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Abstract - This paper addresses techniques for interpretation and char- 
acterization of trained recurrent nets for time series problems. In parti- 
cular, we focus on assessment of effective memory and suggest an opera- 
tional definition of memory. Further we discuss the evaluation of learning 
curves. Various numerical experiments on time series prediction prob- 
lems are used to illustrate the potential of the suggested methods. 

INTRODUCTION 
It is widely recognized that recurrent neural networks (RNNs) are flexible 
tools for time series processing, system identification and control problems, 
see e.g., [3]. Feed-forward networks can accommodate dynamics by having 
a lag space of past input and target values; however, a fully recurrent net- 
work with internal feedbacks allows for even more sophisticated dynamics. 
While fully RNN architectures are the ultimate tool for modeling dynamic 
relations, the comprehension of the networks is a challenging subject of on- 
going research. Theoretical investigations of modeling capabilities of RNNs  
have been reported, see e.g., [a], [4], [7]. However, to the authors knowledge, 
there is no general theory of the dynamic behavior of a general RNN except 
for very special models like the Hopfield network, see e.g., [3]. This indeed 
indicates that theoretical analysis of RNNs is extremely complicated. On 
the other hand, one might pursue a more computational approach. The gen- 
eral computational tools from non-linear dynamic systems analysis like phase 
portraits, stability analysis, measurement of fractal dimensions or Lyapunov 
exponents (see e.g., 111, [ 3 ] )  may be applied to the analysis of RNNs. 

The motivation for this paper is evaluation and interpretation of trained 
recurrent networks, and to suggest and discuss simple operational techniques. 
In particular, we focus on the learnzng curve and present a new method to 
determine the effective memory of a recurrent network which conveys the 
relevant time scale of the dynamics. 
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NETWORK ARCHITECTURE 
The objective is to  model a non-linear dynamic relation among a discrete- 
time input signal z ( t )  and a discrete time target signal, d ( t ) .  The general 
architecture of the RNN considered in this presentation is based on [5] and 
consists of a single hidden layer of fully connected nonlinear units and one 
output unit. In particular, we focus on a network with only one external input, 
viz. the most recent value, z ( t ) .  That is, the only information available about 
previous inputs stems from the memory build up internally in the net. The 
advantage using these networks is that the tedious problem of determining 
the optimal lag space of previous inputs is converted into determining the 
optimal network architecture in terms of connections and number of hidden 
neurons. 

The network has a linear output in order to  allow for arbitrary dynamic 
range, and at time t the prediction of the target d ( t )  is given by, 

where Nh is the number of hidden units, w0i is the weight to the output unit 
from hidden unit i and W O b  is the output bias weight. The i th state, s i( t) ,  is 
the output of a hidden unit computed as 

where wij is the weight to hidden unit i from hidden unit j ,  wiz is the weight 
from the external input ~ ( t ) ,  and wib is the bias weight. f(.) is the nonlinear 
activation function tanh(z). Note that the update of the units is Eayered [5] :  
at each time step the hidden units are updated before the output unit. 

TRAINING AND GENERALIZATION 
Suppose we have a training set of related values of inputs and targets 7 = 
{ z ( t ) ,  d(t)}FZl where T is the number of training samples. Training is done 
by adjusting the weights so as to minimize a cost function. Here we employ 
the sum of squared errors augmented by a simple weight decay regularization 
term 

C(W) = - Cez(t) + - 1 ~ 1 ~  , e ( t )  = d ( t )  - y(t) 

where w is the concatenated set of weights and a is a small regularization 
parameter. Training aims at minimizing the cost function C(w) and is thor- 
oughly treated for RNNs in [6]. 

T 

(3) 
1 a 

2 2 
t=1 
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Suppose that training provides the estimated weight vector G. Let r be an 
initial state vector’ of the “true” data generating system leading to the train- 
ing set ‘7- and define an associated probability distribution2 p(r). Further, 
definex(t) = [ ~ ( t ) , x ( t - l ) , . . . z ( T + l ) ] ~  a n d l e t p ( d ( t ) , x ( t ) I T , r ) ,  t > T ,  
be the true joint probability density function of [ d ( t ) ,  x( t ) ]  conditioned on 
the initial state T and the training set 7.  The true joint p.d.f. is assumed 
to  be time-independent (i.e., stationary). The generalization error of the 
trained net is defined as the expected squared prediction error on future data 
rmmedaately succeeding the training data, i.e., for t > T ,  

J 

Thus the generalization error is the ensemble average of the squared error 
over 1) possible realizations of [d ( t ) ,  x(t)] due to  inherent stochastic processes 
in the data generating system, and 2) over possible initial states leading to 
the particular training set. 

