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Many complicated systems of practical interest consist basically of a well-defined outer shell-like
master structure and a complicated internal structure with uncertain dynamic properties. Using the
“fuzzy structure theory” for predicting audible frequency vibration, the internal structure is
considered as one or more fuzzy substructures that are known in some statistical sense only.
Experiments have shown that such fuzzy substructures often introduce a damping in the master
which is much higher than the structural losses account for. A special method for modeling fuzzy
substructures with a one-dimensional continuous boundary was examined in a companion paper �L.
Friis and M. Ohlrich, “Vibration modeling of structural fuzzy with continuous boundary,” J. Acoust.
Soc. Am. 123, 718–728 �2008��. In the present paper, this method is extended, such that it allows
modeling of fuzzy substructures with a two-dimensional continuous boundary. Additionally, a
simple method for determining the so-called equivalent coupling factor is presented. The validity of
this method is demonstrated by numerical simulations of the vibration response of a master plate
structure with fuzzy attachments. It is revealed that the method performs very well above a
nondimensional frequency of 500 of the master, and it is shown that errors below this frequency are
caused mainly by simplifying assumptions concerning the shape of the master vibration
displacement. © 2008 Acoustical Society of America. �DOI: 10.1121/1.2932077�

PACS number�s�: 43.40.At, 43.40.Tm �DF� Pages: 192–202

I. INTRODUCTION

For about 20 years, the “theory of fuzzy structures”1–3

has been known as a suggested alternative method for pre-
dicting the vibration of complex systems having many de-
grees of freedom and uncertain properties. By using this
theory, a system is divided into a well-defined master struc-
ture and one or more complex parts termed as fuzzy substruc-
tures. It is assumed that the deterministic master, which is
typically a shell-like structure, can be modeled by using tra-
ditional methods, whereas the fuzzy has imprecisely known
properties that are known only in some statistical sense. Ex-
amples of real-life fuzzy systems varying from small size to
large size are electro-mechanical hearing aids, machines, air-
craft, and ship hulls.

Experiments have shown that such fuzzy attachments
seemingly introduce high damping in the master structure,
due to the dissipation of energy into the many degrees of
freedom. The theory of fuzzy structures explains this damp-
ing effect, caused by multiple reflections rather than actual
damping, by regarding the dynamic behavior of the fuzzy
similar to that of a multitude of dynamic neutralizers or
absorbers.4–6 Despite of this relatively simple hypothesis,
publications on experimental investigations and practical use

of the theory of fuzzy structures have so far been very lim-
ited in open literature. This is not only partly due to difficul-
ties in determining the fuzzy parameters but also because of
complicating issues such as the incorporation of different
motion coordinates and modeling of fuzzy structures con-
nected to the master through a continuous boundary.

The present paper examines and extends a special
method of modeling structural fuzzy with a continuous
boundary. This method was originally formulated by Soize
and briefly presented in a paper from 1993.3 A successful
modeling of structural fuzzy with continuous boundary re-
quires that its stiffness must be taken into account. Soize
achieved this by introducing spatial memory in the fuzzy
boundary impedance. However, such boundary impedance is
nonlocal and, therefore, laborious to implement in numerical
methods. A full implementation is, therefore, circumvented
by introducing an equivalent coupling factor that converts
the distributed impedance to a local form. Soize’s method of
including spatial memory is clearly innovative; however, in
the author’s opinion, the main ideas of the method need
clarification and physical interpretation.

In a companion paper,7 Soize’s method was thoroughly
examined and physical interpretations were offered. Further-
more, the smoothed fuzzy boundary impedance was formu-
lated from simple mathematics without the use of probabilis-
tic concepts. The present paper contributes with an extension
of the method to two dimensions and with a simple and
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general method for determining the equivalent coupling fac-
tor. This method is examined through numerical simulations
and its limitations are discussed. The companion paper and
the present paper represent a continuation of the papers by
Pierce et al.8 and Strasberg and Feit9 but for structural fuzzy
with continuous boundary.

The theory of fuzzy structures was originally developed
by Soize and presented in a series of papers1–3 from 1986 to
1993. During the last 20 years, the literature has partly fo-
cused on interpretation and simplification of Soize’s theory
that involves probabilistic concepts in order to account for
model uncertainties. One milestone was the publications of
simple and deterministic methods by Pierce et al.8 and Stras-
berg and Feit.9 These papers clarified the main concepts of
the theory of fuzzy structures and have provided simple pro-
cedures for predicting the smoothed average response of
complex systems. Furthermore, it was revealed that the
damping induced in the master was governed mainly by the
frequency-dependent resonating mass per unit frequency of
the fuzzy. Several authors have examined the fuzzy damping
effect in great detail. This includes Maidanik and Becker10–12

who unambiguously demonstrated the nature of the damping
and set up design rules for complex attachments. The damp-
ing caused by different local oscillators was likewise inves-
tigated by Maidanik and Becker.13,14 Moreover, Weaver15

and Carcaterra and Akay16 revealed that the fuzzy damping
is a transient phenomenon in the case of a finite number of
complex attachments. It was shown that the energy returns to
the master at later times when excited by a transient. One of
the most difficult challenges in applying the theory of fuzzy
structures is the determination of the resonating mass per
unit frequency. During the last ten years, both Soize17,18 and
Pierce19 addressed this problem. Another important highlight
was the development of a method3 for including spatial
memory in the modeling of structural fuzzy with continuous
boundaries. With the exception of a few publications,7,17,18

succeeding literature has mainly focused on developing
methods that regard the structural fuzzy as local fuzzy sub-
structures. Many real-life structures, however, involve fuzzy
structures with continuous boundaries, and the authors of the
present paper believe that further study in this area is
strongly needed in order to clarify some of the main ideas.

