

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Interpretation of Recurrent Neural Networks

Pedersen, Morten With; Larsen, Jan

Published in:
Proceedings of the IEEE Workshop on Neural Networks for Signal Processing VII

Link to article, DOI:
10.1109/NNSP.1997.622386

Publication date:
1997

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Pedersen, M. W., & Larsen, J. (1997). Interpretation of Recurrent Neural Networks. In Proceedings of the IEEE
Workshop on Neural Networks for Signal Processing VII (pp. 82-91). Piscataway, New Jersey: IEEE. DOI:
10.1109/NNSP.1997.622386

http://dx.doi.org/10.1109/NNSP.1997.622386
http://orbit.dtu.dk/en/publications/interpretation-of-recurrent-neural-networks(754a0bbe-1c65-4566-b6d8-ef1646bc146e).html

TERPRETATION OF RECURRENT
NETWORKS

Morten With Pedersen and Jan Larsen
CONNECT, Department of Mathematical Modelling, Building 321
Technical University of Denmark, DK-2800 Lyngby, Denmark

emails: mwp@imm.dtu.dk, jl@imm.dtu.dk
Phones: + 45 4525 + ext. 3920,3923 Fax: + 45 45872599

Abstract - This paper addresses techniques for interpretation and char-
acterization of trained recurrent nets for time series problems. In parti-
cular, we focus on assessment of effective memory and suggest an opera-
tional definition of memory. Further we discuss the evaluation of learning
curves. Various numerical experiments on time series prediction prob-
lems are used to illustrate the potential of the suggested methods.

INTRODUCTION
It is widely recognized that recurrent neural networks (RNNs) are flexible
tools for time series processing, system identification and control problems,
see e.g., [3]. Feed-forward networks can accommodate dynamics by having
a lag space of past input and target values; however, a fully recurrent net-
work with internal feedbacks allows for even more sophisticated dynamics.
While fully RNN architectures are the ultimate tool for modeling dynamic
relations, the comprehension of the networks is a challenging subject of on-
going research. Theoretical investigations of modeling capabilities of RNNs
have been reported, see e.g., [a], [4], [7]. However, to the authors knowledge,
there is no general theory of the dynamic behavior of a general RNN except
for very special models like the Hopfield network, see e.g., [3]. This indeed
indicates that theoretical analysis of RNNs is extremely complicated. On
the other hand, one might pursue a more computational approach. The gen-
eral computational tools from non-linear dynamic systems analysis like phase
portraits, stability analysis, measurement of fractal dimensions or Lyapunov
exponents (see e.g., 111, [3]) may be applied to the analysis of RNNs.

The motivation for this paper is evaluation and interpretation of trained
recurrent networks, and to suggest and discuss simple operational techniques.
In particular, we focus on the learnzng curve and present a new method to
determine the effective memory of a recurrent network which conveys the
relevant time scale of the dynamics.

0-7803-4256-9/97/$10.00 0 1 997 IEEE 82

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:36:34 UTC from IEEE Xplore. Restrictions apply.

NETWORK ARCHITECTURE
The objective is to model a non-linear dynamic relation among a discrete-
time input signal z (t) and a discrete time target signal, d (t) . The general
architecture of the RNN considered in this presentation is based on [5] and
consists of a single hidden layer of fully connected nonlinear units and one
output unit. In particular, we focus on a network with only one external input,
viz. the most recent value, z (t) . That is, the only information available about
previous inputs stems from the memory build up internally in the net. The
advantage using these networks is that the tedious problem of determining
the optimal lag space of previous inputs is converted into determining the
optimal network architecture in terms of connections and number of hidden
neurons.

The network has a linear output in order to allow for arbitrary dynamic
range, and at time t the prediction of the target d (t) is given by,

where Nh is the number of hidden units, w0i is the weight to the output unit
from hidden unit i and W O b is the output bias weight. The i th state, s i(t) , is
the output of a hidden unit computed as

where wij is the weight to hidden unit i from hidden unit j , wiz is the weight
from the external input ~ (t) , and wib is the bias weight. f(.) is the nonlinear
activation function tanh(z). Note that the update of the units is Eayered [5] :
at each time step the hidden units are updated before the output unit.

