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Dynamic measurements of the elastic constants of glass wool
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The sound wave in the air between the fibers of glass wool exerts an oscillatory viscous drag on the
fibers and excites a mechanical wave in the fiber skeleton. Accurate calculations of sound
attenuation in glass wool must take the mechanical wave in the fiber skeleton into account, and this
requires knowledge of the dynamic elastic constants of the fiber skeleton. The mechanical properties
of glass wool are highly anisotropic. Previously only one of the elastic constants has been measured
dynamically, but here all the elastic constants are reported. The measurement method is well known.
But a new mechanical design, which reduces mechanical resonance, is described. The measurements
were carried out in atmospheric air at normal pressure, and this causes an oscillatory airflow in the
sample. To obtain the elastic constants, the influence of the airflow was subtracted from the data by
a new formula. The elastic constants were measured in the frequency range 20–160 Hz for glass
wool of mass density 30 kg/m3. The elastic constant C11 depended on the frequency; at 20 Hz it
was 1.5+0.01i MPa, and at 160 Hz it was 2.6+0.06i MPa. The constant C33=12+0.6i kPa did not
depend on frequency. The shear constant C44=40+2i kPa was constant. The two constants C12,C13

were zero. © 2005 Acoustical Society of America. �DOI: 10.1121/1.2118267�

PACS number�s�: 43.55.Ev, 43.20.Jr, 43.58.Dj �AJZ� Pages: 3672–3678

I. INTRODUCTION

Glass wool is placed inside the fuselage of airplanes,
where it reduces the noise transmissions from the outside to
the inside of the cabin. Glass wool is also placed inside walls
in buildings, where it reduces the transmission of noise
through the walls.

Experiments in the last five years have shown that sound
waves, in the air between fibers, drag the skeleton of fiber
materials, and this causes movements of the fibers, which
decreases the attenuation of sound waves.1–4 Early measure-
ments of sound attenuation in tubes did not show this, be-
cause samples were mounted in a way that prevented their
movement. Recently2,3 measurements have been carried out
with thin samples fixed to the cylindrical surface of the tube.
In this case, the skeleton of the material in the center of the
tube can move.

The airborne sound wave is coupled to the fiber skeleton
borne wave by an oscillatory viscous drag of air on the fi-
bers. To take this into account by the Biot theory,5 the dy-
namic elastic constants of the glass wool skeleton must be
known.

Pritz6 analyzed a measurement method where the glass
wool sample is part of a spring as shown in Fig. 1. The
shaker gave the lower part of the sample a displacement that
was a sinusoidal function of time. Accelerometers measured
the acceleration of the shaker table and the top plate. The
amplitude and phase of the output from the two accelerom-
eters were measured. From the complex ratio between the
two accelerations, the length of the sample, the cross-section
area, the mass of the sample, and the mass of the upper
aluminum plate. Pritz calculated the complex Young modu-

lus, and he made a detailed study of the measurement errors.
Longitudinal wave movement was taken into account. It was
assumed that the shaker and the upper aluminum plate
moved translationally. In another paper7 Pritz reported mea-
surement, with the same setup, of the complex Young’s
modulus of glass wool of density 71 kg/m3 for frequency
100–3 000 Hz. The measurements were carried out in air
and vacuum.

Rice and Göransson8 used a similar setup to measured a
dynamic complex Young’s modulus of glass wool with den-
sity 15 and 11 kg/m3 for frequencies about 15 and 60 Hz.
Measurement were carried out in air and vacuum. Ingard9

used a similar setup to measure the complex Young’s modu-
lus of glass wool in vacuum.

