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  Theoretical analysis is combined with numerical simulations to optimize designs and functionalities of acoustofluidic
devices, i.e. microfluidic devices in which ultrasound waves are used to anipulate biological particles. The resonance 
frequencies and corresponding modes of the acoustic fields are calculated for various specific geometries of glass/silicon
chips containing water-filled microchannels. A special emphasis is put on taking the surrounding glass/silicon material
into account, thus going beyond the traditional transverse half-wavelength picture. For the resonance frequencies, where
the largest possible acoustic powers are obtained in the microfluidic system, the time-averaged acoustic radiation force on
single particles is determined. Schemes for in situ calibration of this force are presented and discussed.
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1. INTRODUCTION

The studies of acoustic radiation forces on particles have a long history. The analysis of incompressible particles in

acoustic fields dates back to the work in 1934 by King [1], while the forces on compressible particles were calculated

in 1955 by Yosioka and Kawasima [2]. Their work was admirably summarized in 1962 in a short paper by Gorkov [3].

The use of ultrasound standing waves for particle manipulation and separation has received renewed interest in the

past decade since its application in the emerging field microfluidics [4]–[20].

In these recent papers, standing ultrasound resonances have been established in flat microfluidic channels of height

h ≈ 150 µm, width w ≈ 400 µm, and length � ≈ 4 cm embedded in a silicon/glass chip with an area several square

centimeter large and a height H ≈ 1 mm. A wide spread assumption is that due to the large acoustic impedance ratio of

the order of 13 between silicon/glass and water, the leading resonance at frequency f is given by the half-wavelength

condition λ/2 = cwa/(2 f ) = w. This leads to f ≈ 2 MHz. This is of course not exactly true. By taking the whole

silicon/glass/water resonator into account, we study theoretically the deviations from this idealization to be expected

in actual devices.

Another particular problem with the application of standing ultrasound waves in microfludic systems concerns the

calibration of the acoustic radiation force. Acoustic power sent from the actuator to the microfluidic system suffers

losses due to heating in the system and acoustic radiation to the surroundings. These losses are hard to measure,

and at the same time it is difficult to mount pressure sensors inside the microfluidic system for direct determination

of the acoustic power actually present. We present a possible in situ calibration of the acoustic radiation force from a

standing ultrasound wave on suspended spherical particles in a microfluidic channel. The method relies on determining

the critical flow velocity above which the particles cease to be trapped by the ultra sound forces.

2. BACKGROUND THEORY

Linear acoustics and acoustic radiation forces are treated in many textbooks. Basic theory can be found in Lighthill [21]

and theoretical aspect of acoustics in microfluidics, acoustofluidics, can be found in Bruus [22]. In this work we rely

on the formulation of Gorkov [3].

2.1. Governing equations and boundary conditions

We consider a silicon/glass chip containing a microchannel filled with an aqueous solution of particles. A piezo

actuator is glued to the chip, such that when applying an AC voltage at MHz frequency, the piezo element vibrates

and induces a time-harmonic ultrasound pressure field p1 exp(−iωt), where ω = 2π f is the angular frequency and f
the frequency. Here, we use the complex representation of the harmonic time dependence. In the following the time-

harmonic factor is implicitly assumed, and we just write the amplitude p1. Likewise for the velocity field vvv1 of the

carrier liquid.

Before the onset of the external ultrasound field the solution is in a quiescent state at constant uniform pressure

pwa and zero velocity. The viscosity of the carrier liquid has a negligible influence on the acoustic radiation forces.

Consequently, to a good approximation, the pressure field p1 and velocity field vvv1 inside the chip and the microchannel

are governed by simple linear acoustics of inviscid fluids, i.e. the Helmholtz wave equation for the pressure and

potential flow for the velocity,

∇2 p1 = − ω2

c2
wa

p1, (1a)

vvv1 = − i

ωρwa

∇∇∇p1. (1b)

Here, cwa and ρwa is the speed of sound and the density of the carrier liquid, respectively. Note that in this simple

model we neglect the shear waves in the solids.