We estimate the generalization error by, 

- T-CV 
h 1 

T/ G(G) = - e2 (t; S) ( 5 )  

where V is the number of test samples. 

LEARNING CURVE 

The learning curve expresses the average generalization error over all possible 
training sets of a particular size T as a function of T and is an important 
tool for verifying whether enough data is available for proper training of the 
network. Moreover, the shape of the curve provides insight into the nature 
of the problem as demonstrated in the experimental section. 

Practical considerations may lead to more restricted definitions. Here we 
compute the learning curve as the estimated generalization error when grad- 
ually expanding the training set. That is, there is no average over different 
sets of a particular size. 

NETWORK MEMORY 

A characteristic of recurrent neural networks is their ability to build up an 
internal memory representing the “history” of previous inputs on which the 
predictions of future values is based. The significance of this internal memory 
is especially clear when using RNNs having only one external input. Without 
the ability to create internal memory this class of networks would be useless. 

Once a recurrent network is trained, the basic idea here is to  define an 
integer variable M which expresses the effective memory of past values of 

lThe initial state captures the all information about the time series for t 5 0. 
‘E.g., that all initial states are equally likely. 
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the input signal z(t) .  The memory thus provides a partial insight into the 
functionality and dynamics of the network. The experimental section gives 
examples of interpreting the dynamics using this simple concept. Recurrent 
networks with only one external input can not give individual contribution to 
each previous input ~ ( t  - m) but must store their own representation. Con- 
sequently, the RNN has a certain memory  profile. We are currently pursuing 
the idea of determining the memory profile. 

A feed-forward network does not possess any internal memory, i.e., the 
memory is explicitly determined by the memory contained in the preprocess- 
ing of the input signal. The standard approach is to feed the signals from a 
tapped delay line [z( t ) ,  z(t-1), . . . z ( t - M ) ]  into the network and the memory 
thus equals M .  

The capacity of the internal memory of a recurrent network increases when 
the number of hidden units (i.e., the dimension of the state vector) increases 
as the state vector contains all information about previous inputs. However, 
to our knowledge, there is no reports on quantizing the notion of memory in 
recurrent networks. In the following we attempt to provide a definition of the 
memory of a specific trained recurrent network. 

The output from the RNN defined in (l), (2) is based on the current and 
- in principle - infinitely many previous inputs3, as shown by, 

y ( t )  = y (tl%,z(t), z ( t  - l), . . 9 ,z(--oo)). (6) 

In order to determine the effective average memory of the recurrent network 
we suggest to evaluate an estimate of the generalization error, i.e., prediction 
error on a test set, using predictions based on only a limited number of 
previous inputs. This generalization error is then compared to the error 
obtained using all - in principle infinitely many - previous inputs. 

In particular, when evaluating the generalization error using only the m 
most recent inputs, we compute, 

T+V 

Zm(%) = [d ( t )  - y ( t l ~ , z ( t ) ,  z ( t  - 11,. . . , z(t  - m))]’, m 2 o (7) 

where V is the size of the test set. y (ti%, z ( t ) ,  z ( t  - l ) ,  . . . , z ( t  - m))  is 
computed for each t E [T + l ; T  + V ]  by resetting4 the states sp( t  - m - l), 
i = 1 ,2 , .  . . , Nh, to zero and then iterate the network from time t - m until 
time t ,  using the output y ( t )  at this time as the prediction of d ( t ) .  In the 
first iteration, calculating y ( t  - mi%, z( t  - m)) ,  the network thus functions 
as a feed-forward network since the previous states of the hidden units - 
and thereby all previous external inputs - have no influence on the network 
output. Then, the network gradually builds up a representation of the past in 

3This is also true for a RNN in which previous values of the output is fed back to the 

4Setting the hidden unit states s t ( t  - m - 1) to zero is equivalent to erasing the memory 

t=T+1 

input. 

of the network regarding inputs before time t - m. 
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the hidden units during the next m f  1 iterations before it makes its prediction 
at time t .  

(G), . . . are then compared to  Gm(G) de- 
noting the error obtained when using all available previous inputs, i.e., no 
resetting of the hidden unit states at any time. The memory M is now de- 
fined as, 

The resulting errors (?&(G), 

where E is a small number. Thus, the memory, M, denotes the minimal 
number of previous inputs beyond which additional inputs are insignificant. 