TRAINING AND GENERALIZATION
Suppose we have a training set of related values of inputs and targets 7 =
{ z (t) , d(t)}FZl where T is the number of training samples. Training is done
by adjusting the weights so as to minimize a cost function. Here we employ
the sum of squared errors augmented by a simple weight decay regularization
term

C(W) = - Cez(t) + - 1 ~ 1 ~ , e (t) = d (t) - y(t)

where w is the concatenated set of weights and a is a small regularization
parameter. Training aims at minimizing the cost function C(w) and is thor-
oughly treated for RNNs in [6].

T

(3)
1 a

2 2
t=1

83

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:36:34 UTC from IEEE Xplore. Restrictions apply.

Suppose that training provides the estimated weight vector G. Let r be an
initial state vector’ of the “true” data generating system leading to the train-
ing set ‘7- and define an associated probability distribution2 p(r). Further,
definex(t) = [~ (t) , x (t - l) , . . . z (T + l)] ~ a n d l e t p (d (t) , x (t) I T , r) , t > T ,
be the true joint probability density function of [d (t) , x(t)] conditioned on
the initial state T and the training set 7. The true joint p.d.f. is assumed
to be time-independent (i.e., stationary). The generalization error of the
trained net is defined as the expected squared prediction error on future data
rmmedaately succeeding the training data, i.e., for t > T ,

J

Thus the generalization error is the ensemble average of the squared error
over 1) possible realizations of [d (t) , x(t)] due to inherent stochastic processes
in the data generating system, and 2) over possible initial states leading to
the particular training set.

We estimate the generalization error by,

- T-CV
h 1

T/ G(G) = - e2 (t; S) (5)

where V is the number of test samples.

LEARNING CURVE

The learning curve expresses the average generalization error over all possible
training sets of a particular size T as a function of T and is an important
tool for verifying whether enough data is available for proper training of the
network. Moreover, the shape of the curve provides insight into the nature
of the problem as demonstrated in the experimental section.

Practical considerations may lead to more restricted definitions. Here we
compute the learning curve as the estimated generalization error when grad-
ually expanding the training set. That is, there is no average over different
sets of a particular size.

NETWORK MEMORY

A characteristic of recurrent neural networks is their ability to build up an
internal memory representing the “history” of previous inputs on which the
predictions of future values is based. The significance of this internal memory
is especially clear when using RNNs having only one external input. Without
the ability to create internal memory this class of networks would be useless.

Once a recurrent network is trained, the basic idea here is to define an
integer variable M which expresses the effective memory of past values of

lThe initial state captures the all information about the time series for t 5 0.
‘E.g., that all initial states are equally likely.

84

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:36:34 UTC from IEEE Xplore. Restrictions apply.

the input signal z(t) . The memory thus provides a partial insight into the
functionality and dynamics of the network. The experimental section gives
examples of interpreting the dynamics using this simple concept. Recurrent
networks with only one external input can not give individual contribution to
each previous input ~ (t - m) but must store their own representation. Con-
sequently, the RNN has a certain memory profile. We are currently pursuing
the idea of determining the memory profile.

A feed-forward network does not possess any internal memory, i.e., the
memory is explicitly determined by the memory contained in the preprocess-
ing of the input signal. The standard approach is to feed the signals from a
tapped delay line [z(t) , z(t-1), . . . z (t - M)] into the network and the memory
thus equals M .

The capacity of the internal memory of a recurrent network increases when
the number of hidden units (i.e., the dimension of the state vector) increases
as the state vector contains all information about previous inputs. However,
to our knowledge, there is no reports on quantizing the notion of memory in
recurrent networks. In the following we attempt to provide a definition of the
memory of a specific trained recurrent network.

The output from the RNN defined in (l), (2) is based on the current and
- in principle - infinitely many previous inputs3, as shown by,

y (t) = y (tl%,z(t), z (t - l), . . 9 ,z(--oo)). (6)

In order to determine the effective average memory of the recurrent network
we suggest to evaluate an estimate of the generalization error, i.e., prediction
error on a test set, using predictions based on only a limited number of
previous inputs. This generalization error is then compared to the error
obtained using all - in principle infinitely many - previous inputs.

