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Proceedings of the American Control Conference 
San Diego, California June 1999 

On Dissipation in Stochastic Systems 

Abstract 

Uffe Hggsbro Thygesen 
Dept. of Mathematical Modeling 

Technical University of Denmark, Building 321 
DK-2800 Lyngby, Denmark 
E-mail: uhtQimm. dtu. dk 

We define the property of dissipativity for controlled It8 
diffusions. We investigate elementary properties, and we 
demonstrate that the framework is useful for control prob- 
lems in which both probabilistic and worst-case represen- 
tations of dynamic uncertainty are present. As an example 
we discuss a problem involving robust !% performance in 
presence of two types of dynamic uncertainty: 5% bounded 
perturbations, and disturbances with finite signal-to-noise 
ratio in the sense of Skelton. 

1 Introduction 

The concept of dissipation in deterministic dynamical sys- 
tems in the sense of [17, 71 has recently gained renewed 
popularity. Perhaps the most important reason for this is 
that it provides an elegant framework for linear and non- 
linear % control problems and other similar problems of 
robustness towards dynamic perturbations. See the recent 
texts (16, 131 which also contain references to the large 
body of literature on dissipative deterministic systems. 

Dissipation-like properties of stochastic systems do appear 
in the literature. For instance [2] uses stochastic Lyapunov 
functions to achieve bounds on the &-gain of a wide sense 
linear system with deterministic inputs and stochastic out- 
puts. Another example is the stochastic small gain theo- 
rem in [ 13 which connects input-output properties to Riccati 
equations, the solutions of which are subsequently used to 
obtain a stochastic stability result. 

With this in mind one may ask to which extent the theory 
of dissipation can be generalized to stochastic systems, and 
if this project will provide new insight, The purpose of this 
paper is to show that the general concept of dissipation is 
indeed both meaningful and useful in a stochastic context, 
and that many elementary properties of deterministic dis- 
sipative systems have immediate analogies in a stochastic 
setting. Furthermore, we demonstrate that the framework of 
stochastic dissipation provides a natural approach to prob- 
lems of robust performance, such as problems of Yh per- 
formance of linear or nonlinear systems in presence of %L 
bounded perturbations. 

Proofs of the results in this paper, as well as related material 
and further discussion, can be found in [15]. 

2 Preliminaries 

We consider a controlled process xt in a Euclidean state 
space X = R” given by an It6 stochastic differential qua -  
tion evolving on the time interval T = [0, -) 

dxr=f(xt ,wt)  dt-t-g(xt,wt)dB,, x o = x E X  (1) 

where Bt is standard rn-dimensional Brownian motion on a 
probability space (Q, F , P )  with respect a given filtration 
Ft and where the initial condition x is deterministic. The 
input wt is an Ft-adapted process taking values in Euclidean 
space W = RP. 

In addition, we assume that the system exchanges some 
quantity with its environment, specified by a supply rate 
I : X x W -+ R. The accumulated flow from environment 
into the system during the time interval [0, t ]  is Rt where 

dR, = I ( & ,  wt) dt , Ro = 0 . (2) 

We consider only initial conditions x E W and F,-adapted 
inputs wt for which there exists an a.s. unique It6 process 
(xt ,Rt) which solves the equations (I), (2). See [ll] for 
sufficient conditions. 

Associated with the equation (1) we define for each w E 
WthedifferentialoperatorLW : C?(X,R) + @(X,JR) given 
by LwV(x) = V,f+ ;trg’V,g where the right hand side is 
evaluated at (x, w). 

If J is a functional on sample paths of the processes x,, Wt, 
then C J  is expectation w.r.t. the probability measure gen- 
erated by Xt, wf with initial condition% = x. In this notation 
the dependence of E”J on the input wt is suppressed. 

3 Definition of dissipativeness and elementary 
properties 

Fundamental in the deterministic theory of dissipation as 
developed in [17] is the storage function V : X -+ R which 
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satisfies the dissipation inequality 

V ( x t )  5 V(no) +J’ r(xs,ws) ds 

along every trajectory of the system. This inequality can 
be generalized to a stochastic setting in several ways, but 
it appears that the most useful framework is achieved by 
requiring the inequality to hold in expectation: 

Definition 1: We say that the system (1) is dissipative w.r.t. 
the supply rate r, if there exists a non-negative storagefunc- 
tion V : X + IR such that the integral dissipation inequality 

0 

holds for all bounded stopping times z and all solutions 
0 

Notice that the definition considers only bounded stopping 
times and solutions with deterministic initial conditions. 
The motivation for this is mainly to avoid certain techni- 
calities and keep a smooth presentation, Given a dissipa- 
tive system, the dissipation inequality will often hold for a 
large class of unbounded stopping times (although certainly 
not all; see [15]), and for solutions with Fo-measurable 
stochastic initial conditions x = x(o), provided EV(n)  ex- 
ists. 