In favor of the reader, the method of including spatial
memory in structural fuzzy will be briefly outlined in Sec. II
below. Hereafter, a general method of determining the
equivalent coupling factor is presented for a master structure
with one-dimensional wave motion. Next, in Sec. IV, the
fuzzy boundary impedance will be derived for structural
fuzzy attached to the master through an area. After this, the
method of finding the equivalent coupling factor is extended
to two-dimensional wave motion in the master structure. Fi-
nally, in Sec. V, the method will be validated through nu-
merical simulations and its usability and limitations will be
discussed in Section VI.

II. STRUCTURAL FUZZY WITH CONTINUOUS
BOUNDARY

A. Introduction

Fuzzy structure theory is intended for predicting the vi-
bration and damping induced in a master structure due to one
or more fuzzy substructures. The method is applicable
mainly in the midfrequency range, where the master struc-
ture has well separated modes and where the fuzzy is highly
resonant. Since the fuzzy is more or less compliantly at-
tached to the master, the fuzzy behaves predominantly simi-
lar to a large number of “sprung masses” or “dynamic neu-
tralizers” resonating at different frequencies. If these
resonance frequencies of the fuzzy are closely spaced, then
the fuzzy substructure will minimize and absorb vibration
energy from the master over a considerable frequency band.
Consequently, by considering the vibration response of the
master, it appears as if the master is highly damped.

In the theory of fuzzy structures, each fuzzy substructure
is modeled as infinitely many dynamic neutralizers attached
to the connection surface. These neutralizers have different
masses and their resonance frequencies are closely spaced,
and altogether they, therefore, introduce a frequency-
dependent damping in the master. Further, it is assumed that
the total mass of all the oscillators is equal to the mass of the
fuzzy substructure that is to be modeled. A fuzzy substruc-
ture is typically separated from the master and conveniently
modeled in terms of its boundary impedance
z�fuzzy,��x0 ,y0 ;x1 ,y1�. This boundary impedance expresses the
relationship between the force per unit area F� � �x0 ,y0� in-
duced at �x0 ,y0� due to the velocity v� �x1 ,y1� of an infinitesi-
mal area element dA at �x1 ,y1�, while all other positions are
locked, that is,

F� ��x0,y0�

= �z�fuzzy,��x0,y0;x1,y1�v� �x1,y1�dA�v� ��x,y���x1,y1��=0. �1�

B. The spatial oscillator

In many cases, the fuzzy substructure is attached to the
master through a continuous boundary. This also implies that
the stiffness distribution of the fuzzy has to be taken into
account and that the associated transfer terms of the imped-
ance in Eq. �1� can only be neglected in special cases.7 Con-
sider a fuzzy substructure connected to the master structure
through a continuous boundary. Generally, this continuous
boundary will be a surface, but for the sake of simplicity, we
shall here consider a fuzzy attached to the master through a
one-dimensional boundary of length Lfuzzy. Soize3 incorpo-
rates the stiffness of such a fuzzy substructure by including a
spatial memory in the fuzzy boundary impedance. This is
accomplished by introducing a spatial oscillator as sketched
in Fig. 1�a�. The oscillator is defined by its stiffness width or
spatial memory 2�, the point mass M, the lossfactor �, and
the resonance frequency fr. Furthermore, it has a stiffness
density distribution s���x�−x1� that only depends on �x�−x1�
and which is defined as
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s���x� − x1� = s�g��x� − x1� = �M�r
2��1 + i��g��x� − x1� ,

�2�

where �r=2�fr is the angular resonance frequency and s� is
the complex total stiffness of the oscillator. The distribution
function g��x�−x1� is an even function with an area of 1. As
a one-dimensional spatial memory, Soize suggests3 that
g��x�−x1� is a triangular distribution, as shown in Fig. 1�b�.
This distribution is given as

g��x� − x1� = g��x1 − x�� =
� − �x� − x1�

�2 1�x1��x�−�,x�+���,

�3�

where 1�x1��x�−�,x�+��� is a function, which is equal to 1 when
x1� �x�−� ,x�+�� and 0 elsewhere. The spatial oscillator is
discussed in more detail in Ref. 7.

C. Sets of infinitely many identical oscillators

Let us consider a fuzzy substructure with spatial
memory connected to the master over a length Lfuzzy. Such a
substructure comprises a double infinity of spatial oscillators,
as sketched in Fig. 2, where each oscillator is depicted as a
point mass and the triangular stiffness distribution shown in
Fig. 1�b�. First, the oscillators are grouped into sets of infi-
nitely many identical oscillators overlapping one another
such that each position on Lfuzzy is associated with a point
mass. Second, the structural fuzzy consists of infinitely many
different sets, each with its individual resonance frequency,
mass, and spatial memory.

