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Coupling of flexural and longitudinal wave motion in a periodic
structure with asymmetrically arranged transverse beams

Lars Friisa� and Mogens Ohlrichb�

Acoustic Technology, Ørsted•DTU, Technical University of Denmark, Building 352,
DK-2800 Kgs. Lyngby, Denmark

�Received 1 December 2004; revised 15 August 2005; accepted 22 August 2005�

In this paper we investigate the coupling of flexural and longitudinal wave motions in a waveguide
with structural side branches attached at regular intervals. The analysis is based on periodic structure
theory, and considers wave transmission in a fully tricoupled and semidefinite periodic assembly of
beam-type elements �or plane-wave transmission for normal incidence in a similar plate assembly�.
Receptances of a composite periodic element with offset resonant beams are derived and used for
computing the frequency-dependent propagation constants of three coupled wave types as well as
the distribution of motion displacements in each wave type. This is used for calculating the spatial
variation of the forced harmonic responses of a semi-infinite periodic structure to point excitations
by a longitudinal force and by a moment. Numerical simulations reveal the complicated wave
coupling phenomena, which are clarified by calculating the ratio of flexural and longitudinal kinetic
energies in the wave-carrying component for each wave type. In contrast to a corresponding, but
uncoupled, system with significant broadband attenuation of flexural waves, the numerical results
further show that the flexural-longitudinal wave coupling in a system with resonant side branches
results in a highly enhanced wave transmission with very little attenuation from element to
element. © 2005 Acoustical Society of America. �DOI: 10.1121/1.2065767�

PACS number�s�: 43.40.At, 43.40.Cw, 43.20.Bi �MO� Pages: 3010–3020

I. INTRODUCTION

Many types of engineering structures are built up of an
assembly of nominally identical elements that are coupled
together in an identical manner to form a so-called “spatially
periodic structure.” Examples are offshore accommodation
modules, ship structures, and some buildings. The vibration
and transmission of structural waves, say, from floor to floor
in multistory buildings or from deck to deck in a ship, often
give rise to noise problems in removed areas. A full three-
dimensional analysis of such audiofrequency problems is
very difficult due to the vibrational interactions between the
large numbers of structural components. However, a funda-
mental understanding of the transmission may be obtained
from studies of less complicated models that consider only a
single transmission path comprising an assembly of beam-
type components, or assume plane-wave transmission for
normal incidence in a similar periodic assembly of plate el-
ements.

A periodic system composed of repeated elements that
are coupled with one another through n motion coordinates is
known to support n characteristic-free, harmonic wave-types,
which can exist simultaneously and independently at any
frequency.1–3 These wave-types occur in n pairs of positive-
and negative-going waves, where each of the waves types is
governed by a pair of complex characteristic “propagation
constants” �= ± ��R+ i�I�; the real part �R is the so-called
attenuation constant and the imaginary part �I is the phase
constant. Here �R and �I are defined as positive. So, if only

a single positive-going characteristic harmonic wave with
propagation constant �=−��R+ i�I� and angular frequency �
travels through the system, then the complex displacements
q�x�=q��� and q��+ l� at identical positions � in adjacent
elements of length l are related by q��+ l�ei�t=e�q���ei�t.
This shows that free wave motion is possible only in fre-
quency bands where � is purely imaginary. These bands are
known as “propagation zones” or “pass bands.” For negli-
gible structural damping, the wave thus propagates through-
out the system without a change in amplitude. The frequency
bands in which � is real are called “attenuation zones” or
“stop bands,” since no transport of vibrational energy is pos-
sible and the wave amplitude is attenuated �reduced� from
element to element.

Some years ago Ohlrich4 investigated the propagation
characteristics of longitudinal and flexural waves in beam- or
column-type transmission paths with symmetrically arranged
“point loads” in the form of resonant transverse beams. With
such symmetrical cross beams the longitudinal wave motion
in the structure was effectively uncoupled from flexural wave
motion. This structure was used as a model of an inner or
center-core-type transmission path in multistory buildings
with floor supporting beams. For typical dimensions it was
found that longitudinal waves propagate at almost all fre-
quencies in the low-frequency range, say up to 300 Hz, only
being interrupted by narrow-band, resonant attenuation zones
caused by modes of the cross beams. Flexural waves were
found to be more effectively attenuated by both resonant and
smooth attenuation zones, and wave propagation occurred
only in narrow bands constituting about 20% of the consid-
ered frequency range. A brief description of these findings is
given in Ref. 5. However, experimental results also revealed4
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that inertia loads attached on one side only of the transverse
beams provoked longitudinal-flexural wave coupling because
of the introduced eccentricity or asymmetry. The implication
of this was a significant enhancement of the overall transmis-
sion of locally excited flexural wave motion, due to the con-
version of flexural wave motion into predominantly longitu-
dinal wave motion, which is generally transmitted with much
less attenuation.

An understanding of the wave coupling that occurs in
asymmetrically loaded transmission paths is of considerable
practical interest, for example, in the prediction of vibration
levels and structure-borne sound transmission in web-
stiffened panels, in ship hulls that have deck structures to one
side only and in outer supporting column structures in build-
ing skeletons or façade panels of buildings. In such periodic
structures the longitudinal and flexural waves will, in gen-
eral, be fully coupled, which significantly complicates the
associated propagation properties and the underlying analy-
sis, as will be revealed in this paper.

