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I NTRODU CTI ON 

E. LINTZ CHRISTENSEN 
Technical University of Denmark 

Precision and dynamic range are usually not a 
problem in today’s data processing equipment using 
large data words (integer, floating point, or double 
precision as appropriate). Similarly, data storage and 
archiving can rely on large mass storages if needed. 
However, there are several exceptions where trade-offs 
are necessary and one of these is the real-time storage 
(or data link transmission) of multichannel high 
resolution radar data. 

radar (SAR), the data precision and dynamic range 
are usually limited either by 1) the analog to digital 
(AD) converter, 2) the limited data rate of the data 
storage device, or 3) the downlink used to transfer 
the radar data from the (often airborne or spaceborne) 
measurement equipment to the facility for final 
processing. The received signal deviates from the 
ideal before being converted to digital due to additive 
thermal noise, interference, spectral distortion from 
filters, and possibly also distortion from receiver 

Block Floating Point for Radar 
Data 

For a linear radar system, e.g. a synthetic aperture 

Integer, floating point, and block floating Point (BFP) data 
formats are analyzed and compared in order to establish the 

the demands of high resolution radar (synthetic aperture radar 
(SAR)) data to large dynamic range and adequate S I N .  The 
analysis takes quantization noise and saturation distortion into 
account and concludes that it is preferred to use small blocks 

mathematical tools for selection of an optimal format which fulfds 

and a (new) modified BFP format applying fractional exponents. for the purpose Of this 

Data from the EMISAR radar system are applied to illustrate the these deficiencies are ‘Onsidered as being part Of the 
signal, while the term noise covers the power value of 
the deficiencies introduced by the conversion to the 

merits of the different schemes. 
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-final digital data format. 

depends on the required sampling rate but for the 
data rates used for high resolution radar systems 
(100 MHz-1 GHz bandwidth) the state of the art is in 
the range 8-10 bits. This is often insufficient to cover 
the demands for both dynamic range and precision 
unless the range is extended by analog means such 
as timekange dependent analog attenuators or the 
like. Even then, the 8-10 bits are only just sufficient 
for linear radar systems using large time-bandwidth 
product signals, which reduce the peak responses of 
large point targets. 

The A/D converter limits the signal-to-noise ratio 
( S I N ) .  For a Gaussian distributed signal converted by 
an 8 bit A/D converter the optimal S I N  is 40.5 dB 
which is only achieved if the rms level of the signal at 
the N D  converter is carefully and correctly adjusted. 
Unfortunately, the rms level is usually not stationary 
so the optimum adjustment is seldom attained during 
data acquisition. 

by an 8 bit converter, it might be expected that 8 bit 
precision would be sufficient for the rest of the data 
storage but often further processing involves digital 
filtering before the data are transferred to the storage 
medium (or the downlink). Thus the dynamic range of 
the data is extended above the word length of the A/D 
converter. 

This work analyzes various data formats aiming 
at identifying a way of extending the dynamic range 
with a negligible impact on the other quantities 

The dynamic range available from A/D converters 

When the signal has been converted to digital, e.g. 
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influencing the total data rate. The data are assumed 
to be Gaussian distributed. This assumption is 
reasonable for most modern radar systems using 
large time-bandwidth product signals without pulse 
compression prior to A D  conversion. The distribution 
is assumed to be almost stationary in the sense 
that the rms value is constant for the number of 
samples considered (i.e., all the data for the integer 
case and the data within a single block for the case 
of block floating point). The analysis assumes the 
data representation to be continuous prior to the 
quantization. This is true for the A/D conversion but 
it is an approximation when already digitized data are 
truncated or rounded in order to be represented by 
fewer bits. 

In order to establish a reference, equations for 
quantization noise and saturation distortion caused 
by limited size integer data representation (e.g. the 
A/D converters) are derived following the procedure 
presented by Gray and Zeoli [l] and these are 
extended to cover floating point representation. 

point (BFP) (Le., one exponent common to a block of 
samples). Quantization noise in BFP representation 
has been analyzed by K. Kalliojarvi [2] without 
assuming a Gaussian distribution of the signal. 
The present work 1) includes saturation distortion, 
2) extends the concept further to include a modified 
BFP applying fractional scaling, which offers an 
improved S I N  when few bits are allocated for the 
mantissa, and 3) presents a set of equations which are 
easily implemented for numeric computations. 