Now, the nth set �n� �1,��� of spatial oscillators is
shown in Fig. 3�a�. This set has a resonance frequency fr,n, a
total mass of Mn, and a spatial memory of 2�n. Further, the
ith spatial oscillator �i� �1,��� of this nth set has the natural
frequency fr,n,i= fr,n, a mass Mn,i=Mn /Lfuzzy, and a total stiff-

ness s�n,i. The relationship between the force per unit length
F��,n�x0� at x0 and the velocity v�x1� at x1, that is, the bound-
ary impedance of the nth set z��,n�x0−x1 , fr,n�, was derived in
Ref. 1. When multiplied by dx1, this is given as

z��,n�x0 − x1, fr,n�dx1 =
s�n,i

i�
��x0,x1

−
s�n,i

s�n,i − �2Mn,i
�g�n

� g�n
�

��x0 − x1�dx1�
= − i�� fr,n

2

f2 	�1 + i��Mn,i

���x0,x1

−
fr,n

2 �1 + i��
fr,n

2 �1 + i�� − f2 �g�n * g�n
�

��x0 − x1�dx1� , �4�

where �x0,x1
is the Kronecker delta and � means convolution

with the argument �x0−x1�. It is seen that the transfer terms
of the boundary impedance in Eq. �4� are proportional to
�g�n

�g�n
��x0−x1�. This function has been plotted in Fig. 4,

and it can be observed that these transfer terms are largest
close to x1 and that the spatial memory in effect reaches 2�n

on either side of the response point x1.
The total boundary impedance of the fuzzy substructure

can be determined as the sum of all the impedances of all the
sets, which yields

u(x)

u(x’)

1/ε

gε(x’,x1)
x’

Mn,i

x1-ε x1+ε

x1-ε x1+ε

(a)

(b)

x1

x1

x

x’

x

x’

FIG. 1. Fuzzy oscillator with spatial memory. �a� Oscillator attached to a
boundary of motion u�x� and �b� stiffness distribution function of the oscil-
lator springs g��x�−x1�.

structural fuzzy consisting of infinitely many
different sets of spatial oscilators.

deterministic master structure

x

∞

∞

n’th set

Lfuzzy

FIG. 2. Master structure undergoing one-dimensional wave motion with a
fuzzy substructure attached through a one-dimensional continuous boundary
in the x direction. The fuzzy substructure has infinitely many sets of spatial
oscillators and the nth set consists of infinitely many identical oscillators
with resonance frequency fr,n,i, mass Mn,i, and spatial memory �n.

Mn,i
sn,i x

Lfuzzy

(a)

(b)

x’

x
x’

Mn,i

FIG. 3. A set of infinitely many identical oscillators attached to the master:
�a� spatial oscillators and �b� equivalent local oscillators.
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z�fuzzy,��x0 − x1�dx1 = 

n=1

�

z�,n�x0 − x1, fr,n�dx1. �5�

This discrete sum can be replaced by an integral if there is
sufficient modal overlap.20 This is done by replacing z�,n�x0

−x1 , fr,n�dx1 from Eq. �4� with a continuous distribution de-
noted by z��x0−x1 , fr�dx1dfr, where fr is a continuous fre-
quency variable �fr,n→ fr�, and further by assuming that the
sets resonate between bounding frequencies fr,lower and
fr,upper. This gives

z�fuzzy,��x0 − x1�dx1 = �
fr,lower

fr,upper

z��x0 − x1, fr�dx1dfr. �6�

By substituting herein the detailed expression of a continu-
ous version of Eq. �4�, the fuzzy boundary impedance be-
comes

z�fuzzy,��x0 − x1�dx1

= −
i2�f

Lfuzzy
�

fr,lower

fr,upper � fr
2

f2	�1 + i��mfuzzy�fr�

���x0,x1
−

fr
2�1 + i��

fr
2�1 + i�� − f2 �g� * g���x0

− x1�dx1�dfr, �7�

where Mn,i has been replaced by mfuzzy�fr�dfr that corre-
sponds to the total mass of the fuzzy substructure resonating
in the infinitesimal frequency band between fr and fr+dfr.

D. Equivalent local modeling method

A numerical implementation of the boundary impedance
given in Eq. �7� is rather complicated due to its nonlocal
nature and requires, for instance, the use of a finite element
model with special fuzzy elements. Unfortunately, this is in
contradiction with the idea of the theory of fuzzy structures
being a simple modeling tool. However, as indicated in Fig.
3�b�, Soize3 solved this problem by introducing a set of
equivalent local oscillators that can imitate the boundary
forces induced by a set of spatial oscillators. This means that
the boundary impedance z�fuzzy,� in Eq. �7� can be replaced
with an equivalent boundary impedance z�fuzzy,equ that has di-
rect terms only. Figure 3�b� shows that the equivalent local
oscillator corresponds to a modified simple oscillator with a
spring stiffness s�1,n,i, but where the point mass is grounded
via a second spring with stiffness s�2,n,i, such that s�n,i=s�1,n,i

+s�2,n,i. This means that the equivalent oscillator is springlike

at low frequencies because the massless bar that supports the
point mass in Fig. 1�a� is unable to rotate; the spatial oscil-
lators, therefore, impose springlike properties on the master
at low frequencies.

