and
test errors. Right panel: Evolution of the weight values.
in the right panel of Figure 1 shows. What happens is that the outputs of
two hidden units become almost proportional; this is revealed by the cosine
to the angle 8 between vectors containing their outputs on the training set
which at iteration 100 is cos 8 = 0.9998. This corresponds to situation 2 listed
above. The weights that grow in magnitude are the pairs of weights leading
from these two units to every unit in the network including the output. Note
that the error and thus the network output is unaffected since the effects of
the changes in the growing weights cancel out due to the dependency between
the hidden units.

The condition number during training is shown in the left panel of Fig-
ure 2 and is seen to grow enormously. The rapid increase occurs shortly after
the initiation of the second-order method which quickly ‘discovers’ the depen-
dency between the hidden unit outputs. The near singular Hessian H leads
to very large weight changes in some directions when solving (4). The large
steps are however handled by the line search which returns very small step
sizes, indicated by the smooth increase in the weight magnitudes. In the right
panel of Figure 2 is shown the eigenvalues of the Hessian after iterations 7,20
and 100. At each of the iterations it is seen that the condition number results
from both very small as well as very large eigenvalues and we note that as

Figure 2: Training without regularization. Left panel: Evolution of the condition
number for H. Right panel: Eigenvalues after iterations 7, 20 and 100.

361

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:50:43 UTC from IEEE Xplore. Restrictions apply.

I
o 20 40 BO 80 100 120

imwinm. I TERATION X

Figure 3: Training with regularization, cy =
and test errors. Right panel: Evolution of the weight values.

training progresses the eigenvalues extend both upward and downward.
The training was then repeated using the exact same initial weights and

the same training approach, but now with a regularization term added to the
cost function, using a: = In the left panel of Figure 3 is shown the
resulting evolution of the errors. The positive effect of the regularization is
evident, as the final errors are several orders of magnitude below the levels
shown in Figure 1 obtained without regularization. Furthermore the stopping
criterion llgllz < was satisfied; in the previous experiment using no
regularization the gradient norm grew proportional to the condition number.

In the right panel of Figure 3 we see that the regularization term limits the
growth of the weights compared to Figure 1. Some however still grow large as
does the condition number shown in the left panel of Figure 4. Even though
the condition number grows to lo8 the damped Gauss-Newton method still
manages to find a minimum. Experience shows that for this method successful
training to a (local) minimum can be obtained for condition numbers up t o ,
about lo8 in magnitude. This may depend on the decomposition algorithm
used when solving (4), here we use the fast and stable Cholesky factorization
[3] . From the right panel of Figure 4 we learn that the reduction in condition
number is obtained only from an increase in the smallest eigenvalues resulting 1

Left panel: Evolution of training

10s . . , , , , , , ,

0 20 40 60 Bo 1w 120
ITERATION 8

1 0'

Figure 4: Training with regularization, cy = Left panel: Evolution of the
condition number for H. Right panel: Eigenvalues after iterations 7, 20 and 100.

3 62

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:50:43 UTC from IEEE Xplore. Restrictions apply.

from the regularization. The largest eigenvalues are of the same order of
magnitude as when training without weight decay, see Figure 2. This is due
to the still fairly large weight magnitudes. If the regularization term Q is
further increased the larger eigenvalues will also be affected; but so will the
modeling capabilities of the network, leading to increased errors.

In the final experiment we compare the performance of damped Gauss-
Newton with a gradient descent algorithm also using the step-size halving
line search. The problem is still prediction of the laser series but using larger
networks with a single input and nine hidden units, 109 weights in total (no
feedback from the output to the hidden units). Thus, each iteration using
damped Gauss-Newton involved solution of a 109 by 109 linear system of
equations. Six initial networks were generated by initializing their weights
with values drawn from a uniform distribution over the interval [-0.3; 0.31.
The training algorithms were then compared when starting from the same six
initial networks, both using regularization Q = 0.02. The resulting evolution
of errors is shown in Figure 5 ; in the left panel we see the resulting errors
using the damped Gauss-Newton method, in the right panel using gradient
descent. Using both methods the stopping criteria was set to (lg112 < or
maximum 10000 iterations.