Wave motion in various kinds of periodic structures
such as multisupported beams, plates, and shells have been
studied for many years, but apparently no work has been
done on the addressed problem of longitudinal–flexural wave
coupling in semidefinite periodic structures with asymmetri-
cal and multiresonant structural components, as are found in
practical structures with resonating cross members such as
one-sided decks, deep ribs, webs, and the like. Nearly half a
century ago, Müller6 observed an enhanced wave transmis-
sion in rib-reinforced concrete floors and this behavior was
modeled by using eccentrically attached inertia loads at regu-
lar intervals on an otherwise continuous beam. In addition to
Ohlrich’s experimental observation,4 Mead and Markus7

later demonstrated the occurrence of longitudinal–flexural
wave conversion in a simply multisupported beam loaded
eccentrically with simple oscillators on levers. Their study
also revealed that wave coupling diminishes as the structural
damping is increased. Coupling of different wave types in
periodic structures with lumped point loads has been studied
in Refs. 8–11. Manfred Heckl8 demonstrated four methods
for calculating the structure-borne sound propagation in
beams with many nonresonant discontinuities. In three of the
methods coupling between longitudinal and flexural waves
was taken into account. More recently, Maria Heckl9 mod-
eled a profiled cladding as a periodic structure consisting of
long narrow panels attached to each other. Propagation char-
acteristics of the coupled flexural–longitudinal wave motion
and the transmission of airborne sound through the cladding
were calculated numerically. Maria Heckl10 also presented a
mathematical model for the propagation and coupling of
waves in a periodically supported Timoshenko beam. This
coupling included flexural, longitudinal, and torsional waves.
Roy and Plunkett11 used transfer matrices to examine attenu-
ation of flexural waves in an undamped beam with flexible
but nonresonant ribs, which were attached either symmetri-
cally or asymmetrically. However, they did not consider cou-
pling between flexural and longitudinal waves.

In the present paper we examine such longitudinal–
flexural wave coupling in periodic structures with asym-
metrical and resonant point loadings caused by continuous

cross-members. An investigation of this important problem
has not been done before to the best of our knowledge. The
effect of coupling on wave propagation and response levels
in this type of semidefinite system is investigated and the
results obtained are compared with the properties of a simi-
lar, but symmetrically loaded, periodic structure in order to
ease the understanding of the wave conversion. Both types of
structures are presented in Sec. II. The employed analytical
analysis is based on the receptance approach to the periodic
structure theory developed by Mead.3,12,13 This theory is
briefly summarized in the beginning of Sec. III for ease of
reference, and as a basis for the analysis that follows. Basi-
cally, this approach utilizes that harmonic displacements and
forces of a single periodic element are related by its dynamic
receptances. Therefore, in Sec. III we derive expressions for
the receptances of a composite periodic element that are re-
quired for determining the propagation constants of the con-
sidered type of discrete periodic structure. Next, expressions
are presented for determining the coupled response of semi-
infinite periodic systems from the eigenvectors of the char-
acteristic wave types. This technique, which was developed
by Mead,13 utilizes so-called normalized force vectors and
displacement vectors together with a set of generalized wave
coordinates. This is put into use in Sec. IV, where receptan-
ces, propagation constants, and total response are derived for
the target structure, the asymmetrically point-loaded periodic
structure. Finally, the results of a numerical investigation are
presented in Sec. V for a choice of structural parameters that
clearly illustrates the longitudinal–flexural wave coupling. In
a companion paper14 the response of a similar, but finite pe-
riodic structure will be examined and predicted responses
will be compared with experimental results.

II. STRUCTURES WITH PERIODIC CROSS-MEMBERS

Consider a semi-infinite periodic structure that extends
to infinity in the positive x direction, as shown in Fig. 1�a�.
The structure is driven at the end by an external forcing
vector F0ei�t that represents both longitudinal and transverse
force excitations as well as moment excitation. The response
is governed by three motion degrees of freedom, comprising
displacements u�x , t�, w�x , t�, and ��x , t� in the longitudinal,
transverse, and rotational directions. Note that the applica-
tion of any single one of the external force components will

FIG. 1. Semi-infinite periodic structures with load components in the form
of �a� asymmetrical beam loadings and �b� symmetrical beam loadings. �c�
Corresponding periodic elements that are symmetrical with respect to x
= l /2.
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generate a mixed response comprising both longitudinal and
flexural wave motions in the column components of such an
asymmetric periodic structure. In order to comprehend the
effects of coupling between flexural and longitudinal wave
motions, it is useful to compare the derived results of re-
sponse and propagation characteristics with those of a peri-
odic structure in which longitudinal and flexural wave mo-
tions are not coupled. Figure 1�b� shows such a structure
consisting of a continuous column loaded periodically with
symmetrically arranged transverse beams. This type of struc-
ture is similar to one previously investigated in Refs. 4 and 5.
Due to the symmetrical loadings, longitudinal and flexural
wave motions are uncoupled, and excitation by either an ex-
ternal longitudinal �axial� force or a moment thus solely gen-
erates longitudinal wave motions or flexural wave motions,
respectively. The periodically attached transverse beams
have the same weight and same natural frequencies of anti-
symmetric and pinned modes as those of the structure in Fig.
1�a�.

The periodic elements of the two structures are shown in
Fig 1�c�; for convenience in analysis these elements are cho-
sen to be symmetrical about the middle of the column com-
ponent, which means that the periodic element can be rotated
about the y axis without changing its dynamic properties.
This is achieved by dividing each transverse beam into
beams of half-width. Thus, when periodic elements are
physically connected to one another, the transverse beams of
half-width become interconnected to form transverse beams
of full width.

III. THEORY

A. Outline of theory

In a general one-dimensional periodic system, each pe-
riodic element is coupled at either end to the adjacent ele-
ment through n motion coordinates. These n coordinates at
the left- and right-hand end of the element are represented by
the generalized displacement vectors ql and qr, each being a
column vector with n entries. Forces acting on the element’s
ends are similarly denoted by the force vectors Fl and Fr, as
illustrated in Fig. 2. This shows a free body diagram of a
periodic element consisting of three components, being the
wave-carrying component C and two structural loadings,
components B and D. By assuming harmonic wave motion at
angular frequency �, we can relate the complex displace-
ments q and forces F through a 2n�2n receptance matrix �
of the periodic element as15 qei�t=�Fei�t. With the time de-

pendence suppressed this gives, in a partitioned form,

�ql

qr
� = ��ll �lr

�rl �rr
��Fl

Fr
� , �1�

where �ll and �rr are the direct receptance matrices of the
periodic element, and �lr and �rl are the corresponding
transfer receptance matrices. The first subscript refers to the
response location and the second to the point of applied unit
force excitation �other forces are absent�. For linear elastic
systems we have �lr=�rl

T , where superscript T denotes a
“transposed” matrix.