To determine the complex Young’s modulus of glass
wool, Wilson and Cummings10 used a setup with a force
transducer that measured the force in the sample. The fre-
quency range was 40–200 Hz. Figure 2 shows the principle.
They first measured the complex mechanical impedance of
one sample and then of a second sample with twice the thick-
ness. From the two mechanical impedances and the length of
the sample they calculated the complex wave number. The
complex characteristic impedance was calculated from the
measured impedances and the cross-sectional area. From fre-
quency and the characteristic impedance, they calculated the
effective mass density and Young’s modulus. They assumed
that their samples were homogeneous, and it was further as-
sumed that there was no lateral movement of the sample—
the Poisson’s ratio was assumed to be zero. Langlois, Pan-
neton, and Atalla11 used an experimental arrangement similar
to Fig. 2 to measure the elastic properties of isotropic plastic
foam. They developed a new way to find Young’s modulus
and Poisson’s ratio from measurements on samples of differ-
ent thickness.a�Electronic mail: vt@mek.dtu.dk
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The setup in Fig. 1 is attractive because it is simple. It
was used in the beginning of the present study. The accelera-
tion amplitude of the top plate and the shaker were recorded
as a function of frequency. The acceleration amplitude of the
top plate divided by the one of the shaker was plotted as a
function of frequency. However, in many experiments the
plot showed three resonance peaks between 200 and 300 Hz
instead of only one as expected when the movement of the
aluminum plate is a translation. The reason is that the top
plate rocked, because the samples were not homogeneous.
Pritz6 assumed a translation; Cremer, Heckl, and Ungar12

have observed excitation of rocking motions in similar ex-
periments. Three modes of the top plate were excited. One
mode is mainly a translation in the direction of dot-and-dash
line in Fig. 1, the other modes are mainly rotations of the top
plate. The movements of the top plate were detected by small
accelerometers, which showed the accelerations of the three
modes. Calculation of elastic constants from the data was
unreliable, because three modes were excited.

The rotation of the upper plate was prevented in the
setup in Fig. 2, and measurements reported in this paper
were carried out with a similar setup. Measurements should
ideally be carried out in a vacuum, but here they were per-
formed in air. The movements of the shaker table pumped air
through the sample, and the friction between air and fibers
influence the measurement. Section II contains a derivation
of a new formula used to corrects the data for the influence
from airflow through the sample. Section II also shows a new
way of correcting for wave movements in the fiber skeleton.
The elastic constant can be measure with one sample, in

contrast to the investigation by Wilson and Cummings10 that
requires two samples and assumed homogeneity of the
samples. A new mechanical design is described in Sec. III,
which also contains details of the electronic system.

Glass wool is anisotropic, but all the above-cited works
present only measurements of one Young’s modulus, the
smallest one. Dynamic measurements of all the elastic con-
stant are reported in Sec. IV, where all the dynamic elastic
constants in the frequency range 20–160 Hz for glass wool
of density 30 kg/m3 are given. The results are compared
with measurements of the elastic properties of glass wool in
the papers Refs. 6–10.

II. PRINCIPLE OF MEASUREMENT

The elastic properties of glass wool are highly aniso-
tropic. Glass wool mats are fabricated on a conveyer belt on
which the glass fibers are laid. The glass wool is soft in the
direction perpendicular to the conveyer belt and hard in all
directions parallel to the belt. We use a coordinate system
with Z axis in the soft direction, X axis in the direction the
belt moves, and Y axis perpendicular to the first two axes.
The standard nomenclature for elastic constants is used.
Call the stress tensor �pq with p, q=x, y or z, and define
a stress vector �= ��xx ,�yy ,�zz ,�yz ,�xz ,�xy�. Call the
strain tensor �pq, and define the strain vector E
= ��xx ,�yy ,�zz ,2�yz ,2�xz ,2�xy�: Then the elastic constants
matrix C is defined by �=CE.

The C matrix is symmetrical. Rice and Göransson8 state
that their light glass wool is transversally isotropic. The glass
wool studied her is also assumed transversally isotropic. Due
to the symmetry, some components of the elastic constant
matrix are zero, and some are equal, which is shown in the
following matrix:

�
C11 C12 C13 0 0 0

. C11 C13 0 0 0

. . C33 0 0 0

. . . C44 0 0

. . . . C44 0

. . . . .
1

2
�C11 − C12�

� . �1�

The form of the matrix is given in Jones.13

Rice and Göransson8 stated, based on static measure-
ments, that the Poisson’s ratios are zero. This is also assumed
for the glass wool examined in this paper, and from Jones13 it
follows that C12=C12=0. Thus, the elastic constant matrix is
diagonal, and it can be computed from the two Young’s
moduli E1 ,E3, and the shear module G,

.�
E1 0 0 0 0 0

. E1 0 0 0 0

. . E3 0 0 0

. . . G 0 0

. . . . G 0

. . . . .
1

2
E1

� . �2�

FIG. 1. Measurement principle with two moving surfaces, the sample is
glued to the shaker table and the aluminum plate. The acceleration of the
shaker table and the aluminum plate are measured.