This work is concluded by a discussion of 
reconstruction and removal of the bias introduced by 
quantization, and an evaluation of BFP with fractional 
scaling for improvement of the dynamic range of a 
SAR limited by the maximum data rate of the data 
storage device. Small data blocks are preferred since 
the rms value of the signal is changing. Furthermore, 
small blocks offer better performance than large 
blocks. Both a significant extension of the dynamic 
range and an improvement of the S I N  can be 
achieved simultaneously, compared with integer data 
format, with little or no penalty on the data rate. An 
example is given to illustrate the result of using the 
different schemes on real SAR data. 

The analysis is further extended to block floating 

I NT EC E R DATA REPRESENTATION 

When a Gaussian signal is represented by a 
sequence of integer numbers of limited precision, 
the peaks of the signal must be limited and the signal 
below the upper limit must be quantized. This is what 
ideally takes place in an A/D converter. 

Calculation of the combined noise power from 
quantizing and limiting is fairly straightforward [ 11. 
A Gaussian distribution of the signal with an rms 

amplitude of o is presumed throughout: 

' + Z  

(1) 

Assuming an M bit (sign included) linear quantizer 
(AD converter) with mid scale at zero, the relation 
between the saturation levels *:XM and the quantizer 
step size Q is 

X M  = Q . (2M-' - 1). (2) 

The signal is distorted by saturation, when the 
absolute value of the signal exceeds the saturation 
level X M ,  and by quantizing when the absolute value 
of the signal is smaller. The total equivalent noise 
power caused by this distortion can be calculated 
as the sum of the quantization noise N q  and the 
saturation noise Ns.  

signal results in a noise power equal to Q2/12, 
[I], provided the signal can be assumed evenly 
distributed over the quantizer steps which is an 
accepted approximation for Gaussian signals with 
o >> Q. The mean noise contribution from quantizing 
the signal below the saturation limit is 

The distortion caused by quantizing the complet? 

The mean noise contribution from the saturation is, 
E11 

(x - X M ) 2  . p ( x ) d x  

=02.((F+l) . E r f c ( E )  o J z  1 (4) 

- S = 10.  Log (-) o2 (dB).  N q  i- N s  N (5) 

Fig. 1 shows the signal power (i.e., 02) to noise power 
(i.e., quantization noise plus saturation noise) ratio 
( S / N  in dB) as a function of the rms signal amplitude, 
Le., log,[o/Q], for M bit (including sign bit) integer 
representation with M = 6, 8, 10, and 12. For an 8 bit 
A/D converter the maximum S I N  = 40.54 dB occurs 
for the rms signal equal Z5.O2 = 32.4Q, Le., ca. 12 dB 
below the maximum value X M .  

must be carefully adjusted to achieve the best S I N  
ratio in conflict with the fact that the signal is usually 
unknown and changing with time (or range), i.e., the 

It is obvious from the figure that the signal level 
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Fig. 1. S / N  for M bit (including sign bit) quantizer with 
saturation versus Log2(a/Q), M = 6 ,  8 ,  10, 12. 
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Fig. 2. S I N  for M bit (including sign bit) mantissa floating point 
versus Log,(u/Q), M = 6 ,  8, 10, 12 with unrestricted exponent. 

Gaussian process modeling the signal is not stationary 
in real life. 

FLOATING POINT DATA REPRESENTATION 

For comparison and as a reference for the 
subsequent sections, Fig. 2 and (6) show the results 
using a hypothetical floating point quantizer using all 
the M bits for the mantissa and ignoring for now the 
number of bits used for the exponent. The floating 
point quantizer works as the integer when the signal 
is low. Instead of limiting large signal peaks the 
quantizer steps is increased by an appropriate factor 
2" and the quantization noise power is thus increased 
by the factor 4". 