If only a single characteristic wave travels through a
periodic structure, then continuity of displacements and equi-
librium of forces at the ends of a periodic element ensure that
the displacement vectors ql and qr, and force vectors Fl and
Fr, are related by3

qr = e�ql, Fr = − e�Fl, �2�

where �=�R+ i�I is the complex, frequency-dependent
propagation constant. The real part of �, the “attenuation
constant” �R, expresses the decay rate in wave amplitude per
element, whereas the imaginary part, the “phase constant”
�I, describes the phase change of the wave motion per ele-
ment. Equations �1� and �2� yield a relationship between dis-
placements and forces at the same position, i.e.,

ql = ��ll − e��lr�Fl. �3�

From the same equations a general system equation can be
derived, giving

��ll + �rr − e��lr − e−��rl�Fl = 0 . �4�

This represents a quadratic eigenvalue problem for e�; for
nontrivial solutions the determinant of this matrix must be
zero,

	�ll + �rr − e��lr − e−��rl	 = 0. �5�

At any given frequency this yields up to n different pairs
of propagation constants �= ±�i, where i=1,2 ,… . ,n. If the
real and imaginary parts of �i are defined as positive, then
the corresponding n positive-going waves have propagation
constants �i,+=−�i, and the n negative-going waves are as-
sociated with the propagation constants �i,−=�i.

B. Receptances of a composite periodic element

Receptances of a periodic element, expressed explicitly
in terms of the component receptances, can be derived from
the free body diagram in Fig. 2. Displacements and internal
forces at the coupling points of the wave-carrying compo-
nent C are in a similar manner to Eq. �1� related through the
2n�2n receptance matrix � as

�ql,C

qr,C
� = ��ll �lr

�rl �rr
��Fl,C

Fr,C
� . �6�

Further, the displacements and forces of the load components
B and D are related by the n�n receptance matrices � and �
as

qB = �FB, �7�

FIG. 2. Free body diagram of a multicoupled, composite periodic element,
consisting of a wave-carrying component C and load components B and D.
Shown are the force vectors on a single periodic element and the associated
displacement vectors.
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qD = �FD. �8�

Combining Eqs. �6�–�8� and including the continuity of dis-
placements and equilibrium of forces, the receptance subma-
trices of the periodic element yield4

�rl = D−1, �9�

�ll = †− �lr�
−1 + �ll�rl

−1�I + �rr�
−1�‡D−1, �10�

�lr = �D−1�T, �11�

�rr = †− �rl�
−1 + �rr�lr

−1�I + �ll�
−1�‡�D−1�T, �12�

where

D = − �−1�lr�
−1 + ��−1�ll + I��rl

−1�I + �rr�
−1� . �13�

Here superscript −1 denotes a matrix inversion and I is the
unity matrix.

Submatrices of symmetric periodic elements take on spe-
cial forms,13 and it is thus mathematically convenient to con-
sider the load components as being identical, i.e., �=�, and
to separate the end displacements into two types of motion
coordinates that are denoted as type I and type II. In a sym-
metrical flexural mode, for example, the transverse displace-
ments at the ends have the same sign whereas rotations have
opposite signs. All kinds of motion coordinates belong to one
of these categories, which are denoted type I and type II
coordinates, respectively. It is readily seen that longitudinal
displacements are type II coordinates. By using this, the dis-
placements and forces in Eqs. �1�–�4� can be written in the
following partitioned form:

ql = �qlI

qlII

�, qr = �qrI

qrII

�, Fl = �FlI

FlII

�, Fr = �FrI

FrII

� .

�14�

Likewise, the periodic element’s subreceptance matrices can
be partitioned with respect to type I and II coordinates and
the following relationships can be shown to apply:13

�ll = ��llI,I
�llI,II

�llI,II
T �llII,II

� ,

�rr = � �llI,I
− �llI,II

− �llI,II
T �llII,II

� , �15�

�lr = �rl
T = � �lrI,I

�lrI,II

− �lrI,II

T �lrII,II

� .

Herein submatrices �llI,I
, �llII,II

, �lrI,I
, and �lrII,II

are all sym-
metric. Thus, in the case of systems with symmetric periodic
elements the receptance submatrices given by Eq. �15� lead
to the following special forms of equations, Eqs. �4� and �5�:

���llI,I 0

0 �llII,II

� − cosh ���lrI,I
0

0 �lrII,II

�
− sinh �� 0 �lrI,II

− �lrI,II

T 0
�� �FlI

FlII

� = 0 �16�

and


��llI,I 0

0 �llII,II

� − cosh ���lrI,I
0

0 �lrII,II

�
− sinh �� 0 �lrI,II

− �lrI,II

T 0
�
 = 0. �17�

C. Determination of total response of semi-infinite
periodic structure

Consider a semi-infinite periodic structure driven by an
external force vector F0, e.g., the tricoupled structure in Fig.
1�a�. Mead13 has shown that each wave propagation constant
is associated with a particular force eigenvector, Fl, which is
a column vector with n entries according to Eq. �4� or �16�.
This eigenvector was also shown to be conveniently written
as

Fl = f� , �18�

where f is a so-called “normalized force vector” and � is an
associated single “generalized wave coordinate.” The nor-
malized force vector specifies the relative amounts of differ-
ent force components in the wave type under consideration.
This force vector is obtained from Eq. �4� or �16�, and it may
be normalized in any desired form, but it is usually conve-
nient to make the first element unity. While f depends solely
on the element receptances and the considered propagation
constant, then � is also influenced by the nature of the ex-
ternal excitation, that is, by the contents of the n elements
force vector F0. Further, by analogy to Eq. �18� there is also
a particular displacement vector ql corresponding to each
propagation constant; this is given by

ql = �� , �19�

where � is a so-called “normalized displacement vector,”
which specifies the relative amounts of different motion
components in the wave type in question.