The relationship between the stiffnesses of the springs
for the nth set of equivalent oscillators shown in Fig. 3�b� is
given in terms of the equivalent coupling factor �n,i and can
be expressed as7

�n,i = s�1,n,i/�s�1,n,i + s�2,n,i� = s�1,n,i/s�n,i, �8�

where �n,i� �0,1�. This parameter �n,i must be determined
as a function of the characteristic dimension �n of the spatial
oscillators, and such a derivation is presented in Sec. III. By
introducing �n,i, the boundary impedance z�equ,n�x0 , fr,n� of the
nth set of equivalent local oscillators becomes3

z�equ,n�x0, fr,n� =
s�n,i

i�
�1 −

s�n,i

s�n,i − �2Mn,i
�n,i	

= − i�� fr,n
2

f2 	�1 + i��Mn,i

��1 −
fr,n

2 �1 + i��
fr,n

2 �1 + i�� − f2�n,i� . �9�

Note that �n,i→1 when s�2,n,i→0 and z�equ,n will then ap-
proach the impedance of a simple oscillator. Further, when
�n,i→0, then s�1,n,i→0, which indicates that the structural
fuzzy has no effect on the master. Inserting a continuous
version of Eq. �9� into Eq. �6� yields the boundary imped-
ance z�fuzzy,equ�x0� of the equivalent fuzzy,

z�fuzzy,equ�x0� = −
i2�f

Lfuzzy
�

fr,lower

fr,upper � fr
2

f2	�1 + i��mfuzzy�fr�

��1 −
fr

2�1 + i��
fr

2�1 + i�� − f2��dfr. �10�

This expression also applies for two-dimensional structural
fuzzy when the connection length Lfuzzy is replaced by the
connection area Afuzzy. It should be noted that the equivalent
coupling factor � generally is a function of frequency. In a
companion paper,7 it was suggested that � can be determined
as a function of the ratio � /	, where 	 is the wavelength of
vibration in the master structure, which has one-dimensional
wave motion only.

III. METHOD OF DETERMINING THE EQUIVALENT
COUPLING FACTOR

A. Matching of boundary forces

Before the suggested equivalent modeling method can
be utilized, it is necessary to establish a relationship between
the parameters � and �. This requires that the boundary
forces induced by the set of spatial oscillators are matched
with the forces induced by the equivalent local oscillators.
Results for the equivalent coupling factor � determined in
this way were published by Soize3 but only for a very spe-
cific case of a simply supported beam with an attached fuzzy
substructure with continuous boundary. His results show the
mean value of � as a function of the spatial width � for only

(gε *gε)(x0-x1)

x1-ε x1+ε

x’
gε(x’,x1)

x1 x1+2εx1-2ε

x

1/ε
x’

FIG. 4. Fuzzy oscillator with spatial coupling: ---, stiffness distribution
function g��x�−x1� of the oscillator springs and —, convolution of the stiff-
ness distribution with itself �g��g���x0−x1�.
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three coarse frequency bands with a width of 100 Hz going
from 350 to 650 Hz. The authors of the present paper, how-
ever, seek a simple and general method for finding �. Ac-
cordingly, a method for determining � will be presented in
the following, again as a function of the ratio c=� /	. For
simple master structures with sinusoidal vibration, the wave-
length 	 is equal to the free wavelength. For master struc-
tures with more complicated eigenfunctions, it is suggested
that the term wavelength is replaced by twice the distance
between adjacent nodes.

Next, the matching of the boundary forces induced by
the nth set of spatial and equivalent oscillators can be ex-
pressed as

F� equ,n��x0� = F� �,n��x0� . �11�

In terms of velocities and impedances, this becomes

z�equ,n�x0�v� �x0� = �
Lfuzzy

z��,n�x0 − x1�v� �x1�dx1. �12�

Inserting herein the expressions for the impedances z��,n�x0

−x1� and z�equ,n�x0� from Eqs. �4� and �9�, respectively, yields

s�n,i�1 −
s�n,i

s�n,i − �2Mn,i
�	u� �x0�

= s�n,i�u� �x0� − �
Lfuzzy

s�n,i

s�n,i − �2Mn,i
�g� * g��

��x0 − x1�u� �x1�dx1� . �13�

Next, by rearranging, we obtain an equation that has similar
terms on each side of the equality sign,

s�n,i�u� �x0� −
s�n,i

s�n,i − �2Mn,i
�u� �x0��

= s�n,i�u� �x0� −
s�n,i

s�n,i − �2Mn,i

��
Lfuzzy

�g� * g���x0 − x1�u� �x1�dx1� . �14�

By eliminating these terms, Eq. �14� is reduced to

�u� �x0� = �
Lfuzzy

�g� * g���x0 − x1�u� �x1�dx1, �15�

from which an expression for � is obtained,

��x0� =

�
Lfuzzy

�g� * g���x0 − x1�u� �x1�dx1

u�x0�
. �16�

B. Approximate expressions for the master’s
equivalent coupling factor

Determining � from Eq. �16� requires a detailed knowl-
edge about the form of the motion displacement u� �x1� of the
master. At this point in the analysis, this form has not been
identified and it is, therefore, preliminarily approximated by

a suitably simple function of x. Moreover, since we are
mostly concerned with prediction in the midfrequency range,
it is assumed that the wavelength of the master vibration is
shorter than the length L of the structure. This also implies
that the wave motion in the master is relatively independent
of its boundary conditions. Therefore, a sinusoidal function
is a good approximation for the one-dimensional vibration of
the master, with the exception of the regions very close to the
edges. Thus, it is assumed that the displacement u�x1� of the
master can be described as

u� �x1� = sin�2�

	
x1	 , �17�

where 	 is the free wavelength.21 Inserting this in Eq. �16�
yields � as a function of x0 and c,