At a boundary characterized by the surface normal vector nnn, we employ three different boundary conditions in this

work: the hard wall (zero velocity) condition, the soft wall (zero pressure) condition, and the continuity condition for

R. Barnkob and H. Bruus

Proceedings of Meetings on Acoustics, Vol. 6, 020001 (2009)                                                                                                                                    Page 2



TABLE 1. Physical parameters used in the model for polystyrene beads in water inside a silicon chip.

Speed of sound, water cwa 1483 ms−1 Density, water ρwa 998 kg m−3

Speed of sound, silicon csi 8490 ms−1 Density, silicon ρsi 2331 kg m−3

Speed of sound, pyrex cpy 5647 ms−1 Density, pyrex ρps 2230 kg m−3

Speed of sound, polystyrene cps 1700 ms−1 Density, polystyrene ρps 1050 kg m−3

Speed of sound ratio cps/cwa βps 1.15 Density ratio ρps/ρwa γps 1.05

Compressibility factor, polystyrene f1 0.276 Density factor, polystyrene f2 0.034

pressure and velocity across interior boundaries,

nnn ·∇∇∇p1 = 0, (hard wall), (2a)

p1 = 0, (soft wall), (2b)

1

ρa
nnn ·∇∇∇p

(a)
1 =

1

ρb
nnn ·∇∇∇p

(b)
1 , and p

(a)
1 = p

(b)
1 , (continuity). (2c)

2.2. Acoustic resonances

The acoustically soft water inside the channel surrounded by the acoustically hard silicon/glass chip forms an

acoustic cavity. This implies that acoustic resonances occur for certain specific frequencies ω j, j = 1,2,3, . . .. An

acoustic resonance at frequency ω j is a state where the average acoustic energy density inside the cavity is several

orders of magnitude larger than at other frequencies ω �= ω j. By tuning the applied frequency to one of these resonance

frequencies, the acoustic forces become so strong that they in a reliable way can be used to manipulate particles

suspended in the carrier liquid.

The exact values of the resonance frequencies ω j depend on the geometry of the acoustic cavity and of the material

parameters of the liquid in the cavity as well as the surrounding material. Specifically, the relevant material parameters

are the speed of sound cwa and density ρwa of the water and likewise the speed of sound csi and density ρsi of the silicon

chip, see Table 1. In the general case, the resonance frequencies can only be calculated using numerical methods,

however, in few cases they may be found analytically.

For a rectangular channel of length l, width w, and height h, surrounded by an acoustically infinitely hard material,

the resonance frequencies may be found analytically. This case approximates our experimental system reasonably

well. Neglecting the inlet and outlet, our microchannel is indeed rectangular. Moreover, since the parameters listed in

Table 1 yields an acoustic impedance ratio (ρsicsi)/(ρwacwa) = 13.4 much larger than unity, the silicon surrounding our

rectangular water channel can to a good approximation be treated as an infinitely hard material. In that case the normal

velocity on all walls is zero, which according to Eq. (1b) is equivalent to Neumann boundary conditions nnn ·∇∇∇p1 = 0

for the pressure. It is easily verified that with this boundary condition the pressure p1 solving Eq. (1a) for a rectangular

box placed along the coordinate axes with its opposite corners at (0,0,0) and (l,w,h) is

p1(x,y,z) = pa cos(kxx)cos(kyy)cos(kzz), with k j = n j
π
L j

, n j = 0,1,2,3, . . . (3)

(a) (b)

FIGURE 1. Color plot (red positive, blue negative) of the pressure field p1 at resonance in a water-filled microchannel of length

l = 5 mm along x, width w = 0.5 mm along y, and height h = 0.2 mm along z, surrounded by an infinitely hard acoustic material,

see Eq. (3). (a) Resonance (nx,ny,nz) = (0,1,0) with f0,1,0 = 1.48 MHz, and (b) (nx,ny,nz) = (3,1,0) with f3,1,0 = 1.55 MHz.
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where pa is the pressure amplitude, and where Lx = l, Ly = w, and Lz = h. The corresponding three-index resonance

frequencies fnx,ny,nz = ωnx,ny,nz/(2π) are given by

fnx,ny,nz =
cwa

2

√
n2

x

l2
+

n2
y

w2
+

n2
z

h2
, with nx,ny,nz = 1,2,3,4, . . . . (4)

Two examples of resonant standing ultrasound waves are shown in Fig. 1.