Now consider a single, positive-going wave with propa-
gation constant �i,+=−�i, force eigenvector Fi,+= fi,+�i,+ and
displacement vector qi,+=�i,+�i,+. Substituting these into Eq.
�3� yields the following relationship between the normalized
force vector fi,+ and normalized displacement vector �i,+:

�i,+ = �llfi,+ − �lrfi,+e−�i. �20�

If a semi-infinite periodic structure is excited at the finite
left-hand end by the force vector F0, having n different com-
ponents, then n characteristic positive-going waves are gen-
erated and these will all govern the response. The sum of the
force eigenvectors corresponding to each of these waves
must be in equilibrium with the applied force vector F0, that
is,
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F0 = �
i=1

n

Fi,+ = �
i=1

n

fi,+�i,+ = f+�+, �21�

where f+ is an n�n matrix containing n columns of normal-
ized force vectors fi,+, where i=1,2 ,… ,n, and �+ is a col-
umn vector containing n generalized wave coordinates �i,+,
each of which is associated with a normalized force vector.
The vector containing the generalized wave coordinates can
now be found by a matrix inversion as

�+ = f+
−1F0. �22�

By analogy to Eq. �21�, the total displacement vector q0 at
the excitation point reads as

q0 = �
i=1

n

qi,+ = �
i=1

n

�i,+�i,+ = �+�+. �23�

The response at j junctions to the right, qj, can now be ex-
pressed as

q j = �
i=1

n

qi,+e−j�i = �
i=1

n

�i,+e−j�i�i,+ = �+ed
−j��+, �24�

where ed
−j� is an n�n diagonal matrix containing the

�−j�i�’s for every wave type in the appropriate order. By
using Eqs. �20� and �22�, this expression finally yields

q j = ��llf+ − �lrf+ed
−��ed

−j�f+
−1F0. �25�

IV. ASYMMETRICALLY LOADED PERIODIC
STRUCTURE

We now consider the specific case of the asymmetrically
loaded periodic structure in Fig. 1�a�. According to Eq. �15�,
the submatrices of the periodic element’s receptance matrix
of this tricoupled periodic structure can be written in the
partitioned form

�ll = ��ll22
�ll23

�ll21

�ll23
�ll33

�ll31

�ll21
�ll31

�ll11

 ,

�rr = � �ll22
− �ll23

− �ll21

− �ll23
�ll33

�ll31

− �ll21
�ll31

�ll11

 , �26�

�lr = �rl
T = � �lr22

�lr23
�lr21

− �lr23
�lr33

�lr31

− �lr21
�lr31

�lr11

 ,

where subscripts 1, 2, and 3 denote longitudinal, transversal,
and rotational variables, respectively. These submatrices can
be obtained numerically from Eqs. �9�–�13�, in which the
receptance submatrices of the wave-carrying column compo-
nent as well as the receptance matrix of the transverse beam
load components take on the forms

�ll = ��ll22
�ll23

0

�ll23
�ll33

0

0 0 �ll11

 ,

�rr = � �ll22
− �ll23

0

− �ll23
�ll33

0

0 0 �ll11

 , �27�

�lr = �rl
T = � �lr22

�lr23
0

− �lr23
�lr33

0

0 0 �lr11

 ,

and

� = �	22 0 0

0 	33 	13

0 	13 	11
 . �28�

Closed form expressions of all the individual component
receptances in Eqs. �27� and �28� may be found in Ref. 15. In
the present analysis all components are modeled by using
Bernoulli–Euler beam theory, albeit with a correction for
shear deformation,16 which is required especially for obtain-
ing correct natural frequencies of the periodic element in the
considered frequency range. Note that it is the receptance
	13, which is solely responsible for the coupling between
longitudinal and flexural wave motions in this type of peri-
odic structure. Receptance 	13, of course, becomes an inte-
gral part of �ll21

, �ll31
, �lr21

, and �lr31
when these receptances

of Eq. �26� are computed from Eqs. �10� and �11�.
Having derived expressions for the receptances, we are

now able to determine the propagation constants for the pos-
sible wave types in the periodic structure and, subsequently,
the total response that they generate. Propagation constants
are determined from Eq. �17�, and for the considered tri-
coupled system this yields

��
�ll22

0 0

0 �ll33
�ll31

0 �ll31
�ll11

 − cosh ���lr22
0 0

0 �lr33
�lr31

0 �lr31
�lr11


− sinh �� 0 �lr23

�lr21

− �lr23
0 0

− �lr21
0 0

� = 0. �29�

From this equation three pairs of propagation constants ±�i

are found, where i=A ,B ,C. Due to wave conversion, all
three wave types contain contributions of axial, transversal,
and rotational motions, and the total response of the semi-
infinite periodic structure of Fig. 1�a� is thus the sum of
contributions from the three, positive-going waves. Hence,
from Eq. �25� we obtain the total response at the jth junc-
tion; when written in full this yields
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�qj2

qj3

qj1

� = ���ll22
�ll23

�ll21

�ll23
�ll33

�ll31

�ll21
�ll31

�ll11

f+ − � �lr22
�lr23

�lr21

− �lr23
�lr33

�lr31

− �lr21
�lr31

�lr11


�f+�e−�A 0 0

0 e−�B 0

0 0 e−�C
��e−j�A 0 0

0 e−j�B 0

0 0 e−j�C


�f+
−1�F02

F03

F01

� , �30�

where the matrix f+ containing the three normalized force
vectors fi,+ is given as

f+ = �fA,+ fB,+ fC,+� = � 1 1 1

XA,+32
XB,+32

XC,+32

XA,+12
XB,+12

XC,+12

 . �31�

Here Xi,+32
is the ratio between excitations from moment

and transversal force and Xi,+12
is the ratio between axial

force and transversal force; these force ratios for the ith
wave are derived in Appendix A.