The way to verify if a given function V is a storage func- 
tion is to consider a differential version of the dissipation 
inequality: 

Theorem 2: A nonnegative C2 function V : X + R is 
a storage function if and only if it satisfies the differential 
dissipation inequality 

nt, wf of the system withno = x E X. 

inf -LwV(x) + r(x,  w) 2 0 
WEW 

(4) 

on X. 0 

As in the deterministic case [9], it is reasonable to ask if a 
similar result holds if V is merely continuous. It is easy to 
see that lower semicontinuous storage functions are indeed 
viscosity solutions to (4). We conjecture that the converse 
statement can be proved by combiningtheresults in [lo, 18, 
121. 

We define the available storage of the system (1) w.r.t. the 
supply rate r in a manner analogous to [17], namely by 

Vu(x) = s u p E X i T - r d s  ( 5 )  
Wt ,T 

where the supremum is over all bounded stopping times z 
and all solutions xf ,  wf with no = x. This definition enables 
us to show a result analogous to theorem 1 in [17, p. 3281: 

Proposition 3: The available storage is finite for all x E X 
if and only if the system is dissipative. Furthermore, in this 

case the available storage is in itself a storage function and 
any other storage function V satisfies 

V(x) 2 Va(x), VXEX . 

Finally inf{V,(x) : n E X) = 0. A 

A deterministic dissipative system usually has more than 
one storage function and the set of storage functions is con- 
vex [17, theorem 3, p. 3311. Furthermore, the set of dis- 
sipated supply rates is a convex cone [6]. These convexity 
properties have important theoretical and computational im- 
plications. For instance useful in robustness analysis one 
may wish to combine dissipation properties of unknown 
system components in order to obtain the least conservative 
robustness conditions - see the example in section 7 below. 

Proposition 4: Given a diffusion ( l ) ,  a linear space 2/ of 
candidate storage functions V : X + R and a linear space R 
of supply rates. Then the subset 

{ (V, r) c ’I/ x 9( I V 2 0 and (V, r)  satisfy (3)) 

is a convex cone. A 

A related fact is the following: 

Proposition 5: Let V,(x; r )  E [0, -1 be the available storage 
of the system (1) with respect to the rate r E R, then for each 

A x the function V,(x; r )  is convex in 1. 

4 Stability properties of dissipative systems 

Given a dissipative deterministic system one may often use 
a storage function as a Lyapunov function in order to show 
that the isolated system is stable [17, p. 3371. Indeed, this 
is one of the properties which make dissipative systems in- 
teresting from a control point of view. 

In order to investigate stability of the autonomous system 

dxf = f ( x t , O )  dt+g(nr),O) dBf (6) 

we use the terminology of Has’minskii [51: 

Definition 6: A constant solution xf E R  of the autonomous 
equation (6) is stable in probability if for any E > 0 

limP{sup (xt - X I  > E} = 0 
x-tf  f>O 

where the diffusion xf solves (6) with no = x. 0 

Using the existing Lyapunov-type criterion for stochastic 
stability [5] we immediately get the following: 

Theorem 7: Let the supply r be regular in the sense that 
r(n, 0) 5 0 for all n. Let the system (1) be dissipative with 
respect to r and let V be a continuous storage function which 
attains an isolated local minimumat f E X. Then theprocess 
xf 2 K is a solution of the autonomous equation (6) and is 
stable in probability. 0 
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Remark 8: We say that the system (3) dissipates the sup- 
ply rate r regionaZZy on a domain R if there exists a non- 
negative V such that the dissipation inequality holds for any 
x, w, 2 such that xt E R for 0 5 t < 2. In this case we say 
that V is a regional storage function on R. A necessary and 
sufficient condition for a non-negative C? function V to be 
a regional storage function on an open domain R is that it 
satisfies the differential dissipation inequality (4) on R. It 
is easy to see that the above theorem holds if the storage 
function V is replaced with a regional storage function on a 

One may show other stability properties such as stochas- 
tic sample path boundedness or exponential p-stability by 
imposing additional constraints on the storage function and 
the supply rate and using the corresponding Lyapunov-type 
theorems in [ 5 ] .  