2.3. The acoustic radiation force

Given the acoustic pressure field p1 and velocity field vvv1 it is possible to calculate the acoustic radiation force on

a particle with volume V and linear dimension V
1
3 much smaller than the acoustic wavelength λ . Both for biological

cells and for micrometric tracer particles we are in this limit. The material parameters, with subscripts "wa" for the

water and "p" for the particle, enter as the speed of sound ratio β and the density ratio γ ,

β =
cp

cwa

, γ =
ρp

ρwa

, (5)

which appear in the pre-factors f1 and f2 as

f1 = 1− 1

γβ 2
, f2 =

2γ −2

2γ +1
. (6)

The general expression for the time-averaged acoustic radiation force FFFac is given by Gorkov [3],

FFFac = −V ∇∇∇
[

f1

2ρwac2
wa

〈p2
1〉−

3 f2ρwa

4
〈|vvv1|2〉

]
= − V

4ρwac2
wa

∇∇∇
[

2 f1〈p2
1〉−3 f2

1

k2
〈|∇∇∇p1|2〉

]
, (7)

where the latter form is obtained by use of Eq. (1b) and k2 = k2
x + k2

y + k2
z .

3. ANALYSIS OF TRANSVERSE HALF-WAVELENGTH MODES

For experimental applications it is desirable to work with half-wavelength waves of odd symmetry in the transverse

y-direction of the water-filled channel, i.e. w = λ/2 and thus a resonance frequency f0,1,0 ≈ cwa/(2w). For such modes

the acoustic radiation force focuses hard particles at the pressure node in the vertical xz-plane along the center line of

the channel, see Fig. 1(a). The question now arises how the width W of surrounding silicon chip affects this simple

estimate for f0,1,0.

3.1. Analysis of 1D models

In Fig. 2 is sketched a 1D model for the transverse y-direction, where for simplicity we introduce the lengths a≡w/2

and b ≡ (W −w)/2 for half the width of the channel and the width of the silicon chip from the channel to the edge,

respectively. The model is symmetric around the center of the channel thus leading to two classes of solutions for the

pressure, namely even and odd modes.

Using the proper symmetry boundary condition at y = −a, either Eq. (2a) for even or Eq. (2b) for odd modes, and

the soft boundary condition Eq. (2b) at y = b, results in cosine (even) or sine (odd) solutions for the pressure waves,

pwa(y) = Awa cos [kwa(y+a)], (even), (8a)

pwa(y) = Awa sin [kwa(y+a)], (odd), (8b)

psi(y) = Asi sin [ksi(y−b)], (8c)
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symmetry

∂ypwa = 0 (even)

pwa = 0 (odd)

continuity

pwa = psi
1

ρwa
∂ypwa = 1

ρsi
∂ypsi

soft wall

psi = 0

−a 0 b

wa si air
y

FIGURE 2. Sketch of the 1D model containing half the water-filled channel (wa) and the silicon chip (si). The model includes

three boundaries; a symmetric point in the center of the channel (y = −a), an interface between channel and chip (y = 0), and

the outer boundary of the silicon chip (y = b). Notice that the boundary condition at the symmetry point gives either even or odd

pressure-modes across the channel.