FIG. 2. Measurement principle with one moving surface, the force trans-
ducer fixes the aluminum plate. The force on the sample and the acceleration
of the shaker table are measured. � and H marks the axes of a coordinate
system fixed on the aluminum plate.
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A. Calculating Young’s modules from data

All samples were prismatic, cut perpendicular to one of
the axes X, Y, and Z in the glass wool mats. Figure 2 shows
the principle of the setup. The shaker was excited to give its
table a simple harmonic motion, and the complex accelera-
tion amplitude of the table A and the frequency f was re-
corded. The displacement of the table uT can be calculated
from the cyclic frequency �=2�f and the amplitude of ac-
celeration,

uT = − A/�2. �3�

The complex force amplitude FM measured by the force
transducer was recorded. The force transducer was mounted
on a plate that did not move, fixed plate in Fig. 2, and the
force transducer was very stiff. Therefore the aluminum
plate, on top of the sample, did not move, and the force on
the transducer was equal to the force F on the sample, F
=FM. Airflow in the sample is neglected, but it will be con-
sidered in the next section. The frequency is assumed to be
so low that wave motion in the sample may be neglected.
This is the case when Young’s module E1 is determined.
Then E1 equals the stress divided by the strain, if the X axis
of the sample is parallel to the � axis of the apparatus. Stress
is the force divided by the cross-section area of the sample S,
and the strain is the displacement of the table divided by the
length of the sample l. Thus,

E1 =
F/S

uT/l
. �4�

There is no lateral strain because the elastic constants C12

=0 and C13=0.

B. Airflow in the sample

During measurements air was pumped in and out of the
sample by the movements of the shaker table. The airflow
influenced the measurement of the imaginary part of the elas-
tic constant, and this influence is calculated approximately in
this section. First the energy loss P due to friction between
air and fibers is calculated. An integral of the power loss
density over the volume V of the sample gives P,

P = �
V

RrsvrvsdV . �5�

The velocity vr is referred to the coordinate system in Fig. 2,
with axes �, H, and Z and coordinates �� ,� ,��. The indices
r, s=�, �, or �, and repeated indices imply summation. The
airflow resistivity Rrs is a tensor because the glass wool is
anisotropic. Only the case where the resistivities are equal in
all directions perpendicular to the � axis is needed. It is
assumed that the air is incompressible, because the wave-
length of sound in the air between fibers is much longer than
the dimension of the apparatus. The � axis, Fig. 2, is the
polar axis of a cylinder coordinate system with coordinates �,
	, and 
, where 	 is the distance from the polar axis and 

the angle. The radial velocity of air v	, perpendicular to the
� axis is, from the incompressibility of air, approximately

v	 =
�	2vT

2�	l
=

	vT

2l
, �6�

where vT is the velocity of the shaker table, Fig. 2, in the �
direction. The power P dissipated equals the volume integral
over the sample

P = �
V

R�v	
2dV , �7�

where R� is the airflow resistivity perpendicular to the �
axis, and only radial flow is considered. Substitute Eq. �6�
into Eq. �7�, and get

P =
R�vT

2

4l2 �
V

	2dV . �8�

If the sample cross-section is square with side length a, then
the integral becomes

P =
R�a4vT

2

24l
. �9�

The power delivered from the shaker table to the sample is

P = vTFV, �10�

where FV is the viscous force. From Eqs. �9� and �10� one
gets the force

FV =
R�a4

24l
vT. �11�

We use a complex time factor ei�t, where t is the time and
i2=−1. Then vT= i�uT, and Eq. �11� becomes

FV =
R�a4

24l
i�uT. �12�

This force was subtracted from the direct measured force FM

to give the force F that would act on the fiber skeleton in
vacuum. F is the force that should be used in Eq. �4�,

F = FM − FV. �13�

The real part of FM was in principle also influenced by
the airflow, but in the present measurement the influence was
much smaller that the experimental uncertainty.