One observation from Fig. 2 is that the floating 
point representation with M - 2 bit mantissa 
offers S / N  that is comparable to the A4 bit integer 
representation unless the rms signal can be very 
precisely adjusted. The consequence of representing 
the data as floating point with an M bit mantissa and 
an M M  bit exponent, with saturation when the signal 
exceeds the maximum range of the floating point 
format, is determined by (7), where the expression 
for N s  is equivalent to the one derived in (4) while the 
expression for N q  is similar to the one in (6) except 

t I I I 
!lot2 bit 6 

5 

4 

3 

2 4 6 8 10 12 

5 

4 

3 
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Fig. 3. S I N  for M bit (including sign bit) floating point with 
saturation versus Log,(u/Q), M = 4, 6 ,  8 ,  10 plus 2 bit exponent. 

for the limited range of the summation 

Ns=O 

N q  = - ( ( P ( x  12 < X M )  + 4 ' P ( X M  5 x < 2 X M )  Q2 

+4'P(2XM 5 x < 4 X M ) .  . .) 

' ( - ~ r i ( F )  + E r f ( F ) ) )  J 
(7) 

Fig. 3 shows the results if 2 bits are converted 
from mantissa to exponent with signal saturation 
when the signal would require a larger exponent 
than 3. The loss in S I N  (compared with using all 
bits for integer representation with optimal signal 
magnitude) obviously becomes smaller the larger 
the total number of bits since the quantization noise 
then has decreasing importance and for e.g., 18 bits in 
total, the maximum S I N  is better when 2 of the bits 
are used as an exponent. 

BLOCK FLOATING POINT 

When the dynamic range of the available data 
word size is not sufficient, this can be improved by 
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using floating point, but the increased number of bits 
(or the reduced precision) due to the exponent may 
not be acceptable. BFP combines a number of signal 
samples with one common exponent. This saves data 
overhead (compared with floating point) at the cost of 
an increased quantization noise since one large sample 
causes all the samples in a block to be quantized 
coarser. 

When all data in a block are small enough to be 
represented by the mantissa alone (i.e., the exponent 
0), the quantization noise has the lowest value. When 
the largest value in a block requires an exponent of n, 
the quantization noise of all the data in the block is 
increased to 4" times the lowest value. 

The mean noise is then the lowest noise times the 
probability that all data in the block are smaller than 
the maximum number in the mantissa plus the lowest 
noise times 4l times the probability that the largest 
value falls in the interval between the maximum 
mantissa and 2 times the maximum mantissa, etc. 
Using the same definitions as before, (7) can be 
extended to cover this case by introducing the block 
size bz (the number of samples per block) and the 
probability that all samples within a block are below 
a limit, i.e., ~ ' x M :  

In any practical system there will be an upper limit 
for the exponent and thus for the maximum signal 
which can be represented. Consequently, saturation 
will take place at some signal level. When some 
samples are saturated, the rest of the samples in the 
same block are quantized with the same stepsize 
as used when the largest sample is just below the 
limit, Le., in addition to the distortion from saturation 
we get noise from quantizing the samples which 
are members of blocks with some samples above 
the limit but are themselves below the limit. The 
number of such samples are, assuming the limit to 
be 2''XXM: 

b z .  [ ( E r f ( 5 ) )  - ( E r f ( y ) ) b z ]  

(9) 
where the first part of (9) is the average number 
of samples with magnitude below the limit and the 
second part is the average number of samples being 
included in blocks where all samples are below the 
limit. 

Applying the principles of (7) together with 
(8) and (9) we get the noise contributions: 

CHRISTENSEN: BLOCK FLOATING POINT FOR RADAR DATA 

Log,( dQ) 

Fig. 4. S I N  for BFP (8 bit mantissa, 2 bit exponent and 
saturation at maximum) versus Log2(g/Q) and Logz (block size). 

N q = - - .  Q2 
12 

i-1 , XM bz 
+&. (- (Erf(2 aJi  )) 

+4". ( ( B f  (=)) 2ii . X M  

i =  1 

+ ( Erf (229b7) - 

- ( E r f ( ~ ) ) ~ ~ ) ]  

(10) 

The assumptions that the quantization noise is Q2/12 
(assuming an equal distribution over the quantizer 
interval Q) does not hold in general for the signal 
peaks much larger than the signal rms value (some 
of the signal samples may then be smaller than the 
quantizer step). Such large peaks will occur with low 
probability and the influence on the total noise will be 
small except for cases with very small number of bits 
in the mantissa. 