��x0,c� =

�
Lfuzzy

�g� * g���x0 − x1�sin�2�

	
x1	dx1

sin�2�

	
x0	 . �18�

Now, the convolution product inherent in Eq. �18� has only
nonzero values when x1� ��x0−2�� , �x0+2��� and it is,
therefore, sufficient to solve the integral in this interval pro-
vided that x1 is at least 2� from the edge of the fuzzy. If this
is fulfilled, no truncation errors occur and an analytical solu-
tion of Eq. �18� is found by using the symbolic mathematics
software MAPLE® �version 10�,

��x0,c� = ��c� = � sin��c�
�c

�4

. �19�

This is a surprisingly simple result, which is independent of
the position x0 on the master structure because of the homo-
geneity of the fuzzy. The function sin��c� / ��c� in Eq. �19� is
recognized as the sink function. Figure 5 shows � as a func-
tion of c=� /	 for two different regions. In Fig. 5�a�, it is
seen that �=1 when �=0, which is the case of no spatial
memory. Up to about c=0.8, � appears to be a uniformly
descending function. For values higher than c=0.8, � be-
comes very small and the ordinate is, therefore, extended in
Fig. 5�b�. Here, the behavior of the sink function is easily
recognized, showing soft minima and maxima, and it is re-
vealed that � becomes zero when c=1,2 ,3 , . . ..

For the remaining part of the fuzzy where x1 is closer
than 2� from the edge of the fuzzy, it is not possible to
integrate with respect to x1 in the whole interval ��x0

−2�� , �x0+2��� and the solution for � becomes quite com-
plicated. The simplest way to overcome this problem is to
assume that � takes on a constant value that can be calcu-
lated from Eq. �19�. The truncation error introduced because
of this assumption naturally depends on the length 2�.
Hence, the larger the values of � are, the larger the intro-
duced truncation error is.

At this point, two assumptions have been made: First,
the vibration of the master is approximated by a sinusoidal
function. Errors due to this assumption will only be signifi-
cant at low frequencies where the free wavelength21 in the
master is large. Second, � is considered to be constant with
position. As mentioned, this assumption depends on the
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variation of � with frequency. The significance of these er-
rors in the prediction of � will be examined in Sec. V, where
numerical simulations will be presented for a plate master
structure with an attached fuzzy substructure with spatial
memory.

IV. STRUCTURAL FUZZY WITH TWO-DIMENSIONAL
SPATIAL MEMORY

A. Determination of the two-dimensional fuzzy
boundary impedance

So far, the method of including spatial memory has been
restricted to fuzzy substructures attached to the master struc-
ture through a one-dimensional boundary. Most real-life
fuzzy structures, however, are attached to their master
through a surface that also undergoes two-dimensional vibra-
tion. Therefore, the method of including spatial memory in
this modeling of fuzzy structures is required and it is, there-
fore, extended to two dimensions in the following.

To accomplish this, the stiffness distribution function
g��x�−x1� in Eq. �3� for the spatial oscillator is initially re-
placed by a two-dimensional version g���r� ,
� ;r1 ,
1��,
which is a function of the distance �r� ,
� ;r1 ,
1� between two
surface points �r� ,
�� and �r1 ,
1� described in polar coordi-
nates; it should be noted that the point mass of the spatial
oscillator is located at �r� ,
��. This two-dimensional stiff-
ness distribution that is shown in Fig. 6�a� in a Cartesian
coordinate system represents a cone with a radius of � at its
base and a volume of 1. Based on these requirements, the
distribution can be expressed mathematically as

g���r�,
�;r1,
1�� =
� − �r�,
�;r1,
1�

1

3
��3

1��r�,
�;r1,
1����

=
� − �r�2 + r1

2 − 2r�r1 cos�
� − 
1�
1

3
��3

�1��r�,
�;r1,
1����, �20�

where 1��r�,
�;r1,
1���� is a function that is unity when
�r� ,
� ;r1 ,
1���, and 0 elsewhere. The corresponding stiff-
ness distribution of a two-dimensional spatial oscillator
s��,n,i��r� ,
� ;r1 ,
1��, thus, becomes

s��,n,i��r�,
�;r1,
1�� = s�n,ig���r�,
�;r1,
1��

= �Mn,i�r,n
2 ��1 + i��g���r�,
�;r1,
1�� ,

�21�

where it applies that Mn,i=Mn /Afuzzy and Afuzzy is the area of
the fuzzy connection surface. In the case of a one-
dimensional connection boundary, Ref. 7 gives an expression
for the force per unit length F� n,i��x0� at x0 due to the dis-
placement u� �x1� at x1 caused by only one spatial oscillator.
By replacing this one-dimensional version of g� by the new
two-dimensional version, we obtain an expression for the
relationship between the force per unit area F� n,i��r0 ,
0� and
the displacement u�r1 ,
1� that reads
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F� n,i��r0,
0� = s��,n,i��r�,
�;r1,
1�����r�,
��,�r1,
1�

−
s��,n,i��r�,
�;r1,
1��r1dr1d
1

− �2Mn,i + s�n,i
�u� �r1,
1� ,

�22�

where the infinitesimal area dA1 is given as dA1=r1dr1d
1.
Next, to find the force per unit area F� n��r0 ,
0� due to a set of
infinitely many identical spatial oscillators with the base dis-
placement u� �r1 ,
1�, Eq. �22� is integrated with respect to
�r� ,
�� over the fuzzy connection surface as