where Awa and Asi are pressure amplitudes. Employing the continuity condition Eq. (2c) at y = 0 and utilizing that

ksi = kwacwa/csi, results in transcendental equations for even and odd pressure eigenmodes

cot(θ) = z tan(αθ), (even), and cot(θ) = −1

z
cot(α θ), (odd), (9)

where θ = kwaa is the dimensionless wavenumber, z = (ρsicsi)/(ρwacwa) ≈ 13.4 is the acoustic impedance ratio, and

α is the aspect ratio parameter given by

α ≡ cwa

csi

b

a
=

number of wavelengths in the silicon chip

number of wavelengths in the water channel
. (10)

From Eq. (9) it is now possible for a given value of α to determine which value of kwa = 2π/λwa that most accurately

approximates a perfect half-wavelength mode λ ∗
wa = 4a in the water-filled channel. Expressing the actual wavelength

λwa as a function of the ideal wavelength λ ∗
wa and a relative shift δ in the wavelength, we get

λwa = λ ∗
wa(1+δ ). (11)

For a perfect half-wavelength mode we have θ = π/2, and the relative shift in wavelength is zero, δ = 0.

In Fig. 3 is shown a graphic representation of the even and odd pressure eigenmode solutions for α = 1 and 2. The

perfect half-wavelength solution, θ/π = 0.5 is odd in the case of α = 1 (marked A) and even for α = 2 (marked B).

In the latter case two odd solutions (marked C− and C+) are nearly half-wavelength modes with values of θ/π close

to 0.5. The actual pressure modes p(y) for the four cases A, B, C+, and C− are shown in Fig. 4.

A quantitative measure of the quality of a given eigenmode can be obtained from the expression for the acoustic

energy density E ,

E (rrr, f ) =
1

4ρ(rrr)

[
1

(2π f )2
|∇∇∇p1(rrr)|2 +

1

c2
|p1(rrr)|2

]
. (12)

The higher the average acoustic energy density 〈Ewa〉 is in the water-filled channel relative to the maximum acoustic

energy density E max
si in the surrounding silicon chip, the better. For the four specific modes A, B, C+, and C− shown

in Fig. 4 we find numerically that 〈Ewa〉/E max
si = 76.5, 0.4, 10.6, and 10.6, respectively. Clearly, the perfect anti-

symmetric half-wavelength mode in the α = 1 chip has the best figure of merit.

3.2. Analysis of 2D models

We now extend our analysis of the half-wavelength modes from 1D to 2D by taking the length direction of the

system along the x-axis into account on top of the transverse direction along the y-axis. As shown in Fig. 5, the most

prominent change from 1D to 2D is the appearance of oscillations in the axial direction along the x-axis, a feature not

possible in 1D. The third dimension can be neglected due to the absence of dynamics in this direction for channels

with a height less than half a wavelength [17].
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FIGURE 3. Graphic representation of the even and odd pressure eigenmode solutions in the 1D silicon/water model to the

transcendental equations given in Eq. (9) for (a) α = 1 and (b) α = 2. The perfect half-wavelength solution, θ/π = 0.5 is odd in

the case of α = 1 (marked A) and even for α = 2 (marked B). In the later case two odd solutions (marked C− and C+) are nearly

half-wavelength modes with values of θ/π close to 0.5.
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(A) α = 1, f = 1.9513 MHz, δ = 0

(B) α = 2, f = 1.9513 MHz, δ = 0

(C+) α = 2, f = 1.7182 MHz, δ = 0.136

(C−) α = 2, f = 2.1844 MHz, δ = −0.107

FIGURE 4. Pressure eigenmodes p(y) of the four special cases marked in Fig. 3 for the 1D silicon/water (gray/blue) model given

a water channel width of w = 2a = 0.38 mm. (A) The perfectly matched silicon chip with α = 1 supporting the anti-symmetric

half-wavelength pressure mode in the water channel at frequency f = 1.9513 MHz. (B) The silicon chip with α = 2 also supports

a pressure eigenmode at f = 1.9513 MHz, however this mode is symmetric. (C+) An anti-symmetric eigenmode in the α = 2 chip

with a frequency as close as possible, but lower, to the ideal frequency of panel (A). Here f = 1.7182 MHz and the wavelength in

the water channel is 13.6% too long (δ = 0.136). (C−) An anti-symmetric eigenmode in the α = 2 chip with a frequency as close

as possible, but higher, to the ideal frequency of panel (A). Here f = 2.1844 MHz and the wavelength in the water channel is 10.7%

too short (δ = −0.107).