Fig. 4 shows an example with 8 bit mantissa and 2 
bit exponent and saturation at the top of the range. It 
is noted that for small block sizes (the smallest block 
size bz on the figure is 24 = 16) and for large rms 
signal magnitudes the S I N  is almost constant (around 
43 dB) up to the point where saturation occur often 
and the S I N  decreases. 
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Fig 5 S I N  for BFP (8 bit mantissa, 2 bit exponent and saturation at maximum) (a) and (b) versus Log,(o/Q) for block size = Z4 and 
216 (c) and (d) versus Log2 (block size) and o/Q = 26 and 2' 

However, it is also noted that intentional limitation 
of the signal peaks can be advantageous. For large 
block sizes a large number of samples may suffer 
a coarse quantization when one sample increases 
slightly, i.e., the noise added by coarser quantization 
may be larger than the alternatively added noise by 
limiting the signal peaks. For the example given in 
Fig. 4 (8 bit mantissa) the S I N  for large blocks has 
a maximum of about 40.5 dB (Le., the same as the 
maximum for 8 bit integer representation), obtained 
at the rms signal o = 28Q, i.e., 12 dB below the 
limit. 

The signal must be scaled accurately to take 
advantage of the peak in the S I N  and thus the rms 
value of the signal must be the same for all the 
samples in a block. Furthermore, it is noted that if the 
signal is not properly scaled, the S J N  is worse than it 
is for small block sizes. This is further illustrated in 
Fig. 5 which highlights selected subsets of Fig. 4. The 
conclusion which may be drawn from this is that one 
should choose the smallest block size consistent with 
the acceptable overhead for the exponent. 

BLOCK FLOATING POINT WITH FRACTIONAL 
EXPONENT 

The BFP format described in the previous section 
simply uses the exponent which is necessary to 
bring the largest value in a block within the range 
of the mantissa and this means that the quantization 
noise changes by a factor 4 for each increment 
of the exponent. This is a consequence of the 
(implementation driven) choice of using a base 2 
number system. Using a smaller base (> 1) number 
system would reduce this effect but would also require 
more digits for the representation. 

by several samples, a smaller base number can be 
For the case of BFP, where the exponent is shared 

applied for the exponent without too high costs 
with regard to the total number of bits. One way of 
implementing this is to normalize all samples in a 
block to the largest sample in the block and then 
use the value of the largest sample instead of the 
exponent. The theoretical quantization noise and 
saturation noise (still assuming an upper limit for the 
largest sample) is calculated in (1 1) and the resultant 
S / N  for different block sizes is displayed as the upper 
limit in Fig. 6 

N q = - .  Q2 

12 

S = small increment 
(11) 

The approach described above (1 1) is not practical 
for a real-time system for several reasons including 
the assumption of continuous data representation (i.e., 
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Fig. 6. S I N  for BFP with saturation (M = 8 MM = 2) without and with fractional scaling (1, 2, 00 bits) versus Logz(o/Q). (a) Block 
size = Z3. (b) Block size = Z4. (c) Block size = 26. (d) Block size = 28. (e)  Block size = 212. (f) Block size = 216. 

many significant bits below the quantizing level) and 
the use of many bits to represent the largest sample 
in each block. An approximation, which takes these 

the same procedures as used for (10). Equation (12) 
gives the analytic expression for the case with one 
scale coefficient 

problems and the implementation into account, could 
be to scale all the data values within a block with a 
factor, which brings the largest data value close to 
the top of the range of the mantissa. In this way a 
reduction in quantization noise, compared with the 
normal BFP representation, can be obtained. This 
requires the exponent to be extended by e.g., 1 or 2 
(fractions) bits. A further reduction can be obtained 

payoff per bit will be smaller, as can be verified from 
Fig. 6. 

The consequence of using fractional scaling is 
calculated following the same principles as for BFP 
in the previous section with the modification that all 
numbers in a block are multiplied by a scale factor, 
depending on what is required to scale the largest 
value to the upper part of the mantissa. The scale 
factor may be l / w  for values below w < 1 for the 
simplest case (1 bit) or { l / w l ,  l / w 2 , l / w 3 }  for values 
below { w l  < w2 < w3 < 1) for the slightly more 
complex case (2 bits). This multiplication before 
conversion to BFP reduces the quantization noise 

ii = 2 M M  - 1 

N S = U ~ . ( ( ~  (2"XM)Z + ) ,E&(-) 2"XM 
L 4 2  

by using more bits on the fractional exponent but the bz 

N q =  12 [w2. (Erf (9)) 
bz 

bz 

inversely proportional to the square of the scaling 
factor. The calculations are split up in intervals 
reflecting the probability for using the different 
scaling factors. 