neighbourhood of 2. 0 

5 Linear systems and quadratic supply rates 

Consider a homogeneous wide sense linear system 
m 

with a quadratic supply rate r(x,  w) = (2 w')Q(2 w')'. We 
assume that r is concave-convex in (x, w) which implies reg- 
ularity. It can be shown that if such a system is dissipative 
then the available storage is a quadratic function of the ini- 
tial state x, i.e. may be written as 

va(x) = 2PQX 

where Pa = P,!,! 2 0. Furthermore, the quadratic storage func- 
tions V ( x )  = d P x  with P = P' are exactly those that satisfy 
P 2 0 and the differential dissipation inequality (4) which 
can be rewritten as the linear matrix inequality 

It is thus possible to use commercially available LMI 
solvers to answer the analysis questions: Is the system dissi- 
pative? If yes, what is the available storage? As an example 
we state the following stochastic positive real lemma: 

Proposition 9: For the system above, let the supply rate be 
r (x ,w)  = 2(w,z) with z = Cx+Dw. Then the following are 
equivalent: 

1. The system is stochastically strictly input passive, i.e. 
stochastically dissipative w.r.t. r - &IwI2 for some E > 
0, and the autonomous system obtained with w = 0 is 
exponentially mean square stable. 

2. There exists a P = P' > 0 such that 

n 
A related stochastic bounded real lemma has recently ap- 
peared in [8]. 

6 Interconnected dissipative systems 

Consider the two systems for i = 1,2 

Xi : dx' = fi(x', w') dt + gi(x',  wi) dB' 

which together satisfy the assumptions of section 2 (in par- 
ticular, (Bf ,@) is standard Brownian motion w.r.t. the fil- 
tration Ft). We assume that each system is dissipates the 
rate ri(2,wi)  and that the systems are connected in feed- 
back through the equations 

W: =h2($,w?)+v: and w?=h'(x:,w:)+$ . 

Here hi are output functions and vi are exogenous inputs. 
We assume that the interconnecting equations have unique 
solutions wi = W i  for all x' and v' (for instance, if one of 
the two hi is independent of wi) and that the resulting sys- 
tem satisfies the well-posedness assumptions of section 2. It 
is now easy to verify that the interconnection dissipates the 
supply rate r(xl , 9, v l ,  3) = r1 ( 2 ,  w)') + r2 (9, w2). Com- 
bining with the stability result of theorem 7 we get: 

Proposition 10: Assume that the each of the storage func- 
tions V'(x')  is continuous and attains an isolated local min- 
imum at 2. Assume in addition that the supply rates satisfy 
r(xl , ~ , o , o )  5 o for all xl, x2. Then xj f xi is a solution 
of the interconnected system with 4 0 and this solution is 
stable in probability. n 
The main application of this result is to give a sufficient con- 
dition for robust stability of a stochastic system subject to a 
deterministic dissipative perturbation. For example, assume 
that the nominal system XI is linear and that the perturba- 
tion & is passive; then one may obtain a sufficient condi- 
tion for robust stability in probability of the interconnec- 
tion by combining propositions 10 and 9. Another impor- 
tant special case is stochastic small gain theorems where 
ri=jlwilP-Ihi(x',w')lPwithp>Oandylf 5 1. 

7 Application to robust !W2 performance 

Whereas it is largely agreed that the Hz and norms of 
transfer functions are useful performance measures for lin- 
ear systems, and that the 4 gain is a suitable generalization 
of the YL., norm to nonlinear systems, there is less agree- 
ment regarding generalization of the H2 norm to nonlinear 
systems. Here we suggest a new definition for input-affine 
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systems with input vt and output yt given by the stochastic 
differential equation 

c : dxt = f ( x t )  dt+g(xt) dBt+b(xt) vt dt,  yt =c(xt)  (8) 

where Bt is Brownian motion w.r.t. the filtration Ff, the 
input vt is Ff-adapted andyt is the output. 

Definition 11: The strong Hz performance index of the 
system (8) is the stochastic & gain of the system e with 
input vt and output yf given by 

2 : dxt = f ( x t )  dt+g(xt) dBt +b(Xt) Vt dR , yt = C ( X t )  , 
i.e. the infimum over all y > 0 such that e dissipates 
$/vi2 - IyI2. Here vt is a scalar Ff-adapted process and 
Wf is Brownian motion w.r.t. Ft, independent of Bt. 0 

Implicit in the definition is that the filtration Ff must be 
’large enough’ to allow two independent Ff-Brownian mo- 
tion processes Bt and Wt. One interpretation of the strong 
9-(2 performance index is the worst-case ratio between the 
variance of the output yt and the intensity of a white noise 
input Vr = vt dWt/dt. The affix strong is due to the fea- 
ture that the intensity of the white noise input is allowed 
to vary, for instance as a function of the state. In the nar- 
row sense linear case, i.e. f ( x )  = An, g(x) = 0, b(x) = B, 
c(x) = Cx, the strong H2 performance index equals the stan- 
dard 5% norm of the transfer function C(sZ-A)-’B. 