As in 1D we also in 2D study the α = 1 and α = 2 chips. To enable direct comparison we reuse the 1D widths in

2D for the transverse y-direction. Some of the resulting pressure eigenmodes are shown in Fig. 5. We note how the

modes (A), (B), (C+), and (C−) from the 1D case in Fig. 4 also can be identified in the 2D case of Fig. 5. However,

due to the extra degree of freedom for oscillations in the axial x-direction, it is now possible even in the "bad" α = 2

chip to find eigenmodes (D+ and D−), which are both close to the ideal frequency f = 1.95 MHz of the α = 1 chip

in panel (A) and at the same time possess the wanted odd (one-node) symmetry in the transverse y-direction. The only

drawback is the appearance of several nodes in the axial direction. It is found experimentally that pressure modes with
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a lower number of axial nodes lead to higher separation efficiencies [18].

As in the 1D case, we can study the quality of the 2D pressure eigenmodes by evaluating the ratio of the acoustic

energy density in the water channel relative to that in the silicon chip. The results are listed in Table 2. Again, the

perfectly matched A-mode has the best figure of merit, however it is seen that also the new D+ and D− also perform

well. These three modes have high energy density ratios of 39.2, 32.0 and 36.1, respectively, while the other three

modes have ratios around 6 or lower.

A natural extension of the model is a many-channel chip, which supports higher flow rates. We reuse the former

channel geometries to create a chip with eight parallel channels. Resulting modes for two chips of different values

of α are shown in Fig. 6. We note the obvious different in homogeneity in pressure amplitudes from the perfectly

matching mode in the α = 1 chip to the badly matching mode in the arbitrarily chosen α = 0.47 chip. Regarding the

energy ratios, the perfectly matching chip mode has an homogeneous average energy density ratio of 39.4, whereas the

mode in the non-matching chip has an inhomogeneous energy density with an average ratio of 16.4. The two examples
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FIGURE 5. 2D COMSOL simulations of six pressure eigenmodes in a water-filled channel (wa/blue) of width w = 0.38 mm and

length l = 29.30 mm. The channel is placed in a silicon chip (si/gray) of width W = α (csi/cwa)w and length L = 55.00 mm. The

widths here are as in the 1D system of Fig. 4. For each mode the pressure amplitude is plotted along the indicated red line in the

corresponding 2D color plot of the pressure amplitude. (A) α = 1, W = 2.6 mm: perfectly matching mode at the ideal frequency

f = 1.95 MHz having odd (one-node) transverse symmetry and even (zero-node) axial symmetry. (B) α = 2, W = 4.7 mm: matching

mode at f = 1.95 MHz very near the ideal frequency, but having the un-wanted even (two-node) transverse symmetry and even

(zero-node) axial symmetry. (C+) and (C−) α = 2, W = 4.7 mm: as in Fig. 4 non-matching modes with frequencies far below/above

the ideal frequency having the wanted odd (one-node) transverse symmetry and even (zero-node) axial symmetry. (D+) and (D−)

α = 2, W = 4.7 mm: almost matching modes with frequencies near the ideal frequency having the wanted odd (one-node) transverse

symmetry, but with many nodes in the axial direction.
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TABLE 2. Data for the six 2D pressure eigenmodes shown in Fig. 5. Listed

are the value of the aspect parameter α and the symmetries, as well as the

resulting frequency f , relative shift in wavelength δ , and energy density ratio

obtained by COMSOL simulations.