The particular scaling factors used in the 
examples here are selected to make the hardware 
implementation simple and they are not optimal in 
any other sense. The coefficients used are w = 213 
for the 1 bit case {wl ,w2,w3} = {4/7,4/6,4/5} for 
the 2 bit case. Thus the scaling with l / w  becomes a 
simple integer multiplication and a division by 2 or 4, 
which can be performed by adjusting the exponent. 
The calculation of noise, and thus S I N  ratio, follows -(W 
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The results of using fractional scaling are displayed in 
Fig. 6 for block sizes 8, 16, 64, 256, 4096, and 65536, 
respectively, together with BFP without fractional 
scaling. In all cases the lowest S I N  is obtained 
without fractional scaling while the highest S I N  is 
obtained using 2 bit fractional scaling (except for the 
even higher theoretical limit with 00 bit fraction). The 
upper limit curves are based on (1 1). 

QUANTIZATION AND RECONSTRUCTION 

The results displayed in the previous sections were 
all based on the assumption that a continuous signal 
was quantized, Le., the signal was either digital, with a 
much better precision than the one actually utilized, or 
analog. This assumption is true for an A/D converter 
but it is less likely to be true for digitized signals to 
be converted to BFP format. 

There is a fundamental difference, which is 
often overlooked, between quantizing an analog 
signal and quantizing a digital signal, e.g. in binary 
representation. The AID converter output is (assumed 
to be) representing the signal range from -Q/2 to 
+Q/2 symmetric around each output value. When 
binary data are quantized by discarding the least 
significant bits a bias is introduced. Fewer bits 
cannot represent the center value. The best estimate 
is obtained by rounding but even then the output 
values will be Q/2 too large (Q being the value 
of the least significant bit before quantization) in 
2s complement representation and for the positive 
part in signlmagnitude representation, and Q/2 
too small for the negative part in signlmagnitude 
representation (assuming rounding by addition of 
0.5 and truncation). This bias is significant, when 
a signal already represented by few bits is further 
quantized, and it is important to remove it before 
further processing. 

information on the number of bits discarded is 
given in the exponent of floating point and BFP 
representations so the central (bias free) estimate of 
the data values may later be reconstructed (assuming 
rounding) by appending a number of zeros and 
subtracting (or adding for the negative part if 
signlmagnitude representation) Q/2 where Q is the 
value of the least significant of the discarded bits. 
When the exponent is zero there is no bias to remove. 

When fractional scaling, as defined in the previous 
section, has been applied, the scaling changes the 
value of the least significant bit. For the case of 1 
bit fraction, using the weight factors of 1 or 213, the 
data were multiplied by 1 or 312 before rounding, 
Le., the value to be subtracted or added is Q/2 or Q/4 
depending on the fractional exponent. For the case of 
2 bit fraction the data were multiplied by 1, 714, 312, 
or 514, i.e., the value to be subtracted or added is Q/2, 
Q/4, or Q,/8 depending on the fractional exponent. 

When the binary data have been quantized, the 

A few additional facts need consideration for the 
case of few bits in the mantissa. 1) It is important 
to utilize all possible bit combinations. This means 
that signlmagnitude representation is not a good 
choice since one of the combinations are not used 
(e&, for 5 bits the range covered is f 1 5 ;  including 
zero this offers 31 values instead of 32). 2) It is also 
important to use all bit combinations equally. This 
implies that truncation (and the addition of 0,5 at 
reconstruction rather than at encoding) is preferred 
to rounding because the latter does only use the most 
negative combination for half an interval and gives 
overflow for the most positive values. 3) Further to 
be considered is the fact that utilization of fractional 
scaling results in output values which are in general 
not equally distributed over the possible values, Le., 
the best reconstruction value may not always be as 
simple as just adding 0.5 and correcting for the small 
offset -Q/4. 