F� n��r0,
0� = �
Afuzzy

s��,n,i��r�,
�;r1,
1�����r�,
��,�r1,
1�

−
s��,n,i��r�,
�;r1,
1��dA1

− �2Mn,i + s�n,i
�u� �r1,
1�dA�. �23�

Finally, this expression can be reduced to

F� n��r0,
0� = �s�n,i��r�,
��,�r1,
1� −
s�n,i

2

− �2Mn,i + s�n,i

�h���r1,
1;r0,
0��dA1�u� �r1,
1� , �24�

where the function h���r1 ,
1 ;r0 ,
0�� is given by

h���r1,
1;r0,
0��

= �
Afuzzy

g���r�,
�;r1,
1��g���r�,
�;r0,
0��dA�

= �
0

2� �
0

2�

g���r�,
�;r1,
1��g���r�,
�;r0,
0��r�dr�d
�.

�25�

It follows that the boundary impedance of the nth set multi-
plied by dA1 is given as

z��,n��r0,
0;r1,
1��dA1

=
s�n,i

i�
���r�,
��,�r1,
1� −

s�n,i

− �2Mn,i + s�n,i

�h���r1,
1;r0,
0��dA1� , �26�

and by analogy to Eq. �7�, the fuzzy boundary impedance
becomes

z�fuzzy,���r0,
0;r1,
1��dA1

= −
i2�f

Afuzzy
�

fr,lower

fr,upper � fr
2

f2	�1 + i��mfuzzy�fr�

����r�,
��,�r1,
1� −
fr

2�1 + i��
fr

2�1 + i�� − f2

�h���r1,
1;r0,
0��dA1�dfr. �27�

From Eq. �27�, it is seen that transfer impedance terms of the
fuzzy substructure are proportional to the function

h���r1 ,
1 ;r0 ,
0��. This function can be calculated numeri-
cally and the result is shown in Fig. 6�b� for the case
�r1 ,
1�= �0,0�. It is clearly observed that h� looks similar to
a two-dimensional version of the convolution shown in Fig.
4. Also, it can be seen that h� extends to a radius of 2�
relative to �r1 ,
1� and that the volume under the surface is
unity.

B. Determination of the equivalent coupling factor

By analogy to the method in Sec. III, the equivalent
coupling factor will now be determined as a function of c
=� /	b, where 	b is the vibration wavelength for bending
waves. Again, 	b is suggested to be the free wavelength for
simple master structures and twice the distance between ad-
jacent nodes for more complicated master structures. An ex-
pression for the equivalent coupling factor is found by ex-
tending the expression in Eq. �16� to two dimensions
yielding

��r0,
0;c� =

�
Afuzzy

h���r1,
1;r0,
0��u� �r1,
1�dA1

u�r0,
0�

=

�
0

2� �
0

2�

h���r1,
1;r0,
0��u� �r1,
1�r1dr1d
1

u� �r0,
0�
.

�28�

As for the one-dimensional case, the determination of � re-
quires prior knowledge of the vibration displacements of the
master structure. Again this problem is overcome by approxi-
mating the displacements by a product of two sinusoidals as

u� �x1,y1� = sin�2�

	x
x1	sin�2�

	y
y1	 , �29�

where 	x and 	y are the vibration wavelengths for bending
motion in the x and y directions, respectively. By substituting
x1=r1 cos�
1� and y1=r1 sin�
1� in Eq. �29�, the displace-
ment is transformed to polar coordinates, giving

u� �r1,
1� = sin�2�

	x
r1 cos�
1��sin�2�

	y
r1 sin�
1�� . �30�

Further, the bending wavelength 	b can be found from the
relation between the wave numbers,21

kb
2 = kx

2 + ky
2 ⇔ �2�

	b
	2

= �2�

	x
	2

+ �2�

	y
	2

, �31�

which by rearranging becomes

	b =� 	x
2	y

2

	x
2 + 	y

2 . �32�

As for the one-dimensional case, it is suggested that 	b is
replaced by the free wavelength for simple master structures
and by twice the distance between adjacent nodes for master
structures with more complicated eigenfunctions. Again, by
only considering positions on the fuzzy connection surface
that are at least a distance of 2� from the edges of the fuzzy,
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an expression for � is found by substituting Eqs. �25� and
�30� into Eq. �28�. This expression becomes quite compli-
cated and the integrals cannot be solved analytically. Never-
theless, by using numerical integration, � has been deter-
mined as a function of c=� /	b and the results are shown in
Fig. 7.

First, it should be noted that � does not depend on the
forcing position �r0 ,
0� as long as the response position
�r1 ,
1� is at least a distance of 2� from the edges of the fuzzy
connection surface. Second, it is found that � is insensitive
to the specific values of 	x and 	y and only depends on 	b.
Figure 7�a� shows that the variation of � resembles the uni-
formly descending function seen in Fig. 5�a� for values up to
c=0.8. Again, for values above c=0.8, the equivalent cou-
pling factor takes on very small values. Closer inspection of
this low value region �see Fig. 7�b�� reveals a different pat-
tern of smooth minima and maxima from that observed in
Fig. 5�b�. Nevertheless, the equivalent coupling factor still
becomes 0 for certain values of c.