Now, in order to explain why each wave may contribute
differently to the total response, it is necessary to quantify
the relative amounts of flexural and longitudinal wave mo-
tion contained in each wave type. As shown in Ref. 7, this
can be done by introducing the ratio Ekin,F /Ekin,L, which ex-
presses the ratio between the maximum kinetic energies of
flexural and longitudinal motion in the wave-carrying col-
umn component. In order to find these energies it is therefore
necessary to determine the longitudinal and transversal mo-
tions at all positions in the column component caused by a
single wave. Expressions for these “interior” motions are de-
rived in Appendix B in terms of the displacements at the
element’s left-hand end and the propagation constant of the
wave type considered. Note that any second-order contribu-
tions, say, transverse motion in quasilongitudinal waves and
longitudinal motion in flexural waves are neglected in the
calculations, and so is the rotational part of the flexural ki-
netic energy. Now, for the ith wave, the junction displace-
ments at the left-hand end are found from the ith term in the
series Eq. �24�, giving

�qi,j,+2

qi,j,+3

qi,j,+1

 = �
i,+2


i,+3


i,+1

e−j�i�i,+

= ���ll22
�ll23

�ll21

�ll23
�ll33

�ll31

�ll21
�ll31

�ll11

� 1

XA,+32

XA,+12

�
− � �lr22

�lr23
�lr21

− �lr23
�lr33

�lr31

− �lr21
�lr31

�lr11

� 1

XA,+32

XA,+12

�e−�i�e−j�i�i,+.

�32�

Notice that all three junction displacements of the considered
periodic element are proportional to �e−j�i�i,+�, and so are
also the displacements in the column component. However,
�e−j�i�i,+� cancels out in the expression for the energy ratio
Ekin,F /Ekin,L since both energies are proportional to the
square of the column displacements. This implies that the
energy ratio only depends upon the normalized displace-
ments in the vector 
i,+ and not on the actual displace-
ments, which additionally depend upon position j and the
external excitation of the periodic structure.

V. NUMERICAL INVESTIGATION AND DISCUSSION

Numerical analyses and parameter studies have been
conducted for both asymmetric and symmetric types of semi-
infinite periodic structures in order to examine and reveal the
effects of wave conversion. In both types of structures the
mass and natural frequencies of the transverse beam compo-
nents are taken to be identical in order to facilitate a direct
comparison of the system’s properties. The results presented
herein are for relatively short beam loads that are tuned to
have their fundamental natural frequency well within the
considered frequency range. The purpose of this parameter
choice is to illustrate clearly the different and complicated
wave conversion phenomena that take place. All computa-
tions and matrix manipulations have been done using MAT-

LAB, version 6.5.
Apart from the above-mentioned dimensions of the

beam loads, the structural properties and dimensions of the
element components used in these simulations are similar to
those used in an experimental investigation, being presented
in a companion paper.14 The material is acrylic with Young’s
modulus E=5.4�109 N/m2 and a density of �
=1200 kg/m3. Material damping is modeled by letting
Young’s modulus become complex as E=E�1+ i��, where �
is the damping loss factor. In the simulations, an arbitrarily
low value of �=0.001 has been chosen in order to clearly
reveal the wave coupling phenomena. The dimensions of the
wave-carrying column component are length l=235 mm,
thickness h=15 mm, and width b=20 mm, whereas the
transverse load beam has length lt= l /8, thickness parameter
ht=h, and width parameter bt=2b. Results herein are pre-
sented as a function of the nondimensional frequency param-
eter = �kbl�2, where kb is the wave number for free flexural
waves in the column component. Substituting the bending
stiffness of the column yields

 = �kbl�2 = ��12�/E�1/2�l2/h� . �33�

A. Propagation constants

It is recalled that in the simpler case of a symmetrically
loaded structure,4,5 there is no longitudinal–flexural wave
coupling, and the response is therefore governed by a purely
longitudinal wave type and by two purely flexural wave
types. In other words, flexural waves cannot be excited by a
longitudinal excitation force, and vice versa. By contrast, all
three wave types are coupled in the case of an asymmetri-
cally loaded structure; these waves �and the resulting re-
sponse� thus include contributions of longitudinal and flex-
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ural wave motions, i.e., all three wave types as well as the
total response contain contributions from longitudinal
�axial�, transverse, and rotational displacements. The wave
characteristics for both types of structures are presented in
Fig. 3, which shows the frequency variation of the real and
imaginary parts of the propagation constants associated with
the three wave types.

Results for the symmetrically loaded column structure
are shown in Fig. 3�a�. The longitudinal wave motion, which
is governed by a single characteristic wave, is seen to propa-
gate �without attenuation in wave amplitude� over a broad-
band of frequencies up to =135, and with a phase change
per element, �I, that is almost proportional to . From there
on, the transmission characteristics for longitudinal waves
exhibit both smooth and resonant attenuation zones with in-
termediate zones of propagation. The frequency position and
“bandwidth” of the resonant attenuation zone�s� is controlled
by the mass, length, and modal characteristic of the load
components; the peak attenuation thus occurs at a frequency
at which the transverse beam-load components vibrate in a
virtually midpoint-fixed, symmetrical mode. For clarity we
have chosen a system with relatively short beam components
that has only a single resonant attenuation zone within the
considered frequency range. �For a system with somewhat
longer beam components, say lt=0.8l, there are four resonant
attenuation zones4,5 in the considered frequency range, and
similarly four resonant attenuation zones for flexural wave
motion�. Such resonant attenuation zones are bounded by the
natural frequencies of a single periodic element with both
ends free. The magnitude and bandwidth of the smooth at-

tenuation zone is controlled by the modal mass of the load
components. The lower bounding frequency of a smooth at-
tenuation zone is identical to the natural frequency of a
single element with both ends free, whereas the upper
bounding frequency is identical with the natural frequency of
a single element with both ends fixed.