The memory measure outlined above determines the number of previous 
inputs that the network needs knowledge about in order to obtain good pre- 
dictions on all samples in the test set. Thus the measure can be interpreted 
as the average memory of the network. A recurrent network, however, is a 
dynamic system whose internal characteristics can be highly influenced by 
the nature of the input series. Especially, if the input series exhibits regions 
of non-stationary behavior, the network dynamics including memory must 
clearly be affected. Such changes in dynamics are not captured by the aver- 
age memory measure and we may define a local memory ,  in accordance with 
(8), using a local generalization error estimate5 

where m 2 0, t > T ,  and 1 5 K 5 V is the size of a smaller test set. Choosing 
K too small gives rise to a very noisy measure of the generalization error; 
however, in principle a good resolution of changes in memory requirement. 
On the other hand, increasing K improves generalization accuracy but reduces 
the resolution of changes in memory. 

EXPERIMENTS 
The proposed methods for estimating the learning curves and memory are 
evaluated on two chaotic time series prediction problems, viz. the laser series 
from the Santa Fe time series competition [9] and the artificially generated 
Mackey-Glass series [SI. 

The laser series is illustrated in the left panel of Figure 1. Let z ( t )  denotes 
the series, then identification is done by training the network to perform a one 
step ahead prediction, i.e., we use s(t) = z ( t )  and d ( t )  = z( t+l ) .  All available 
10093 samples are used and scaled to zero mean and unit variance. From 
these data we construct a learning curve. The training series are obtained by 

on training examples. 
5Notice, by defining this measure for all t > T some of the first values are based partly 
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Figure 1: Left panel: The Santa Fe laser series. Right panel: Learning curve for 
the laser data. Dots denote error for individual nets, the connected circles indicate 
the average. 

extending backwards in time from point 7000 and the last 3093 points in the 
series are used as test series. For instance, a training set of size 1000 involves 
training using ~(6000) through ~(7000). The employed nets have one external 
input and ten hidden units. For each number of increasing training set sizes, 
we train ten networks using different random initial weights and compute the 
resulting normalized mean squared error (NMSE) on the test set. NMSE is 
defined by 

1SI-l Ct,s e2(t;  NMSE = 
vTr (d( t )  ) 

where t runs over the set S in question (i.e., either training or test set), (SI 
is the size of the set, and vZiii(.) denotes the empirical variance. 

The learning curve is shown in the right pariel of Figure 1. Initially the test 
error drops as the size of the training set is increased, but from training set size 
2500 to 5500 the average test error is fairly constant. This can be explained by 
visual inspection of the laser series as the “shape” of many collapses between 
the corresponding points 1500-4500 seems atypical for the test series. We see 
a significant drop in test error when increasing the training set size from 5500 
to 6000 points which might be explained by the fact that the training set now 
incorporates an additional collapse very similar in shape to the ones in the 
test series. These observations suggest that for the laser series, the concept of 
an example should be conceived on several time scales: there are the pointwise 
examples corresponding to each single input presented to the network; but 
more important, there obviously exists “super examples” consisting of a whole 
section of the time series. If additional super examples or sections are not 
similar to the sections encountered in the test series, generalization will not 
improve as seen in the right panel of Figure 1. 

We now examine the memory of selected networks. The left panel of 
Figure 2 depicts the normalized version of Eq. (7) for increasing values of 
lag space m when evaluating one of the networks with low test error trained 
on 7000 examples. The horizontal dotted line indicates the normalized level 
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Figure 2: Left panel: Measuring average memory for one of the networks with low 
generalization error trained on 7000 examples from the laser series. Right panel: 
Measuring average memory for another of the networks trained on 7000 examples. 
e,(i?) using all available previous inputs. It seems that the network has 
a memory somewhere between 120 and 200. The precision E in (8) denotes 
a level below which we consider the two errors as equivalent. The value of 
the memory thus naturally depends on the choice of E as shown in Table 1. 
In the right panel of Figure 2 the normalized test error for increasing lag 

Table 1: The value of the memory dependence on E for curve in the left panel of 
Figure 2. 

space m for another of the nets trained on 7000 points is shown. We note 
that for this network the memory A4 is less sensitive to e ,  as it is between 
23-25 for E 5 0.18. We also note that the memory is much shorter than for 
the previous network even though the test errors are almost identical. Note, 
since the network complexity6 is restricted, a network with short memory is 
able to  allow for more individual contribution of each of the previous inputs 
z( t  - n) than a network with long memory. The memory profile of a short 
term memory net is thus more fine grained than that of a long term memory 
net (with the same complexity). One might claim that a compact memory 
model is better tuned to  the problem. 