C. Wave motion in the fiber skeleton

The elastic constant E3 is so small that the wavelength
of waves in the sample skeleton becomes comparable to the
length of the sample, and the strain is not constant in the
sample. The calculation of the elastic constant from the data
in this case follows in this section.

Figure 2 shows a coordinate system with � axis perpen-
dicular to the aluminum plate and origin in the center of this
plate on the sample side. � is the coordinate in the � direc-
tion, u is the displacement of the fiber skeleton in this direc-
tion, u0 is a constant, and k is the wave number. The dis-
placement of the sample at the aluminum plate, �=0, is zero.
Therefore,
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u = u0 sin k� . �14�

The constant u0 can be found from the displacement uT of
the shaker table,

u0 = uT/sin kl . �15�

To find E3 the Z axis of the glass wool sample was parallel to
the � axis of the apparatus.

The force F on the aluminum plate is

F = SE3� �u

��
�

�=0
. �16�

Equations �14�–�16� give

F

uT
=

SE3k

sin kl
. �17�

Equation �17� is solved for E3,

E3 =
F sin kl

uTSk
. �18�

The wave number is the cyclic frequency divided by the
wave velocity. If the mass density of the fiber skeleton is 	W,
then the wave number is

k =
�

	E3

	W

. �19�

In the experiment the acceleration A of the shaker table, Fig.
2, was measured, and uT was calculated from Eq. �3�. The
force transducer measured force FM, and F was calculated
from Eq. �13�. �The correction for airflow Eq. �13� is not
necessary when E1 is calculated because the imaginary part
of E1 is much higher than the correction by Eq. �13�.� �, S,
and l were recorded. The mass density 	W was assumed to be
equal to the static mass density, 30 kg/m3. All mechanical
losses are attributed to the elastic constant. Equations �18�
and �19� give implicitly E3.

An iterative procedure was used to find E3. A complex
value of E3 was assumed and k was calculated from Eq. �19�.
This k value was set into Eq. �18� and a new value for E3 was
computed. Then a new value of k was calculated from Eq.
�19�. The iteration was stopped when a stationary value of E3

was obtained.

III. MEASUREMENT SETUP

The mechanical setup used to measure E1 and E3 is
shown in Fig. 3. Four steel rods with threads and nuts held
the two, 10-mm-thick, aluminum plates A and D. On plate D
was mounted the shaker that carried a 5-mm-thick aluminum
plate C, whose acceleration was measured by three piezo-
electric accelerometers. They were placed at the vertices of
an equilateral triangle with center in the center of the plate C.
Three accelerometers were used, instead of one to detect
possible rotations of the plate. The glass wool sample was
glued to plates B and C. The plate B, 5-mm-thick aluminum,
was mounted on plate A via a piezoelectric force transducer.
The thickness of the sample was typical 50 mm.

The whole assembly hung in two 1-m-long rubber
bands. These bands are not shown in Fig. 3. In the early
experiments, plate D was mounted horizontally on a concrete
slab. But the suspension by rubber bands eliminated many
resonance modes that disturbed the measurement and this
greatly improved the data. Plate A, the force transducer, and
plate B had a small acceleration, which was measured by an
accelerometer mounted on plate A. The acceleration and the
mass of plate B was used to correct the output from the force
transducer to give the actual force from the sample on plate
B. The derivation of Eq. �18� assumed that the displacement
of plate B was zero. In the actual experiment the displace-
ment was very small compared the movement of plate C, so
Eq. �18� can still be used to calculate the influence from
wave movement in the skeleton of the sample.