In particular, when evaluating the generalization error using only the m
most recent inputs, we compute,

T+V

Zm(%) = [d (t) - y (t l ~ , z (t) , z (t - 11,. . . , z(t - m))]’, m 2 o (7)

where V is the size of the test set. y (ti%, z (t) , z (t - l) , . . . , z (t - m)) is
computed for each t E [T + l ; T + V] by resetting4 the states sp(t - m - l),
i = 1 ,2 , . . . , Nh, to zero and then iterate the network from time t - m until
time t , using the output y (t) at this time as the prediction of d (t) . In the
first iteration, calculating y (t - mi%, z(t - m)) , the network thus functions
as a feed-forward network since the previous states of the hidden units -
and thereby all previous external inputs - have no influence on the network
output. Then, the network gradually builds up a representation of the past in

3This is also true for a RNN in which previous values of the output is fed back to the

4Setting the hidden unit states s t (t - m - 1) to zero is equivalent to erasing the memory

t=T+1

input.

of the network regarding inputs before time t - m.

85

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:36:34 UTC from IEEE Xplore. Restrictions apply.

the hidden units during the next m f 1 iterations before it makes its prediction
at time t .

(G), . . . are then compared to Gm(G) de-
noting the error obtained when using all available previous inputs, i.e., no
resetting of the hidden unit states at any time. The memory M is now de-
fined as,

The resulting errors (?&(G),

where E is a small number. Thus, the memory, M, denotes the minimal
number of previous inputs beyond which additional inputs are insignificant.

The memory measure outlined above determines the number of previous
inputs that the network needs knowledge about in order to obtain good pre-
dictions on all samples in the test set. Thus the measure can be interpreted
as the average memory of the network. A recurrent network, however, is a
dynamic system whose internal characteristics can be highly influenced by
the nature of the input series. Especially, if the input series exhibits regions
of non-stationary behavior, the network dynamics including memory must
clearly be affected. Such changes in dynamics are not captured by the aver-
age memory measure and we may define a local memory , in accordance with
(8), using a local generalization error estimate5

where m 2 0, t > T , and 1 5 K 5 V is the size of a smaller test set. Choosing
K too small gives rise to a very noisy measure of the generalization error;
however, in principle a good resolution of changes in memory requirement.
On the other hand, increasing K improves generalization accuracy but reduces
the resolution of changes in memory.

EXPERIMENTS
The proposed methods for estimating the learning curves and memory are
evaluated on two chaotic time series prediction problems, viz. the laser series
from the Santa Fe time series competition [9] and the artificially generated
Mackey-Glass series [SI.

The laser series is illustrated in the left panel of Figure 1. Let z (t) denotes
the series, then identification is done by training the network to perform a one
step ahead prediction, i.e., we use s(t) = z (t) and d (t) = z(t+l) . All available
10093 samples are used and scaled to zero mean and unit variance. From
these data we construct a learning curve. The training series are obtained by

on training examples.
5Notice, by defining this measure for all t > T some of the first values are based partly

86

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:36:34 UTC from IEEE Xplore. Restrictions apply.

SANTA FE LASER SERIES

-7 ’ 1000 zoo0 3ooo

I - - - - - - - - - - - - 1
I

4000 5000 Mm 7000

0

Figure 1: Left panel: The Santa Fe laser series. Right panel: Learning curve for
the laser data. Dots denote error for individual nets, the connected circles indicate
the average.

extending backwards in time from point 7000 and the last 3093 points in the
series are used as test series. For instance, a training set of size 1000 involves
training using ~(6000) through ~(7000). The employed nets have one external
input and ten hidden units. For each number of increasing training set sizes,
we train ten networks using different random initial weights and compute the
resulting normalized mean squared error (NMSE) on the test set. NMSE is
defined by

1SI-l Ct,s e2(t; NMSE =
vTr (d(t))

where t runs over the set S in question (i.e., either training or test set), (SI
is the size of the set, and vZiii(.) denotes the empirical variance.

The learning curve is shown in the right pariel of Figure 1. Initially the test
error drops as the size of the training set is increased, but from training set size
2500 to 5500 the average test error is fairly constant. This can be explained by
visual inspection of the laser series as the “shape” of many collapses between
the corresponding points 1500-4500 seems atypical for the test series. We see
a significant drop in test error when increasing the training set size from 5500
to 6000 points which might be explained by the fact that the training set now
incorporates an additional collapse very similar in shape to the ones in the
test series. These observations suggest that for the laser series, the concept of
an example should be conceived on several time scales: there are the pointwise
examples corresponding to each single input presented to the network; but
more important, there obviously exists “super examples” consisting of a whole
section of the time series. If additional super examples or sections are not
similar to the sections encountered in the test series, generalization will not
improve as seen in the right panel of Figure 1.