ITEPATMN I

Figure 5: Evolution of errors using different optimization methods. Left panel:
Damped Gauss-Newton method. Right panel: Gradient descent with line search.

For the damped Gauss-Newton method the stopping criterion was met in
all six runs. The average training error (Normalized Mean Squared Error) was
7.7.10-4, the average test error was 4.9.10-3. The average time for a complete
training run was 200 seconds. For gradient descent the stopping criterion was
never met, the termination of the algorithm in each run was due to maximum
number of iterations reached. The average training error obtained after the
maximum allowed 10000 iterations wa 4.0. lW3, the average test error was
7.8 . The average time used for obtaining these error levels was 8140
seconds. Note that the levels of both training and test errors obtained using
gradient descent are much higher than the levels obtained using the damped
Gauss-Newton method even though gradient descent used a factor of 50 times
more iterations and a factor of 40 times more computer time. Thus, even
though an iteration of the damped Gauss-Newton method is computationally

363

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:50:43 UTC from IEEE Xplore. Restrictions apply.

more costly than an iteration of gradient descent, the additional cost is highly
justified by the vastly increased convergence rate. Similar justification has
been observed for networks with up to 300 parameters.

CONCLUSION
In this paper we have focused on sources of ill-conditioning and thus the need
for regularization when training recurrent networks especially using second-
order methods. Once this need is recognized dramatic improvement in con-
vergence rate and quality of solution is obtained, even for large size problems.

ACKNOWLEDGMENTS
The author would like to thank Lars Kai Hansen and Jan Larsen for support.
This research is supported by the Danish Natural and Technical Research
Coucils through the Computational Neural Network Center (CONNECT).

REFERENCES
[l] Y. Bengio, P. Simard and P. F’rasconi, “Learning long-term dependencies with

gradient descent is difficult,” IEEE Transactions on Neural Networks,
vol. 5, no. 2, pp. 157-166, 1994.

Application to neural-network learning,” Physical Review Letters, vol. 66,
no. 18, pp. 2396-2399, 1991.

[3] J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Englewood Cliffs, NJ: Prentice-
Hall, 1983.

[4] S. Haykin, Neural Networks, A Comprehensive Foundation, New York,
NY: Macmillan, 1994.

[5] S. Hochreiter and J. Schmidhuber, “Long short term memory,’’ Tech. Rep. FKI-
207-95, Fakultat fur Informatik, Technische Universitat Munchen, Munchen,
1995.

[6] M. W. Pedersen and L. K. Hansen, “Recurrent networks: Second order proper-
ties and pruning,” in G. Tesauro, D. Touretzky and T. Leen, eds., Advances
in Neural Information Processing Systems, The MIT Press, 1995, vol. 7,

[7] S. Saarinen, R. Bramley and G. Cybenko, “Ill-conditioning in neural network
training problems,” SIAM Journal on Scientific Computing, vol. 14,

[8] A. S. Weigend and N. A. Gershenfeld, eds., Time Series Prediction: Fore-
casting the Future and Understanding the Past, Reading, MA: Addison-
Wesley, 1993.

[9] A. S. Weigend and D. E. Rumelhart, “The effective dimension of the space
of hidden units,” in E. Keramides, ed., Proceedings of INTERFACE’91:
Computing Science and Statistics, Springer Verlag, 1992.

[lo] R. J. Williams and D. Zipser, “A learning algorithm for continually running
fully recurrent neural networks,” Neural Computation, vol. 1, pp. 270-280,
1989.

[2] Y. L. Cun, I. Kanter and S. A. Solla, “Eigenvalues of covariance matrices: ,

pp. 673-680.

pp. 693-714, 1993.

3 64

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:50:43 UTC from IEEE Xplore. Restrictions apply.