APPLl CAT1 ON EXAMPLE 

EMISAR is a dual frequency fully polarimetric 
SAR [3] acquiring 8 complex numbers for 
each resolution cell (2 frequencies, each with 4 
polarizations). The present equipment uses 8 bit AID 
converters and transfers the data to tape as 2 x 8 bit 
integer per complex number. Considering the normal 
sampling density (1.5 x 1.5 m), swath width (8192 
samples), and aircraft velocity (240 d s )  this amounts 
to around 220 Mbit/s including ancillary data. The 
tape recorder is an Ampex DCRSi 240 which can 
record with a sustained data rate of up to 240 Mbit/s, 
Le., there is room for an overhead of up to 9% but 
for various practical reasons it is preferred to keep the 
overhead below 6% &e., less than 1/16). 

The 8 bit A/D converters limit the range of the 
signal but the following range and azimuth filters 
potentially extend the dynamic range (both reducing 
the noise and increasing the maximum). Although 
these data cannot be considered exactly Gaussian 
distributed, it is obvious that simply limiting the data 
to 8 bit integer after filtering (see Fig. 1) will reduce 
the data quality. Furthermore, the rms value is usually 
changing over the radar swath and a simple way of 
handling this fact is desirable. 

An update of the AID converters to 10 bit 
converters is planned to improve the adaptation to 
changing signal levels. When online filtering is taken 
into account the useful information may require 12 or 
even more bits but the capacity of the tape recorder 
does not permit the word length to be increased 
correspondingly for the tape storage format. Even 9 
bits per word is too much unless the swath width is 
sacrificed. 

A 3 bit exponent permits the dynamic range to be 
extended by a factor of 27 (23 - 1 = 7) which, for an 
8 bit mantissa, gives the same dynamic range as an 
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Fig. 7.  S I N  for BFP (3 bit exponent and saturation), with 1 bit fractional scaling versus Log2(g/Q). (a) M = 7 bits, bz = 4. (b) M = 8 

bits, bz = 8. (c) M = 8 bits, bz = 10. (d) M = 8 bits, bz = 32. 

integer with 15 bit. This is sufficient to cope with 
a 12 bit A D  converters and the additional dynamic 
range achieved by the filters. Taking advantage of the 
fractional scaling, 4 bits per exponent is desired. 

One possible solution is illustrated in Fig. 7(a): 
using a block size bz = 4 (Le., 2 complex samples), 
gives a S / N  = 41.2 dB for 7 bit mantissa and 
fractional scaling. Using a 3 bit exponent (plus the 
1 bit fractional exponent), permits each block to be 
contained in 32 bits. This format offers a better S I N  
than the best possible for 8 bit integer (see Fig. 1), 
with a much larger dynamic range and with exactly 
the same data rate. 

improvement of the S I N  is possible. Using a block 
size = 10 (5  complex samples) gives S I N  = 45.5 dB 
for 8 bit mantissa and fractional scaling. Using 3 bit 
exponent (plus the 1 bit fractional exponent) results in 
a 5 %  overhead. 

implementation reasons to operate with 2n as block 
size and using 8 bits for the exponent. However, this 
would require a block size of 32 (Fig. 7(d)) to keep 
the overhead below 6% and the S I N  would drop to 
43.6 dB. 

Instead, it could be decided to reduce the total 
number of data samples slightly and combine two 4 
bit exponents in one 8 bit byte. Then blocks with 8 
samples (Fig. 7(b)) and their exponents could meet the 
data rate requirement with a S I N  of 45.9 dB. 

the requirements to EMISAR [4]. The data rates 
are all within the stipulated limit set by the tape 
recorder (max 6% above that needed for 8 bit integer 
representation. The solution with 7 bit mantissa is 
preferred for several reasons as follows. 

8 bit integer representation for small signal levels 

CHRISTENSEN: BLOCK FLOATING POINT FOR RADAR DATA 

As illustrated by Fig. 7(c), a considerable 

It might be considered desirable for 

All four solutions are fully compatible with 

1) The solution offers the same S I N  as the present 

and a better S I N  (41 dB) than the 8 bit integer for 
all signal levels above Z5 = 32 (see Fig. 1 versus 
Fig. 7(a)). 

2) A 41 dB rms signal to quantization and 
saturation noise is adequate for the data quality 
required by remote sensing applications provided the 
analog signal at the A D  converter input fulfills the 
requirements. 