The flexural wave motion is governed by two waves, of
which one is associated with a very high attenuation constant
and can be regarded as a near field. For the sake of simplicity
the phase constant of this wave has been omitted in Fig. 3�a�.
The other flexural wave also has the pattern of smooth and
resonant attenuation zones. Apart from two very weak at-
tenuation zones, this flexural wave is seen to propagate up
until =115. At the peak attenuation frequency there is vir-
tually neither rotation nor transverse displacement at the
column–beam junctions. This frequency is related to the
natural frequency of the midpoint-fixed mode of the trans-
verse beam components that vibrate in an antisymmetric
mode as opposed to the symmetric mode at the same fre-
quency that governs the longitudinal resonant attenuation
zones. However, peak attenuation of the flexural wave occurs
at a somewhat lower frequency. This shift is caused by a
minimum in �ll23

=�ll32
at an even lower frequency, which

creates zero transverse displacement due to moment excita-
tion and zero rotation due to transverse force excitation. Fur-
ther, at the frequency of peak attenuation the two flexural
waves become complex conjugates. It is well known4 that
the lower bounding frequencies of smooth flexural attenua-
tion zones are controlled by element modes of zero rotation
at the junctions, whereas all other bounding frequencies of
attenuation zones are controlled by element modes with zero
transverse displacements.

We now consider the results in Fig. 3�b� for the asym-
metrically loaded periodic structure. Due to longitudinal–
flexural wave coupling, all three wave types contain axial,
transversal, and rotational motions. The denoted wave type
C, however, is again associated with a very large attenuation
constant, and it can be regarded primarily as a flexural near-
field, as will be revealed in the next section. Apart from the
gross overall resemblance with the results for the symmetric
structure, a number of important differences can be observed
regarding the propagation constants of the remaining two
wave types in the asymmetric structure, say, waves A and B.

From the phase constants, it is seen that the two curves
do not cross over in a straightforward manner, as was the
case in Fig. 3�a�. Instead the curves either �i� diverge from
one another or �ii� they merge, so that the propagation con-
stants almost become complex conjugates with a nonzero
attenuation constant. The first phenomenon is seen to occur
at =46; at this frequency the phase constant of the appar-
ently longitudinal-type wave, A, change over to a steeper
phase characteristic that is usually associated with a flexural-
type wave. This appears to be a clear indicator of the occur-
rence of a strong wave coupling or wave conversion. The
second phenomenon of strong wave coupling is seen to occur
in the bands of =28 to 30, 88 to 106 and 217 to 222, in
which the coupled longitudinal–flexural waves are also at-
tenuated as they progress through the periodic structure.
Such complex conjugate zones, or “amber bands,” have also

FIG. 3. Frequency variation of the real and imaginary parts of the propaga-
tion constants �i=�i,R+ i�i,I for the three wave types. �a� Symmetrically
loaded column-structure: - - -, longitudinal wave; —, flexural wave; -·-,
flexural near field. �b� Asymmetrically loaded column-structure: - - -,
flexural–longitudinal wave A; —, flexural-longitudinal wave B; -·-, prima-
rily flexural near-field C. Loss factor �=0.001.
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been examined in Refs. 17,18. It should be mentioned that
these two types of coupling phenomena occur most strongly
in lightly damped systems, whereas they may disappear more
or less completely in systems with high structural damping.
Mead and Markus7 observed this in their study of a simply
loaded periodic system.

From the attenuation constants in Fig. 3�b� it is seen that
only a single resonant attenuation zone is present and that
this is associated with wave type B, whereas wave type A has
a full propagation zone in more or less the same frequency
band. The peak attenuation is noted to occur at a frequency
of =170, which is nearly the same as for the symmetric
system in Fig. 3�a�. Another important observation is that the
coupling enforces a merging of the previously uncoupled,
flexural resonant attenuation zone and the smooth longitudi-
nal attenuation zone into a single attenuation zone. A param-
eter study reveals that this merging generally takes place
when the two types of attenuation zones �in the uncoupled
symmetric case� appear close to one another or are actually
coinciding.

What remains is a characterization of the type of wave
motions that occur in the different frequency bands. The
propagation constants presented in Fig. 3�b� do not solely
facilitate such a classification of the actual wave nature, but
this can be revealed by computing the normalized displace-
ment vectors, �i,+, as given by Eq. �32�.

B. Nature of wave types

The relative amounts of flexural and longitudinal mo-
tions contained in each wave type can be quantified by the
kinetic energy ratio �Ekin,F /Ekin,L�, which was defined in Sec.
IV. This quantity has been calculated numerically for each
wave type in terms of the normalized displacement vector,
�i,+ and propagation constant �i,+=−�i for its positive-going
wave.

Figure 4 show such results in the form of energy ratio
levels for the three wave types in the asymmetrically loaded
column structure; corresponding propagation constants are
given in Fig. 3�b�. At low frequencies a distinction between
the wave types is readily made. Wave type A is clearly lon-
gitudinal and wave type B is clearly flexural, whereas wave
type C is a flexural near-field with an energy ratio level ex-
ceeding 70 dB! This behavior of type A and B waves extends
up until about =27. From there on both wave types must
be classified as being longitudinal–flexural as each of them
alternates in a complicated manner between being predomi-

nantly longitudinal and predominantly flexural, or fully
mixed, with approximately equal contributions. In complex
conjugate zones the relative amount of flexural and longitu-
dinal motions in the two mixed wave types are seen to be of
the same order of magnitude. Further, wave types B and C
become complex conjugate at =170, at an energy level of
about 40 dB. At some frequencies �around =46 and 154�
and in complex conjugate zones both of the two mixed wave
types are predominantly flexural.

C. Response of semi-infinite periodic structures

Finally, we shall demonstrate the effect of wave cou-
pling on the response of semi-infinite periodic structures to
external point excitation. Two types of external harmonic
excitations are considered, namely a nondimensional mo-
ment of amplitude M0= �EI� / l, and a nondimensional longi-
tudinal �axial� force of amplitude F0=ES, where I is the
second moment of area of the column component and S is its
cross-sectional area. Again, the results for a symmetrically
loaded structure are first shown in order to clearly demon-
strate what happens when the asymmetrically loaded struc-
ture is considered.