The shear constant G was measured with the setup in
Fig. 4. The right picture gives the cut S-S shown on the
left-hand side. The sample was glued to plates B and C. The
shaker moved plate C horizontally, and its acceleration was
measured by an accelerometer. Plate B was attached to a
force transducer, which was fastened on plate A. The force
transducer measured the horizontal force on plate B, and the
displacement of plate C was calculated from its measured
acceleration. The procedure in Sec. II C was used to correct
for wave movements of the fiber skeleton. There was no
airflow in the sample because it was subject to a shear de-
formation.

Figure 5 shows the electronic equipment. It used a Stan-
ford Research System DSP Lock-In Amplifier SR850, which
has an output voltage that is a sinusoidal function of time.

FIG. 3. The mechanical details of the setup used to measure Young’s
moduli. It uses the measurement principle in Fig. 2. The setup hung in 1 m
long rubber bands. The sample is glued to the two plates B and C.

FIG. 4. The mechanical details of the setup used to measure the shear
constant.
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The frequency can be programmed to sweep through a range.
The output voltage from SR850 was connected to a power
amplifier that drove the shaker. SR850 also has an input to a
phase detector, and SR850 can record digitally the magnitude
and phase of the input. One accelerometer on plate C was
connected to a preamplifier, the output of which was con-
nected to the input of SR850. The frequency was swept
through a range, and the frequency, the magnitude, and phase
of the signal from the accelerometer were recorded digitally.
Then a new accelerometer was connected to the preamplifier
and the procedure repeated. After all the accelerometer out-
puts were recorded, the force transducer was connected to
the preamplifier, and the magnitude and phase of the force
were recorded.

IV. RESULTS

The glass wool studied was of the type “Industriplade 1”
produced by Saint-Gobain Isover a/s, Vamdrup, Denmark.
Table I shows data for the glass wool.

The Z resistivity was measured with airflow in the Z
direction in the glass wool, defined in Sec. II, and X resistiv-
ity was measured with airflow in the X direction. Resistivity
in the X and Y directions are equal. The porosity was calcu-
lated from 1−	W /	F, where 	W is the density of glass wool,
and 	F is the density of fiber glass.

A. Young module E1

The sample had a cross-section area of 100·100 mm2

perpendicular to the X axis in the glass wool. Its length was
50 mm. The sample was glued to the two plates B and C in
Fig. 3. Figure 6 shows the resulting real and imaginary part
of E1. The solid curve is the real part and the dotted one the
imaginary part. It was necessary to use a low level of accel-
eration to avoid elastic nonlinearity in the glass wool sample.
The strain used for Fig. 6 was below 10−5.

There are few data in the literature that the result can be
compared with, and only static measurement seems to have
been published. Rice and Göransson8 reported a Young
modulus E1=17.2 kPa for glass wool of mass density
14 kg/m3. Tarnow14 found the static value 390 kPa for glass
wool of mass density 30 kg/m3, and the dynamic result for
the real part was 1.5 MPa at 20 Hz. The strain was 2 ·10−2 by
the static measurement, and below 10−5 by the dynamic one.
The static strain is much higher than the dynamic one, and
nonlinear elasticity could explain the difference between the
static and the dynamic value.

B. Young’s modulus E3

The sample had a cross-section area of 100·100 mm2

perpendicular to the Z axis in the glass wool. Its length was
31 mm. Figure 7 shows the result for E3 for the sample of
glass wool. The data show that the real and imaginary parts
are constants. The best graphical fit of the data was E3=12
+0.6i kPa=12�1+0.05i� kPa.

The real part of E3 is more than 100 times smaller than
the one of E1. The strain used for Fig. 7 was below 10−4 to
avoid elastic nonlinearity. A higher strain would have re-
duced to the electronic noise.

Equtions �12� and �13� with an airflow resistivity
=8 kPa s m−2 were used to correct for the influence from
airflow in the sample. Wave movements in the fiber skeleton
were taken into account by Eqs. �18� and �19�.