We now examine the memory of selected networks. The left panel of
Figure 2 depicts the normalized version of Eq. (7) for increasing values of
lag space m when evaluating one of the networks with low test error trained
on 7000 examples. The horizontal dotted line indicates the normalized level

87

a

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:36:34 UTC from IEEE Xplore. Restrictions apply.

0 20 40 60 BO Im 12u 140 160 180 2W
PREVIOUS (I OF SAMPLES, m

10-1 ' " ' " ' " I

Figure 2: Left panel: Measuring average memory for one of the networks with low
generalization error trained on 7000 examples from the laser series. Right panel:
Measuring average memory for another of the networks trained on 7000 examples.
e,(i?) using all available previous inputs. It seems that the network has
a memory somewhere between 120 and 200. The precision E in (8) denotes
a level below which we consider the two errors as equivalent. The value of
the memory thus naturally depends on the choice of E as shown in Table 1.
In the right panel of Figure 2 the normalized test error for increasing lag

Table 1: The value of the memory dependence on E for curve in the left panel of
Figure 2.

space m for another of the nets trained on 7000 points is shown. We note
that for this network the memory A4 is less sensitive to e , as it is between
23-25 for E 5 0.18. We also note that the memory is much shorter than for
the previous network even though the test errors are almost identical. Note,
since the network complexity6 is restricted, a network with short memory is
able to allow for more individual contribution of each of the previous inputs
z(t - n) than a network with long memory. The memory profile of a short
term memory net is thus more fine grained than that of a long term memory
net (with the same complexity). One might claim that a compact memory
model is better tuned to the problem.

In the left panel of Figure 3 we illustrate the average memory of the
network with lowest test error when training on only 500 examples. We noJice
that by limiting the memory the error can actually become lower than G,.
This effect often occurs for overtrained networks which is also the case here.
The memory of the network is highly specialized on the training set; limiting
the memory acts as regularization and actually improves the performance on
the test set.

We now illustrate that the memory of a recurrent network indeed is a

6E.g., measured by the number of hidden neurons

88

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:36:34 UTC from IEEE Xplore. Restrictions apply.

I I

lo40 5 10 15 20 25 30 35 40
PREVIOUS Y OF SPMMPCES, m

2 150 p 100

50

?bm 75w Bwo 8sw 9" 95w 1"

Figure 3: Left panel: Measuring average memory for best network trained on 500
examples from the laser series. Right panel: Measuring local memory with threshold
E = 0.01 using five point average, K = 5 .

dynamic quantity by examining the local memory defined by Eq. (8) and (9)
for the network whose average memory is shown in the left panel of Figure 2.
The right panel of Figure 3 and the left panel of Figure 4 illustrate the
dynamic memory measure using precision E = 0.01 and averaging over K = 5
and K = 50 examples, respectively. The memory is seen to be very dependent
upon where in the laser series it is measured; the closer to a collapse, the
larger. The memory required around the last collapse is significantly larger
than around the previous collapses. This may be explained by the observation
that the characteristics of the laser series just before the last collapse is highly
atypical from the rest of the test series. The memory in the right panel of
Figure 3 averaging over only K = 5 previous errors is seen to be a very noisy
quantity. As K is increased the error measure becomes smoother. Recall
from Table 1 that the average memory for E = 0.01 is A4 = 198; however, the
illustrations of the local memory shows that by omitting the last collapse the
average memory would be measured to 150, approximately.

The Mackey-Glass series is a standard problem of nonlinear dynamics and
results from the integration of a differential equation, see e.g., [8]. Standard

W

Figure 4: Left panel: Measuring local memory with threshold E = 0.01 using fifty
point average, K = 50. Right panel: Learning curve for the Mackey-Glass series.

89

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:36:34 UTC from IEEE Xplore. Restrictions apply.

Y

3

I
'O40 ;o ?b, l k l ,bo 250 3w

Figure 5 : Measuring average memory for networks trained on 1500 examples from
the Mackey-Glass series. Left Panel: Network having short memory. Right panel:
Network having long memory.