3) The limiting value of 214 achieved with 7 bit 
mantissa and 3 bit exponent is sufficient even for a 
10 bit A/D converter and the expansion achieved by 
online preprocessing. 

implementing the 1 bit fractional exponent is around 
1.8 dB for the small blocks considered for EMISAR 
and since the costs are low the feature is included. 

5 )  An implementation applying very small blocks 
has the advantage that it adapts rapidly to signal rms 
variations (and thus is also more tolerant to the actual 
distribution function) and the damage from pulse 
interference in the input data and possible bit errors 
in the exponent are minimized. 

6) The data rate is the same as for 8 bit integer 
representation and 2 complex samples including 
exponent can be packed in a 32 bit data word which 
simplifies the unpacking. The other suggested 
solutions all results in higher data rates and more 
complicated data packinghnpacking while their higher 
S I N  and dynamic range are not required. 

4) The reduction in quantization noise achieved by 

PERFORMANCE ILLUSTRATION 

Experimental verification of the performance of 
the solution discussed in the previous section can be 
performed although real SAR data with sufficient 
dynamic range are not readily available since the 
present EMISAR system is limited to the recording 
of 8 bit integer representation and an upgrading, 
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Fig. 8. (a) Sample of SAR swath with 4096 complex samples (8192 data values) showing signal versus range. (b) RMS value 

averaged over 128 values versus range. (c) and (d). Sample histograms of 2048 values of SAR swath. (c) RMS = 62 in near range. 
(d) RMS = 11 in far range. Abscissa axes are normalized to rms values (k3 rms). Smooth curves show normal distribution as reference. 
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Fig. 9. (a) and (b). Sum of 4 SAR swaths with 4096 complex samples (8192 data values) showing signal versus range and rms value 

averaged over 128 values versus range. (c) and (d). Sample histograms of 2048 values of sum of 4 SAR swaths. (c) RMS = 170 in 
near range. (d) RMS = 32 in far range. Abscissa axes are normalized to rms values (33 rms). Smooth curves show normal distribution 

as reference. 

presently under construction, will deliver data in the 
BFP representation without the original data. 

Test data were acquired by EMISAR at L-band 
using a mode, where the data from the A/D converters 
are recorded directly on tape without any on-line 
processing but applying the high sampling density 
(37.5 cm in azimuth) normally used together with 
on-line azimuth filtering and decimation. In order to 
get a wide swath and still keep the data rate within 
limits, the swath was reduced to 4096 samples at 
a sampling density of 6 m in range. A swath thus 
consists of 4096 complex samples or 8 192 real 
values for each polarization. Fig. 8 offers a description 
of a single polarization swath by displaying a) an 
example of the uncompressed SAR data, b) the rms 
value versus range, and histograms of c) the near 
range (sample 500-2548), and d) the far range 
(sample 5000--7048). The average rms value is 36 
being fairly close to the optimum of 32 for an 8 bit 
system. 

The data acquired from a scene with significant 
changes in the signal rms versus range will either 

be saturated at the large rms parts or will only be 
utilizing a few of the bits in the low rms parts. In 
either case the amplitude distribution will deviate 
significantly from that of the original analog signal. 
It is obvious from the histograms in Fig. 8(c), (d) that 
the data have been limited in near range and have an 
exceptionally large number of very small samples in 
far range. 

SAR illuminates a wide area so subsequent range 
lines cover reflections from virtually the same 
objects. Consequently, the rms value of the data versus 
range changes little from one range swath to the next 
and the summation of a number of swaths will 
increase the dynamic range of the data values 
without changing the relative variation of rms versus 
range. 

Fig. 9 displays the same 4 elements as Fig. 8, 
however, for the sum of 4 range swaths acquired 
with 37.5 cm separation in azimuth. The sum of 4 
swaths is quite close to the output of the azimuth 
filter in the SAR when that is set for filtering and 

The physical antenna pattern of a strip mapping 
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Fig. 10. S I N  versus range (and thus signal level) for signal of Fig. 9 and 3 encoding schemes. (a) 8 bit integer. (c) 7 bit BFP with 
bz = 4. (e) 7 bit BFP and fractional scaling with bz = 4. (b) and (d). Display performance of integer and BFP relative to that of BFT 

with fractional scaling. 

decimation by 4. It can be seen from the ratio between 
the rms values (ca. 3 : 1) that the 4 swaths are highly 
correlated even if the usual motion compensation was 
omitted in this case 

The data displayed in Fig. 9 have been encoded 
directly by the algorithms for BFP with and without 
fractional scaling using 7 bit mantissa and a block 
size of 4, i.e. the preferred solution from the previous 
section which was displayed in Fig. 7(a). For 
comparison, the data have also been encoded to 8 bit 
integer representation after scaling to the optimum 
average (Le., 25 = 32) rms over the swath. 