Wilson and Cummings10 reported dynamic measure-
ments for glass wool of density 24 kg/m3. They found an
approximately constant E3=3.3+0.2i kPa=3.3�1+0.06i�
kPa in the frequency range 40–200 Hz. The real part is four
times smaller than the one found here, but the imaginary

FIG. 5. The electronic setup used to record accelerations and force. The
SR850 delivers a voltage that is a sinusoidal function of time. This voltage
drove the power amplifier, which was connected to the shaker. The acceler-
ometer or the force transducer was connected to the preamplifier. The am-
plitude and phase of the output from the preamplifier was measured and
recorded by SR850.

TABLE I. Acoustic data for “Industriplade 1.”

Mass density of glass wool 30 kg/m3

Mass density of fiber glass 2550 kg/m3

Diameter of fiber 7 �m
Airflow Z-resistivity 16 kPa s m−2

Airflow X-resistivity 8 kPa s m−2

Concentration of phenol-formaldehyde resin 5%
Porosity 0.988

FIG. 6. The resulting Young’s module E1. The solid line shows the real part
and the dotted one the imaginary part. Both real and imaginary part in-
creases with frequency. At 20 Hz E1=1.5+0.01i MPa, and at 160 Hz E1

=2.6+0.06i MPa.
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parts divided by the real ones, the loss factors, are approxi-
mately equal. For the glass wool Telwolle of density
71 kg/m3 and fiber diameter 5–7 �m, Pritz7 reported a con-
stant complex Young’s modulus E3=78.4�1+0.02· i� kPa in
the frequency range 100–3 000 Hz.

C. Shear modulus G

The sample had dimensions 100·100·31 mm3 in the X,
Y, Z direction of the glass wool. The setup in Fig. 4 was used
with 31 mm between plates B and C. The direction of dis-
placement was along the 100 mm edges in the X direction.
The result is shown in Fig. 8. The data are only reliable for
frequencies below 100 Hz, because of resonance in the me-
chanical structure. In the frequency range 20–100 Hz the
shear modulus is constant and equal to 40+2i kPa.

Only static measurements of this module have been pub-
lished. Rice and Göransson7 reported 13.7 kPa for glass wool
of density 14 kg/m3.

D. Poisson’s ratios

Rice and Göransson8 stated, based on static measure-
ments, that the Poisson’s ratios are zero for glass wool of
mass density 15 and 11 kg/m3. This means that C12=C13

=0 from Jones.13

It was attempted to measure the Poisson’s ratios dynami-
cally. A sample of glass wool was placed between two par-
allel aluminum plates. An electrodynamic shaker moved one
of the plates. To detect the movement of the sides of the
sample, aluminum foils 20 �m thick were glued on the sides
of the sample, and a preamplifier for a condenser micro-
phone was used to detect lateral movements of the sample.
However, the scattering of the data made it impossible to
detect movements of the sides of the sample.

Another attempt was made to measure Poisson’s ratios.
The apparent Young’s modulus was found for samples of
different lengths by the method in Sec. II. When the sample
length is small compared to the dimensions of the aluminum
plates, the deformation of the sample is perpendicular to the
aluminum plates, because they prevent lateral movement. In
this case one would find a high value of the Young’s modu-
lus. If the sample is long, there is lateral movement depend-
ing on the size of Poisson’s constants, and this lateral move-
ment would decrease the apparent Young’s module. No such
dependence on length was found, but the data were scattered
due to inhomogeneity of the samples. Therefore the Pois-
son’s ratios are assumed to be zero.

V. CONCLUSION

A new mechanical design for measuring the elastic con-
stants of glass has been developed. Correction for viscous
drag on fibers from airflow in the sample is presented, and
correction for mechanical waves in the structure is described.
The measurement showed that the Young’s module E1 de-
pended on frequency, at 20 Hz it was 1.5+0.01i MPa, and at
160 Hz it was 2.6+0.06i MPa. Young’s module E3=12
+0.6i kPa did not depend on frequency. The shear module
G=40+2i kPa did not depend on frequency. Attempts to
measure the Poisson’s ratios did not give conclusive results,
and they were assumed to be zero.
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