A very important feature of this definition of H2 perfor- 
mance is that i t  builds on the concept of stochastic &gains. 
This allows a unified treatment of problems which contain 
both 7&2 and % type criteria. 

AF is small &-gain, i.e. dissipates r3 = 1 0 1 ~ .  This 
implies that of dBt/dt is a white noise signal which grows 
in intensity with the variance of &. This uncertainty model 
generalizes the finite signal-to-noise ratio disturbances of 
Skelton to non-stationary situations. See [14] for a discus- 
sion of the use of this type of uncertainty model. 

We now turn to the analysis question of robust strong !F4 
performance of bounding the strong H2 performance index 
of the total interconnection from v to y. According to our 
definition, we replace the input vt in (9) with a white noise 
term vt dWt/dt, thus obtaining 

C : dxt = f ( x t ,  wt) dt + ot p(xt)  & +vt g(xt) dR . (10) 

Using the results of the previous sections we see that an 
upper bound on the strong Y& performance index is 

3 
minys.t. system (10) dissipatesflvI2- lyI2 - Cdiri 
Y d i  i= 1 

where y 2 0 and di 2 0. This optimization problem is con- 
vex according to proposition 4; if the right hand side of the 
governing equation (9) is linear in (x, w, v, v) then it is a lin- 
ear matrix inequality problem: 

Theorem 12: Let the system be given by the linear SDE 

d ~ t  = ( k t  + Bwt + G v ~ )  dt + OtT dBt 

and the output equations zr = Hxt, yt = Cxt, & = Jxf ,  and 
let w = Az and v = A< where A and AF are as above. Then 
an upper bound on the square of the strong 3%~ performance 
index of the interconnection is 

V w*-q+z Y 

Figure 1: Nominal system and perturbations 

Consider now the block diagram in figure 1 where the sys- 
tem E has inputs of and vf and is given by the model 

: dxt = f ( x t ,  ~ t )  dt + 01 p ( ~ t )  dBt + vt g(xt) dt . (9) 

with outputs yt = c(xt),  ct = q(x t ) ,  and zt = h(xt).  Notice 
that we have considered the noise signal Bt as internal to 
the system E. We make the following assumptions about 
the perturbations A and AF: 

A is passive and small &-gain, i.e. dissipates the two rates 
rl = (w, z} and rz = /zl2 - /wI2. This could for instancerep- 
resent unmodelled parasitic dynamics. 

min tr G’PG s.t. P 2 0, di 2 0, 
e4 >dZ 

Q PB+dlH’ [ B’P+dlH -d2Z ] lo 
where Q is shorthand for Q = PA + A’P + C‘C + d2H’H + 
J’mvr. 0 

This upper bound can be computed with standard software 
for linear matrix inequalities such as [4]. 

8 Computation of storage functions 

The most common approach to numerical computation of 
storage functions for deterministic systems is to solve a par- 
tial differential equation corresponding to the differential 
dissipation inequality (4). In this section we briefly discuss 
an alternative based on convex optimization. 

Consider the input-affine controlled diffusion on X = Iw” 

dxt = ( f ( x )  + +(x t )  W t )  dt + (g(xt) + y(xt) wt) dBr 

with the input-quadratic supply rate 

r(x,  w) = h(x) + 2k(x)  w + w’ l ( x )  w . 
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For simplicity of notation, we assume that both Bt and wf 
are scalar processes. The backwards operator is 

1 
LWV(X) = v x  f + vx$ w + z ( g  + y w)'V,(g + y w) 

for V E @(X,R). The differential dissipation inequality (4) 
can then be written more explicitly as P(V,x) 5 0 where 
P:C2(X,Iw) ~ X - , R ~ ~ ~ i s g i v e n b y  

We now suggest the following numerical strategy for com- 
puting storage functions: Choose a set of basis functions 
V i  E C2(X ,  R) and search for a storage function of the form 

N 

i= 1 

In order to verify if V is a storage function, we test for dissi- 
pation and non-negativity at a set of pointsx], j = 1 , .. . ,M. 
This leads to the LMI problem 

Find 011, . . . , CXN such that 

N N 
C ~ i P ( V i , X j ) < O l  C a i V i ( X j ) > 0  f o r j = I ,  ..., M 
i= 1 i=l 

for which software such as [4, 31 can find a solution or de- 
termine that no solution exists. The LMI problem has N 
scalar variables, M scalar constraints and M 2-by-2 matrix 
constraints. 