Mode α x-symm. y-symm. f [MHz] δ [%] 〈Ewa〉/E max
si

A 1 even odd 1.9518 0.0 39.2

B 2 even even 1.9560 1.2 0.2

C+ 2 even odd 1.7209 13.4 6.3

C− 2 even odd 2.1870 −11.7 5.1

D+ 2 even odd 1.9430 1.4 32.0

D− 2 odd odd 1.9616 0.5 36.1

(a) α = 1, f = 1.9518 MHz
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(b) α = 0.47, f = 1.9495 MHz
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(a) α = 1, f = 1.9518 MHz
(b) α = 0.47, f = 1.9495 MHz

FIGURE 6. 2D COMSOL simulations of silicon chips (si/gray) length L = 55.00 mm containing eight parallel water-filled

channels (wa/blue) each of width w = 0.38 mm and length l = 29.30 mm. Two chips are shown; (a) α = 1 between channels and

to the silicon edge, and (b) α = 0.47 between channels and α = 6.80 to the silicon edge. For each shown resonance the pressure

amplitude is plotted as a surface plot showing the entire chip and as a symmetric cross-sectional plot along the transverse y-direction.

For each plot the pressure is normalized to the maximum pressure for that given mode.

presented clearly demonstrate the importance of designing the chip surrounding the water-filled channel properly.

4. IN SITU CALIBRATION OF ACOUSTIC RADIATION FORCES ON PARTICLES

When applying standing ultrasound waves in microfludic systems, it is difficult to measure or calibrate the acoustic

radiation force exerted on a particle in solution. Acoustic power sent from the actuator to the microfluidic system

suffers losses due to heating in the system and acoustic radiation to the surroundings. These losses are hard to measure,
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FIGURE 7. (a) Contour plot with 10% contour lines from low (dark) to high (light) of the normalized acoustic potential Uac/Uo

from Eq. (15b) for a polystyrene sphere in water given the ideal 1D pressure field p1 of Eq. (13a) with (kx,ky) = (0,πy/w) so that

θ = 90◦. (b) Similar plot for the 2D pressure field with (kx,ky) = (π/(2w),π/w) so that θ ≈ 63◦. Further parameter values used in

the simulation are given in Table 1.

and at the same time it is difficult to mount pressure sensors inside the microfluidic system for direct determination

of the acoustic power actually present. Based on the insight obtained above, regarding the global wave nature of the

pressure eigenmodes, we present in the following a possible chip design for in situ calibration of the acoustic radiation

force from a standing ultrasound wave on suspended spherical particles in a microfluidic channel. The method relies

on determining the critical flow velocity above which the particles cease to be trapped by the ultrasound forces.

4.1. The acoustic potential experienced by a particle

According to Eq. (7), the acoustic force acting on a particle in solution can be calculated once the pressure

eigenmode p is known. Our previous analysis for straight 2D channels of length l and width w have shown that to a

good approximation these eigenmodes are given by simple cosine/sine standing waves in a water channel surrounded

by infinitely hard walls. Such an idealized 2D pressure eigenmode is given by

p1(x,y,z) = +pa cos(kxx)cos(kyy), (13a)

∇∇∇p1(x,y,z) = −kx pa sin(kxx)cos(kyy)eeex − ky pa cos(kxx)sin(kyy)eeey, (13b)

kkk = kxeeex + kyeeey. (13c)

This standing wave can be interpreted as the result of two counter-propagating waves along the direction kkk, which

forms the angle θ with the x-axis,

cosθ =
kx

k
, sinθ =

ky

k
, k =

√
k2

x + k2
y . (14)

Inserting this in Gorkov’s expression Eq. (7), we find the acoustic force as minus the gradient of a potential Uac,

FFFac = −∇∇∇Uac, (15a)

where the acoustic potential Uac and its amplitude Uo are given by

Uac = Uo

[
2 f1 cos2(kxx)cos2(kyy)−3 f2 sin2(kxx)cos2(kyy)cos2 θ −3 f2 cos2(kxx)sin2(kyy)sin2 θ

]
, (15b)

Uo =
p2

aV

8ρwac2
wa

. (15c)

Two numerical examples of the acoustic potential Uac for a polystyrene sphere are shown in Fig. 7.