For the symmetrically loaded system Fig. 5 shows the
maximum displacements in the first ten column components
in terms of the transverse displacement 	wmax	 in the un-
coupled flexural wave motion and the longitudinal displace-
ment 	umax	 in the purely longitudinal wave motion. These
interior, maximum responses of the column components are
calculated from the expressions in Appendix B by using the
displacements for each wave type at the left-hand end of the
considered element, as given in Eq. �32�. Figure 5 clearly
shows the occurrence and effect of the pass bands and stop
bands that are associated with the corresponding propagation
constants in Fig. 3�a�. Further, it is seen that the system re-
sponds strongly at the bounding frequencies, which are gov-
erned by the natural frequencies of a single periodic element.

In the asymmetrically loaded system �see Fig. 1�a�� the
harmonic response results from a combination of contribu-
tions from the coupled positive-going waves. The signifi-

FIG. 4. Energy ratios Ekin,F /Ekin,L for wave types in an asymmetrically
loaded column structure. - - -, flexural–longitudinal wave A; —, flexural–
longitudinal wave B; -·-, primarily flexural near-field C. Loss factor �
=0.001.

FIG. 5. Maximum displacement amplitudes in the column component of the
first ten elements of the semi-infinite, symmetrically loaded structure. �a�
Maximum transverse displacement 	wmax	 of flexural motion generated by an
external harmonic moment M0. �b� Maximum longitudinal displacement
	umax	 generated by an external harmonic force F0. Loss factor �=0.001.
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cance and contribution of each wave with respect to the total
response does not only depend upon the type of external
excitation, but also on the energy ratios and the propagation
constants. This implies that the calculated displacement re-
sponses can be explained from the results in Fig. 3�b� and
Fig. 4. The maximum displacement responses for the case of
the asymmetrically loaded periodic system driven by an ex-
ternal harmonic moment M0 are shown in Fig. 6. Compared
to the symmetrically loaded system, it is seen that the wave
coupling has a drastic effect; with the exception of a few
narrow stop bands, the waves are seen to propagate unattenu-
ated in most parts of the considered frequency range. Thus,
in the bands from =140 to 205 and from =222 and up, in
which the type B wave is predominantly flexural �see Fig. 4�,
the strong attenuation zones have no significant effect on
either of the groups of responses in Fig. 6. The reason for
this is that the propagating type-A wave is dominating, even
though it is predominantly longitudinal. Generally, this is
found to be the case whenever one of the wave types is
propagating and the other wave type is strongly attenuated. A
close inspection further reveals that for most frequencies ex-
ceeding =165, the longitudinal displacements in Fig. 6�b�
are even higher than the transverse flexural displacements in
Fig. 6�a�. It is only at low frequencies, below �25, that
longitudinal displacement responses are insignificant. From
=30 to 88 the longitudinal displacements are about 13 dB
lower than the transverse displacements, and they become
very similar in the range from =88 to 165.

Moreover, an appreciable but uneven attenuation from
element to element is noted to occur in narrow frequency
zones where wave types A and B are both governed by ap-
preciable attenuation constants; see �95 and 135 in Fig.
3�b� and Fig. 6. Small attenuation also occurs when the two
wave types are both propagating, and their contributions of
transverse and longitudinal displacements are of the same
order of magnitude. When superimposed the waves cancel
one another either partly or completely. This is seen to be the
case in the frequency range from =38 to 75 in Fig. 6.

Results for harmonic excitation with an external longi-

tudinal �axial� force F0 are shown in Fig. 7. From Fig. 7�b� it
is seen again that the wave coupling has a very strong effect
when compared to the results for the uncoupled longitudinal
responses in Fig. 5�b�. Overall the results are very similar to
those in Fig. 6, although the stop band at �135 is slightly
wider. Apart from the stop bands and the peaks at some of
the bounding frequencies, the longitudinal displacement re-
sponses in Fig. 7�b� may readily be shown to follow closely
the asymptotic response of a simple continuous and semi-
infinite column structure of the same cross-sectional area S.
This means that the corresponding longitudinal velocity re-
sponses are grossly independent of frequency in the consid-
ered frequency range. Very similar are also the spectral
shapes of the system’s “cross-properties,” that is, the trans-
verse flexural displacements in the column elements gener-
ated by the longitudinal force F0 �see Fig. 7�a�� and the lon-
gitudinal displacements generated by the moment excitation
M0; see Fig. 6�b�. In the case of longitudinal force excitation
it is the transverse displacement that is insignificant at the
low frequencies below =27. From =30 to 165 the longi-
tudinal and transverse displacements are very similar in am-
plitude, and from there on the longitudinal displacement is
about 6 dB higher than the transverse, as was the case with
moment excitation.

VI. CONCLUSIONS

A new model based on composite element receptances
has been developed for studying phenomena of flexural–
longitudinal wave coupling in fully tricoupled periodic
waveguides. Specifically examined are lightly damped peri-
odic structures with multiple and resonant side branches in
the form of offset transverse beams attached at regular inter-
vals. This may resemble a one-dimensional model of
column-beam skeletons in buildings or idealized plane-wave,
normal incidence models of web-stiffened panels, ship hulls
with decks to one side only, etc. Computed results of com-
plex propagation constants, which govern the wave fields in
periodic structures, have clearly revealed pass and stop band
characteristics and wave coupling phenomena, which are
shown to enhance the long-range transmission when the pe-
riodic structure is unconstrained and hence allowed to vi-

FIG. 6. Maximum displacements in the column component of the first ten
elements of a semi-infinite, asymmetrically loaded structure, excited by an
external harmonic moment M0. �a� Maximum transverse displacement 	wmax	
of flexural motion; �b� Maximum longitudinal displacement 	umax	. Loss
factor �=0.001.

FIG. 7. The same as in Fig. 6, but for an external harmonic axial force
excitation F0.