V. NUMERCIAL VALIDATION OF EQUIVALENT
MODELING METHOD

In a companion paper,7 it was shown that the spatial
memory in the structural fuzzy significantly reduces its
damping effect. This finding was achieved by using the
equivalent modeling method just described in Sec. II. In the
following, the equivalent modeling method will be validated
for certain two-dimensional problems by numerical simula-
tions. The finite element method22 has been used to solve the
flexural vibration response of a rectangular plate that is con-
sidered as the master; the plate undergoes two-dimensional
bending vibration and is assumed to be simply supported
along all four edges that have side lengths Lx and Ly, with an

aspect ratio given by Ly =1.3Lx. A fuzzy substructure is at-
tached to the plate on the whole surface area A=LxLy, so that
Afuzzy=A. The loss factor of the plate is set to 0.005, whereas
the loss factor of the fuzzy oscillator springs has been chosen
to be 0.03. The resonating mass per unit frequency mfuzzy�fr�
is a normal distribution given as

mfuzzy�fr� =
Mfuzzy

std · �2�
e−�fr0 − fr�

2/�2·std2�, �33�

where fr0 is the center frequency and std is the standard
deviation. For this distribution, the bounding frequencies
fr,lower and fr,upper corresponds to �=0 and �, respectively.
The chosen mass distribution is shown in Fig. 8 as a function
of the plate’s nondimensional frequency � defined as

� = ��12
�1 − �2�
E

�Lx
2 + Ly

2

h
, �34�

where h is the plate thickness, and 
, E, and � are the density,
Young’s modulus, and Poisson’s ratio of the plate, respec-
tively. The center frequency fr0 corresponds to �=1200 and
the standard deviation std=0.7fr0. The total mass of the at-
tached fuzzy Mfuzzy is one-twentieth of the plate mass, 
Ah.
Also, the free bending wavelength 	b in the master plate is
found21

	b = 2��Lx
2 + Ly

2

�
. �35�

For the following response prediction, the boundary im-
pedance of the fuzzy is computed by numerical integration of
the integrals in Eqs. �27� and �10�, where Lfuzzy is replaced by
Afuzzy in the latter. Further, �=c	b is assumed to be constant
with frequency implying that c and �, respectively, increases
and decreases with frequency.

First examined is the effect of a simple fuzzy without
spatial memory that is modeled by using Eq. �27� with �
=0. Figure 9 shows results for the vibration velocity re-
sponse per unit harmonic force of the simply supported mas-
ter plate, with and without such a fuzzy substructure. Here,
the response location �x ,y� and excitation position �x0 ,y0�
coincide, so the results represent the direct mobility of the
system. Since the fuzzy has no spatial memory, it is clearly
seen that it has a strong damping effect on the vibration
response of the master. This effect mainly occurs from �
=500 and upwards, where the resonating mass per unit fre-
quency has an appreciable value; that is, it is approximately
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half or more of its maximum value according to the results in
Fig. 8. At frequencies above �=1000, it is furthermore seen
that the direct mobility closely approaches the asymptote of
−80 dB for a master plate of infinite size. It should be noted
that such high damping effect only occurs at early and mod-
erate times for fuzzy substructures consisting of a finite num-
ber of oscillators, which are excited by an impulse, since the
“absorbed” energy returns from the fuzzy to the master at
later times.15,16 Drexel and Ginsberg23 also investigated this
damping effect for a master cantilever beam with a finite
number of spatially distributed discrete oscillators.

An example of the transfer mobility of the plate with
and without structural fuzzy is shown in Fig. 10. As in Fig. 9,
the vibration velocity response of the master is reduced sig-
nificantly due to the fuzzy from about �=500 and upwards.
Also, at high frequencies, the response is strongly reduced
and is even less than the transfer mobility of a corresponding
infinitely large plate which has a low value of −94 dB at �
=2000.

Next presented is the validation of the equivalent predic-
tion method. This validation consists in a comparison of
simulated responses based on the prediction method using
the equivalent local oscillators �Eq. �10�� and the reference
method based on spatial oscillators �Eq. �27��. Consider the
simply supported master plate with an attached structural
fuzzy that has a constant and high spatial memory �=0.2Lx.
By using this value of � in Eq. �28�, the corresponding
equivalent coupling factor is found as a function of fre-
quency and substituted in Eq. �10�. A comparison of the two
predictions is shown in Fig. 11 that displays the vibration
responses in terms of the direct mobility. This reveals that
there is a very good agreement between the two prediction
methods from about �=500 and upwards. Significant devia-
tions occur only at low frequencies because of the assumed
sinusoidal vibration �Eq. �29��. Since the plate’s edges are
simply supported, the sinusoidals are only a really good ap-
proximation around the plate’s natural frequencies; that is,
the frequencies where the conditions 2L /	x=1,2 ,3 , . . ., and
2L /	y =1,2 ,3 , . . ., are both fulfilled. Nevertheless, this error
in the estimation of � rapidly reduces with increasing fre-
quency. Evidently, truncation errors that occur at all frequen-
cies due to the constant value of � do not have a large influ-
ence on the prediction based on equivalent oscillators.
Moreover, compared to the previous case of no spatial
memory �Fig. 9�, it is also observed that the spatial memory
drastically reduces the damping effect of the fuzzy. In the
companion paper,7 it was shown how the damping effect
decreases when � is reduced. The reason for this is that a
reduction in � corresponds to an increase in �. Thus, due to
the local angular motion in the master structure, the spring
elements in the spatial oscillators counteract one another
when ��0.