In the left panel of Figure 3 we illustrate the average memory of the 
network with lowest test error when training on only 500 examples. We noJice 
that by limiting the memory the error can actually become lower than G,. 
This effect often occurs for overtrained networks which is also the case here. 
The memory of the network is highly specialized on the training set; limiting 
the memory acts as regularization and actually improves the performance on 
the test set. 

We now illustrate that the memory of a recurrent network indeed is a 

6E.g., measured by the number of hidden neurons 
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Figure 3: Left panel: Measuring average memory for best network trained on 500 
examples from the laser series. Right panel: Measuring local memory with threshold 
E = 0.01 using five point average, K = 5 .  

dynamic quantity by examining the local memory defined by Eq. (8) and (9) 
for the network whose average memory is shown in the left panel of Figure 2. 
The right panel of Figure 3 and the left panel of Figure 4 illustrate the 
dynamic memory measure using precision E = 0.01 and averaging over K = 5 
and K = 50 examples, respectively. The memory is seen to be very dependent 
upon where in the laser series it is measured; the closer to a collapse, the 
larger. The memory required around the last collapse is significantly larger 
than around the previous collapses. This may be explained by the observation 
that the characteristics of the laser series just before the last collapse is highly 
atypical from the rest of the test series. The memory in the right panel of 
Figure 3 averaging over only K = 5 previous errors is seen to be a very noisy 
quantity. As K is increased the error measure becomes smoother. Recall 
from Table 1 that the average memory for E = 0.01 is A4 = 198; however, the 
illustrations of the local memory shows that by omitting the last collapse the 
average memory would be measured to 150, approximately. 

The Mackey-Glass series is a standard problem of nonlinear dynamics and 
results from the integration of a differential equation, see e.g., [8]. Standard 

W 

Figure 4: Left panel: Measuring local memory with threshold E = 0.01 using fifty 
point average, K = 50. Right panel: Learning curve for the Mackey-Glass series. 
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Figure 5 :  Measuring average memory for networks trained on 1500 examples from 
the Mackey-Glass series. Left Panel: Network having short memory. Right panel: 
Network having long memory. 
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practice is to implement a six step ahead predictor, i.e., modeling z ( t )  from a 
lag space vector x(t) = [ z ( t  - 6), ~ ( t  - 12), . . . , z ( t  - 6n1)] using feed-forward 
networks. Here we implement the six step ahead predictor with target value 
d ( t )  = z ( t )  using a recurrent network with only one external input, x ( t )  = 
z ( t -6 ) ,  and ten hidden units. In the right panel of Figure 4 is shown a learning 
curve for the Mackey-Glass series when training on up to 1500 samples and 
testing on the following 7000 samples. For each training set size ten networks 
were trained. The learning curve indicates that more than 1000 examples are 
needed in order to  obtain consistently good results on the test set. We then 
determined the average memory defined by Eq. (7) for the properly trained 
networks with the lowest errors on the test set. Using the threshold E = 0.01 
we found that the networks implemented a memory in the range of 118-263, 
as seen from Figure 5. 

The memories implemented by the recurrent networks are surprisingly 
long. In order to obtain comparable performance using feed-forward networks 
six external inputs are needed, thus spanning a total of only 31 previous sam- 
ples. This is the minimal memory neccessary for good performance provided 
weighting of individual lags is possible, however, a RNN's memory profile is 
more coarse grained reducing the possibilty of individual weighting. Further- 
more, maintaining information about all previous input values seems to bias 
recurrent networks towards the implementation of a long effective memory. 

The long memory implemented by the recurrent networks seems to be 
of prime importance for the robustness of these models. Preliminary experi- 
ments indicate that recurrent networks are far more resilient to noise pertuba- 
tions of the input data than comparable feed-forward networks. Examination 
of the robustness of recurrent networks is a topic of ongoing research. 

CONCLUSION 
In this paper we have focused on determining the effective memory of re- 
current neural networks when used for time series processing, equivalent to 
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the span of the externally provided lag space for feed-forward networks. In 
particular, we have suggested an operational definition which measures the 
memory of a fully trained RNN on a test set. The viability of the method is 
illustrated on two chaotic time series problems. 
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