3018 J. Acoust. Soc. Am., Vol. 118, No. 5, November 2005 L. Friis and M. Ohlrich: Coupled longitudinal-flexural wave motion



brate freely in its plane. This system can support three
coupled wave types, and their importance is clarified and
quantified from computations of their contribution to ratios
of maximum flexural and longitudinal kinetic energies in the
wave-carrying components. For this asymmetrically point-
loaded periodic structure it is found that two wave types can
be categorized as being coupled flexural–longitudinal waves
in major parts of the considered frequency range, because
both types alternate in a complicated manner between being
either fully mixed or occasionally predominantly longitudi-
nal or predominantly flexural. The remaining third wave type
is a flexural type “near-field” as is the case for a correspond-
ing, but symmetrical system in which longitudinal and flex-
ural wave types are uncoupled.

The determined distribution of displacements in each
wave type is furthermore used for calculating the spatial
variation of the responses of a semi-infinite periodic struc-
ture that is subjected to end-point harmonic excitations by
either a longitudinal force or by a moment. In contrast to the
corresponding uncoupled symmetrical system with signifi-
cant broadband attenuation of flexural-type waves, the nu-
merical results show that the flexural–longitudinal wave cou-
pling in a system with resonant side branches has a drastic

effect on the wave propagation properties. Despite the
system is excited by an external moment — and one of the
two wave types is predominantly flexural with a broad stop
band — it is unexpectedly found that the inherent wave cou-
pling results in a highly enhanced wave transmission with
very little attenuation of flexural motion from element to
element. This enhanced transmission is caused by the other
wave type, which is predominantly longitudinal and propa-
gates with significant components of both flexural and lon-
gitudinal displacements. Also in the case of longitudinal
force excitation, wave propagation similarly occurs at most
frequencies and both types of response displacements are of
the same order of magnitude. For the structural components
and dimensions considered in this study the longitudinal re-
sponses along the periodic structure are furthermore found to
be only little influenced by the transverse beam loads; hence,
responses follow grossly the asymptotic response of a simple
continuous waveguide of the same cross-sectional area. With
the present composite-receptance approach other types of
structural side-branches components or other boundary con-
ditions can easily be incorporated in the developed predic-
tion model.

APPENDIX A: DERIVATION OF FORCE RATIOS FOR THE iTH WAVE

For a characteristic positive-going wave traveling through the periodic system with propagation constant −�i, the corre-
sponding force eigenvector can be found from Eq. �16�. For the tricoupled structure this yields

��ll22
− �lr22

cosh �i − �lr23
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sinh �i

�lr23
sinh �i �ll33
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The first and second of these equations can be written as
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By multiplying the first equation with ��ll31
−�lr33

cosh �i� and the second equation with ��lr21
sinh �i�, and finally subtracting

the two, Fi,+1
is eliminated:
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From this the ratio between Fi,+3
and Fi,+2

can be found as
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The use of any other two equations from the matrix in Eq. �A1� would result in the same ratio. The ratio between Fi,+1
and Fi,+2

is found likewise by multiplying the first equation with ��ll33
−�lr33

cosh �i� and the second equation with �−�lr23
sinh �i�,

and further subtracting the two in order to eliminate Fi,+3
. This yields
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APPENDIX B: LONGITUDINAL AND TRANSVERSAL
RESPONSES IN THE COLUMN COMPONENT

The response at an arbitrary position x in a column com-
ponent or in a transverse beam component can be obtained in
terms of the displacements and rotations at the ends of the
periodic element. The longitudinal displacements, transverse
displacements, and rotations at the left- and right-hand ends
of an element due to the ith wave type are now denoted ul,i,
ur,i, wl,i, wr,i, �l,i, and �r,i, respectively. Index l and r refer to
left- and right-hand end. Thus, for a single harmonic wave
type with propagation constant −�i, the complex displace-
ment amplitudes at the right- and left-hand ends of the peri-
odic element are related as

ur,i = ul,ie
−�i, wr,i = wl,ie

−�i, and �r,i = �l,ie
−�i.

�B1�

Utilizing these relationships, we can express the displace-
ments in the column component in terms of the element’s
displacements at the left-hand end and the propagation con-
stant for the wave considered. The displacements at the left-
hand end of the jth element are given in Eq. �32�; hence

ul,i = qi,j,+1
, wl,i = qi,j,+2

and �l,i = qi,j,+3
. �B2�

By using general wave theory,1 the local x dependence
of the longitudinal displacement ui�x� in the column compo-
nent, due to the ith wave, takes the form

ui�x� = Ai cos klx + Bi sin klx , �B3�

where kl is the wave number for free longitudinal waves.
Applying Eq. �B1�, this can be expressed as

ui�x� = ul,i�cos klx + sin klx�e−�i − cos kll�/sin kll� . �B4�

In a similar form the transverse displacement wi�x� in the
column component due to the ith wave is given by

wi�x� = ai�cos kbx − cosh kbx� + bi�sin kbx − sinh kbx�

+ wl,i cosh�kbx� + ��l,i/kb�sinh�kbx� , �B5�

and by applying Eq. �B1�, ai and bi are expressed as

ai = ��wl,i�cosh kbl cos kbl − sinh kbl sin kbl − 1�

− e−�i�cos kbl − cosh kbl�� + �l/kb��sinh kbl cos kbl

− cosh kbl sin kbl� + e−�i�sin kbl

− sinh kbl���/�2�cos kbl cosh kbl − 1�� �B6�

and

bi = �ai�cos kbl − cosh kbl� + wl�cosh kbl − e−�i�

+ �l/kb sinh kbl�/�sinh kbl − sin kbl� , �B7�

where kb is the wave number for free flexural waves.
According to Eq. �24�, the total response is a sum of

response contributions from all three positive-going waves
and by using linear superposition, the longitudinal displace-
ment u�x� and the transverse displacement w�x� in the col-
umn yield

u�x� = �
i=A

C

ui�x�

= �
i=A

C

ul,i�cos klx + sin klx�e−�i − cos kll�/sin kll�

�B8�

and

w�x� = �
i=A

C

wi�x�

= �
i=A

C

�ai�cos kbx − cosh kbx� + bi�sin kbx − sinh kbx�

+ wl,i cosh�kbx� + ��l,i/kb�sinh�kbx�� . �B9�
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