After encoding the best estimate of the data were 
reconstructed for all 3 sets and the deviations from the 
originals were calculated. The power values of these 
deviations were averaged over 128 range samples and 
increased by the Q2/ 12 inherent quantization noise. 
The signal power versus this total distortion power in 
dB ( S I N )  is displayed in Fig. 10 for the 3 schemes as 
a function of range (and thus as a function of the local 
signal level). Fig. 10 also displays the differences in 
dB between the BFP with fractional scaling and the 
two other schemes. 

Fig. 10(a), (b) verifies that the integer formats is 
not suited for data with a large variation of the rms 
value. The 8 bit integer format does offer better S I N  
(Le., smaller reconstruction errors) than the 7 bit BFP 
for data samples where all the 8 bits are utilized but 
the penalty of the necessary scaling and limiting is 
high both for large data values causing saturation and 
for small data values for which the quantization noise 
is increased. 

The important factor in S I N  degradation is the 
ratio between the larger rms and the smaller rms 
within the same scene (i.e., the area where the same 
average rms value is assumed in adjusting the signal 

levels). For the example given in Fig. 9 and 10 the 
overall average rms value is 10 1 , the near range rms is 
170 (1.68 times the average), and the far range rms is 
32 (0.32 times the average). 

optimum value of 25, the near range rms is scaled to 
25.75 and the far range rms to 23.34. The expected S I N  
values are 24.3 dB and 31.0 dB, respectively (Fig. 1). 
The results displayed in Fig. 10(a), (b) are reasonably 
close to this. When the number of significant bits in 
the input signal is increased, i.e., by summing a larger 
number of range swaths with the same rms versus 
range, the S I N  in both the high rms and the low rms 
areas comes even closer to the theoretical values (Fig. 
11(4, 

BFP using fractional scaling (Fig. 10(e)) is also 
seen to be better than conventional BFP (Fig. 1O(c), 
(d)) although the gain in S I N  is limited to be between 
1 and 2 dB for the actual test data. The theoretical 
value is 1.8 dB for 7 bit mantissa and a block size 
of 4. There is no advantage in scaling when the data 
values are small enough to allow all significant bits to 
be included in the mantissa and this occurs frequently 
when the rms value is small, Le., in the far range of 
the example) but also occasionally when the rms value 
is large. 

The average difference between the S I N  for 
the 2 BFP formats is very dose  to the theoretical 
value when the Q2/ 12 inherent quantization noise 
is not included in the S I N  calculation, i.e., when 
the unlimited quantized signal is considered as the 
reference rather than the original analog signal. The 
results also come closer to the theoretical values when 
the number of significant bits in the input signal 
is increased (Fig. 11(c), (d), (e)). In this case it is 
especially reflected in the far range values. 

When the average rms value is scaled to the 
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Fig. 11. S I N  versus range (and thus signal level) for sum of 16 SAR swaths with 4096 complex samples (8192 data values) and 3 
encoding schemes. (a) 8 bit integer. (c) 7 bit BFP with bz = 4. (e) 7 bit BFl' and fractional scaling with bz = 4. (b) and (d) Display 

performance of integer and BFP relative to that of BFP with fractional scaling. 

CONCLUSION 

This paper has presented a unified theoretical 
analysis of the distortion caused by quantization and 
saturation for integer, floating point, and BFP data 
formats used to represent, with a limited number 
of bits, a continuous Gaussian distributed signal. A 
modified BFP format with fractional exponent has 
been introduced in order to improve the performance 
of the BFP format. 

The merits of the various formats have been 
demonstrated on SAR data and the advantages of the 
BFP formats in handling data with large variations 
in the rms value (Le., non-Gaussian distributed) 
have been verified. It is concluded that significantly 
improved data quality can be achieved for a SAR 
system without any increase in the data rate by using 
BFP instead of integer. 
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