PREVIOUS t OF SAMPLES m
0 20 40 80 80 1W 120 140 160 180

1 o A " " " " '

PREVIOUS n OF SAMPLES m

practice is to implement a six step ahead predictor, i.e., modeling z (t) from a
lag space vector x(t) = [z (t - 6), ~ (t - 12), . . . , z (t - 6n1)] using feed-forward
networks. Here we implement the six step ahead predictor with target value
d (t) = z (t) using a recurrent network with only one external input, x (t) =
z (t -6) , and ten hidden units. In the right panel of Figure 4 is shown a learning
curve for the Mackey-Glass series when training on up to 1500 samples and
testing on the following 7000 samples. For each training set size ten networks
were trained. The learning curve indicates that more than 1000 examples are
needed in order to obtain consistently good results on the test set. We then
determined the average memory defined by Eq. (7) for the properly trained
networks with the lowest errors on the test set. Using the threshold E = 0.01
we found that the networks implemented a memory in the range of 118-263,
as seen from Figure 5.

The memories implemented by the recurrent networks are surprisingly
long. In order to obtain comparable performance using feed-forward networks
six external inputs are needed, thus spanning a total of only 31 previous sam-
ples. This is the minimal memory neccessary for good performance provided
weighting of individual lags is possible, however, a RNN's memory profile is
more coarse grained reducing the possibilty of individual weighting. Further-
more, maintaining information about all previous input values seems to bias
recurrent networks towards the implementation of a long effective memory.

The long memory implemented by the recurrent networks seems to be
of prime importance for the robustness of these models. Preliminary experi-
ments indicate that recurrent networks are far more resilient to noise pertuba-
tions of the input data than comparable feed-forward networks. Examination
of the robustness of recurrent networks is a topic of ongoing research.

CONCLUSION
In this paper we have focused on determining the effective memory of re-
current neural networks when used for time series processing, equivalent to

90

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:36:34 UTC from IEEE Xplore. Restrictions apply.

the span of the externally provided lag space for feed-forward networks. In
particular, we have suggested an operational definition which measures the
memory of a fully trained RNN on a test set. The viability of the method is
illustrated on two chaotic time series problems.

ACKNOWLEDGMENTS
This research was supported by the Danish Natural Science and Technical
Research Councils through the Computational Neural Network Center (CON-
NECT). JL furthermore acknowledge the Radio Parts Foundation for financial
support. Lars Kai Hansen is acknowledged for stimulating discussions.

REFERENCES
[l] H.D.I. Abarbanel: Analysis of Observed Chaotic Data, New York, NY:

Springer-Verlag, 1996.
[2] M. Casey: “The Dynamics of Discrete-Time Computation, with Application

to Recurrent Neural Networks and Finite State Machine Extraction,’’ Neural
Computation, vol. 8, pp. 1135-1178, 1996.

[3] S. Haykin: Neural Networks: A Comprehensive Foundation, New
York, New York: Macmillan College Publishing Company, 1994.

[4] T. Lin, B.G. Horne, P. Tino & C.L. Giles: “Learning Long-term Dependencies
with NARX Recurrent Neural Networks,” IEEE Transactions on Neural
Networks, vol. 7, no. 6, p. 1329, 1996.

[5] M.W. Pedersen & L.K. Hansen: “Recurrent Networks: Second Order Proper-
ties and Pruning,” in G. Tesauro, D. Touretzky & T. Leen (eds.) Advances
in Neural Information Processing Systems 7, Cambridge, MA: The MIT
Press, 1995, pp. 673-680.

[6] M.W. Pedersen: “Training Recurrent Networks,” in Proceedings of the
IEEE Workshop on Neural Networks for Signal Processing VII, Pis-
cataway, New Jersey: IEEE, 1997.

[7] H.T. Siegelmann, B.G. Horne & C.L. Giles: “Computational Capabilities of
Recurrent NARX Neural Networks,” Technical Report UMIACS-TR-
95-12, IEEE Transactions on Systems, Man and Cybernetics, 1997
(in press).

[8] C. Svarer, L. K. Hansen, J. Larsen & C. E. Rasmussen: “Designer Networks for
Time Series Processing,” in C. A. Kamm, G. M. Kuhn, B. Yoon, R. Chellappa
& S. Y . Kung (eds.), Proceedings of the IEEE Workshop on Neural
Networks for Signal Processing 3, Piscataway, New Jersey: IEEE, pp.

Time Series Prediction: Fore-
casting the Future and Understanding the Past, Santa Fe Institute
Studies in the Sciences of Complexity, Reading, MA: Addison-Wesley, 1993.

78-87, 1993.
[9] A.S. Weigend, & N.A. Gershenfeld (eds.):

91

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:36:34 UTC from IEEE Xplore. Restrictions apply.