The corresponding transfer mobility of the master plate
with structural fuzzy of high spatial memory is shown in Fig.
12. Again, the two predictions are seen to be in good agree-
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ment at frequencies from �=500 and upwards. Furthermore,
the spatial memory in the fuzzy here is also seen to radically
reduce the damping effect.

The equivalent method of prediction performs poorly at
low frequencies, say, below �=500, because the sine-
function approximations of the master vibration pattern have
to hold for two dimensions. For a one-dimensional master
structure, however, this approximation only involves one di-
rection, and the equivalent method is, therefore, expected to
perform well also at lower frequencies. To demonstrate this,
a beam with one-dimensional wave motion is considered as
the master. A fuzzy substructure is attached on the whole
length L of the beam, so that Lfuzzy=L. The loss factor of the
beam is set to 0.005, whereas the loss factor of the fuzzy
oscillator springs has been chosen to be 0.03. The resonating
mass per unit frequency is again a normal distribution where
the center frequency fr0 corresponds to �=1200 and std
=0.27fr0. The nondimensional frequency � for the beam is
defined as

� = ��12


E

L2

h
. �36�

In this example, the spatial memory �=0.1L and the total
mass of the fuzzy Mfuzzy is one-twentieth of the beam mass,

SL, where S is its cross-sectional area. The vibration veloc-
ity of the beam in terms of the input mobility is shown in
Fig. 13. It is seen that the results of the two types of predic-
tions given by Eqs. �7� and �10� are almost coinciding from
�=250 and upwards. Thus, as was anticipated, the equiva-
lent method is found to apply at lower frequencies in the
one-dimensional case. The results show that the prediction is
reliable at least one octave lower in frequency for the two-
dimensional case.

VI. SUMMARY AND DISCUSSION

In 1993, Soize3 introduced a method for modeling struc-
tural fuzzy with a continuous boundary. This method was
later extended17 and validated.18 Moreover, a part of this
method was systematically examined and reformulated in a

more simple form in a companion paper.7 The main objective
of the present paper is to extend the method to two dimen-
sions and to improve its usability.

Structural fuzzy with a continuous boundary can be
modeled by including the stiffness of the fuzzy in terms of a
spatial memory. Soize implemented such spatial memory by
introducing the so-called spatial oscillators. However, to
make the implementation of the fuzzy boundary impedance
viable, he replaced these nonlocal spatial oscillators with lo-
cal equivalent oscillators that can imitate boundary forces
imposed on the master. This approximation required the in-
troduction of the equivalent coupling factor that describes
the relationship between the width of the spatial oscillators
and the stiffness of the local equivalent oscillators. The cur-
rent paper has presented a simple and general method for
determining this factor as a function of a practical parameter
given by the ratio between the width of the spatial oscillators
and the free structural wavelength in the master structure. By
assuming that the vibration pattern of the master structure
can be approximated by one or more sinusoidals and that
truncation effects at the end of the fuzzy connection bound-
ary can be ignored, an expression for the equivalent coupling
factor has been derived. This expression was evaluated ana-
lytically for one-dimensional wave motion in the master
structure, and it is revealed that the solution is a very simple
expression in the form of a sink function to the power of 4.

For instructive reasons, the method of including memory
in the structural fuzzy was originally formulated for a struc-
tural fuzzy attached to the master through a one-dimensional
boundary. In the present paper, this formulation has been
extended to two dimensions, so that it applies for structural
fuzzy attached to the master through an area. This is
achieved by introducing a two-dimensional stiffness distribu-
tion for the spatial oscillator. Additionally, an expression for
the equivalent coupling factor is derived and computed nu-
merically as a function of a practical parameter, that is, the
ratio between spatial memory and the free wavelength of the
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vibration in the master. This solution proved to be closely
related to the solution for one-dimensional wave motion in
the master.

A validation of the equivalent method by using local
equivalent oscillators as a replacement for the spatial oscil-
lators has not previously been published in open literature. In
the present paper, the validity of the method has, therefore,
been tested by comparing numerical simulations of the re-
sponse of a master plate with attached structural fuzzy. Re-
sults, based on the use of spatial oscillators and equivalent
oscillators show a very good agreement for frequencies
above �=500, where � is the nondimensional frequency of
the master structure. Below this frequency, errors are mainly
caused by the assumption of sinusoidal vibration displace-
ment. For a master beam with one-dimensional wave motion
and a fuzzy substructure attached on the whole length, it is
revealed that good agreement between predictions is already
achieved from about �=250. The reason is that the assump-
tion of sinusoidal vibration displacement only has to be ful-
filled for one dimension.

The present paper has made various assumptions in or-
der to develop a viable method for modelling structural fuzzy
with a continuous boundary. First of all, it has been assumed
that the size of the spatial memory in the fuzzy is known
beforehand. In real-life engineering structures, the spatial
memory is often unknown and relatively difficult to measure.
Further, the method of determining the equivalent coupling
factor only applies for fairly simple master structures, where
its vibration pattern can be approximated as one or more
sinusoidals in the midfrequency range. Also important is the
estimation of the distribution of resonating mass per unit
frequency. It is clear that practical methods for determining
these fuzzy parameters are still needed.
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