Computing storage functions with LMI software is a rela- 
tively flexible principle which may be modified in several 
ways, depending on the specific application. For instance, 
one may search simultaneously for a supply rate in some 
convex polytope, add constraints on the storage function, its 
gradient or curvature, or one may include a linear functional 
of storage function and supply rate to be minimized. 

9 Conclusion 

It can be argued that the concept of dissipation in dynam- 
ical systems is the unifying factor behind a broad range of 
results in deterministic control theory, in particular within 
robust control. We believe that the appeal ofthe framework 
is not lost in the transfer to a stochastic context, and that 
dissipative stochastic systems are a natural choice for de- 
scribing problems which involve both stochastic and deter- 
ministicuncertainty as well as both averaged and worst-case 
performance measures, such as robust H2 performance. Re- 
garding sufficient conditions for robustness, we have in this 
paper concentrated on multiplier type results. It is possi- 
ble to give less conservative, but numerically more compli- 
cated, sufficient conditions based on regional dissipation in 
an extended state space; see [15J 

References 

[ll V. Dragan, A. Halanay, and A. Stoica. A small gain 
theorem for linear stochastic systems. Systems and Control 
Letters, 30:243-251,1997. 
[2] L. El Ghaoui. State-feedback control of systems with 
multiplicative noise via linear matrix inequalities. Systems 
and Control Letters, 24:223-228,1995. 
[31 L. El Ghaoui, E Delebecque, and R. Nikoukhah. 
LMItool: a User-Friendly Interface for LMI Optimiza- 
tion. Available by FTP at f tp . ensta. f r/pub/elghaoui, 
1997. 
[41 P. Gahinet, A. Nemirovski, A. Laub, andM. Chilali. 
LMI Control Toolbox. MATLAB, 1995. 
[SI R.Z. Has'minsg. Stochastic Stability of DlfSerential 
Equations. Sijthoff & Noordhoff, 1980. 
[61 D. Hill and P. Moylan. The stability of nonlinear dis- 
sipative systems. IEEE Transactions on Automatic Control, 

[71 D.J. Hill and P.J. Moylan. Dissipativedynamical sys- 
tems: Basic input-output and state properties. J. of the 
Franklin Insititute, 309:327-357,1980. 
[81 D. Hinrichsen and A.J. Pritchard. Stochastic %. 
SIAM Journal on Control and Optimization, 36(5):1504- 
1538,1998. 
191 M.R. James. A partial differential inequality for dis- 
sipative nonlinear systems. Systems and Control Letters, 

[lo] M. Kohlmann and P. Renner. Optimal control of dif- 
fusions: A verification theorem for viscosity solutions. Sys- 
tems and Control Letters, 28:247-253,1996. 
[ll] B. Plksendal. Stochastic Differential Equations - An 
Introduction with Applications. Springer-Verlag, 1995. 
1121 B. Plksendal and K. Reikvam. Viscosity solutions of 
optimal stopping problems. Stochastics Stochastics Rep., 

[13] R. Sepulchre, M. JankoviC, and P. KokotoviC. Con- 
structive Nonlinear Control. Springer, 1997. 
[14] R.E. Skelton and J. Lu. Iterative identification and 
control design using finite-signal-to-noise models. Math. 
Modeling of Systems, 3(1):102-135,1997. 
[15] U.H. Thygesen. Robust Performance and Dissipa- 
tion of Stochastic Control Systems. PhD thesis, Dept. of 
Mathematical Modelling, Technical University of Denmark, 
http://www.imm.dtu.dk,l998. 
1161 A.J. van der Schaft. &-Gain and Passivity Tech- 
niques in Nonlinear Control, volume 218 of Lecture Notes 
in Control and Znformation Sciences. Springer, 1996. 
[17] J.C. Willems. Dissipative dynamical systems, part i 
and ii. Arch. Rat. Mech. Analysis, 45:321-393,1972. 
[18] X.Y. Zhou, J. Yong, and X. Li. Stochastic verifica- 
tion theorems within the framework of viscosity solutions. 
SIAM Journal on Control and Optimization, 35( 1):243-253, 
January 1997. 

21:708-711,1976. 

21(4):315-320,1993. 

62(3-4):285-301,1998. 

1434 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:26:25 UTC from IEEE Xplore.  Restrictions apply. 

http://www.imm.dtu.dk,l998