4.2. Chip design for in situ calibration of the acoustic radiation force

The acoustic radiation force on a suspended particle can be calibrated in situ if it is anti-parallel to the Stokes drag

force from the flow of the carrier liquid along the x-direction. By gradually increasing the flow velocity v from zero,
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FIGURE 8. (a) Contour plot with 10% contour lines from low (dark) to high (light) of the normalized acoustic potential Ucalib
ac /Uo

from Eq. (16a) for a polystyrene sphere in water given the pressure field p1 = pa cos(πx/2w). The parameter values are given in

Table 1, and moreover kx = π/(2w) while ky = 0 so that θ = 0. (b) Color plot of the pressure eigenmode in the triple-channel α = 3

chip. A transverse potential, as in panel (a), suitable for in situ acoustic force calibration is set up in the two side channels, while

the center channel supports a transverse mode of odd symmetry as in Fig. 5(D+). The left insert shows the single-channel α = 3

chip. Note the two anti-nodes in the silicon chip (gray) above and below the water-filled channel (blue).

a critical value v∗ of v can be determined, above which the acoustic radiation force no longer can trap the particle. At

this point |FFFac| ≈ 6πηav∗, and the unknown pre-factor Uo can be determined. The calibration setup requires that kkk and

eeex are parallel, thus kx �= 0 while ky = 0. By combining Eqs. (6) and (15) with this form of the wave vector, we obtain

the acoustic potential and the associated radiation force for calibration purposes on the form

Ucalib
ac = Uo

[
2 f1 cos2(kxx)−3 f2 sin2(kxx)

]
, (16a)

FFFcalib
ac = 2kxUo

[
5γ −2

2γ +1
− 1

γβ 2

]
sin(2kxx) eeex. (16b)

The potential Ucalib
ac is shown in Fig. 8(a).

If a particle is subject to a Stokes drag force Fdrag from a flow in the x-direction, then the critical flow velocity v∗,

where the acoustic radiation force no longer can trap the particle is given by the condition Fdrag = max{|FFFcalib
ac |} or

6πηav∗ = 2kxUo

[
5γ −2

2γ +1
− 1

γβ 2

]
. (17)

If v∗ is measured experimentally, we are therefore able to determine the acoustic energy scale Uo by

Uo = 3π
ηav∗

kx

[
5γ −2

2γ +1
− 1

γβ 2

]−1

. (18)

We propose a specific chip design which supports a pressure eigenmode close to the one depicted in Fig. 8(a). The

idea is to fabricate an α = 3 chip. In such a chip a strong pressure eigenmode of odd symmetry exists in the channel

as the α = 1 chip in Fig. 5(a) but it will also have a strong anti-node in the silicon as the α = 2 chip in Fig. 5(b).

Now, if two auxiliary side channels parallel to the first channel is placed at these anti-nodes, the pressure mode inside

these side channels is very close to the wanted mode of Fig. 8(a). The correctness of this line of reasoning is proved

by numerical simulation of the eigenmodes in such a triple-channel α = 3 chip as shown in Fig. 8(b).

5. CONCLUDING REMARKS

By theoretical and numerical analysis we have studied the applicability of the widely used transverse half-wavelength

picture. We have shown that, although not entirely correct, this picture is accurate enough to be useful. Furthermore,

we have shown that it is crucial to take the entire geometry of the chip into account and match the dimensions of

the surrounding silicon to those of the water channel, i.e. a global wave picture must be employed. Finally, we have

presented two examples of applying this global wave picture: (i) a many-channel chip, which by correct matching

performs significantly better in terms of amplitude and homogeneity of the acoustic energy density, and (ii) a three-

channel chip, which enables in situ calibration of the acoustic radiation force.
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