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The issue of the mean signal level crossing rate for various probability density functions with primary rel-
evance for optics is discussed based on a new analytical method. This method relies on a unique transformation
that transforms the probability distribution under investigation into a normal probability distribution, for
which the distribution of mean level crossings is known. In general, the analytical results for the mean level
crossing rate are supported and confirmed by numerical simulations. In particular, we illustrate the present
method by presenting analytic expressions for the mean level crossing rate for various probability distribu-
tions, including ones that previously were unavailable, such as the uniform, the so-called gamma-gamma, and
the Rice-Nakagami distribution. However, in a limited number of cases the present results differ somewhat
from the result reported in the literature. At present, this discrepancy remains unexplained and is laid open for

future discussion. © 2010 Optical Society of America
OCIS codes: 030.1630, 030.1670, 030.6140, 030.6600.

1. INTRODUCTION

The investigation of fade and surge statistics and the as-
sociated mean level crossing rate of a stationary differen-
tiable random process has been of considerable interest
since the pioneering work of Rice [1]. Physically, the de-
rivative of each realization of such a random process is
the derivative in the usual sense of the corresponding re-
alization. For example, in optical communication systems,
and especially for propagation through the atmosphere of
information-carrying laser beams, the received light will
be aberrated both by optical turbulence between the
transmitter and the receiver and by line-of-sight platform
jitter. This will inevitably result in intensity modulation
of the received signal, the extent of which will be deter-
mined by the intermediate atmosphere and the optical
setup. Thus, knowledge of fading and level crossings of
the received, perturbed signal becomes of uttermost im-
portance. In case of sensor systems, tracking of speckle
patterns, shearing of dynamic speckle patterns, and deri-
vation of the structure of a fringe pattern are commonly
appearing issues of importance for the sensor systems. In
these cases, the random nature of the underlying speckle
structure will inevitably cause signal drop-out, the extent
of which will constitute a major factor in the reliability of
the sensor system. Thus, knowledge about the level cross-
ings is of crucial importance in cases where the intensity
variations possess statistical properties governed by ran-
dom polarization and where coherent and incoherent ad-
dition random electromagnetic fields are interfered.
According to Rice, the mean level crossing rate (for both
positive and negative crossings), v(xg), for an arbitrary
stationary differentiable random process is given by
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v(xo) = f lt|px x(xco,%)dt, 1)

where x is the first derivative of x with respect to time
(i.e., dx/dt) and p(x(,x) is the joint probability density
function (PDF) of x(¢) and x(¢) at time ¢. The subscripts in
Eq. (1) refer to the arbitrary random process, while lower-
case variables refer to the random variable. For a normal
random process, where the joint PDF of x(¢) and x(¢) are
known to be independent [i.e., p(xq,%)=p(xo)p ()], Eq. (1)
yields [2]

Vo? (oo — p)? -R(0) (oo — p)*
v(xg) = —exp| - =—_exp(- )

20° 2072
(2)

where ‘T?c is the variance of the time derivative of the nor-
mal process, 4 and o are the mean and standard devia-
tion of the normal process, and R(¢) is the corresponding
temporal autocorrelation coefficient.

Although analytic expressions for the mean level cross-
ing rate v(x() at an arbitrary level x;, have been obtained
for a limited number of other random processes, the cor-
responding analytic expressions for the mean level cross-
ing rate for an arbitrary random process has remained
elusive [3-6]. This is because the joint PDF of the level
and its time derivative for an arbitrary stochastic process
has not been obtained, and thus the integral in Eq. (1)
cannot be determined.

© 2010 Optical Society of America



798 J. Opt. Soc. Am. A/Vol. 27, No. 4/April 2010

Khimenko [3] was the first to obtain analytic solutions
of Eq. (1) for processes with statistically independent de-
rivatives and corresponding processes that are functional
transformations of these processes. For example, his re-
sults include processes with an exponential, Rayleigh,
gamma, Maxwell, and Laplace distribution. Subse-
quently, several other authors have independently de-
rived several of Khimenko’s results including the expo-
nential distribution, as the level-crossing rate of the
intensity of speckle patterns have been the subject of both
theoretical [7-10] and experimental [11,12] interest over
the past several years. Barakat [4], based on the gamma
distribution, obtained analytic results for the mean level
crossing rate of aperture-integrated speckles. By a
straightforward extension of the derivation of the level
crossing rate for a normal distribution, Yura and McKin-
ley derived the corresponding rate for the log-normal dis-
tribution [13], and while making a simplifying assump-
tion, an integral expression for the level crossing rate for
the gamma-gamma distribution has been obtained by Vet-
elino et al. [14].

In general, however, the level crossing rate for an arbi-
trary random process has not been found. Thus, for ex-
ample, closed-form analytic results for the mean level
crossing rate for a uniform distribution, a power law dis-
tribution, and the gamma-gamma distribution are un-
available. This paper will introduce a novel method for
deriving closed-form analytical expressions for the mean
level crossings for signals obeying an arbitrary probabil-
ity density function (PDF) and in particular for various
PDFs for signals of interest to the optical community. In
general, the analytical results for the mean level crossing
rate are supported and confirmed by numerical simula-
tions. In particular, we illustrate the present method by
presenting analytic expressions for v(xy) that previously
were unavailable (including those mentioned above), and
these results are confirmed by numerical simulations.
However, as discussed below, in a limited number of cases
the present results differ somewhat from the result ob-
tained originally by Khimenko (and subsequently by oth-
ers). This discrepancy remains unexplained and is laid
open for future discussion.

The essence of the present method is the introduction
of a unique bijective mathematical transformation that
converts a signal obeying an arbitrary PDF into a signal
that obeys a normal distribution. This allows one, as dis-
cussed below, to use the mean level crossing rate for the
normal distribution to obtain the corresponding result for
an arbitrary PDF. In Section 2 this transformation is in-
troduced and discussed, and a general expression for the
mean level crossing rate for and arbitrary PDF is derived.
In Section 3 new results for several PDFs of interest are
presented, compared with numerical simulations, and
discussed. Additionally, as alluded to above, the devia-
tions of the present analysis with some previously pub-
lished results, which are not presently understood, are
presented and laid open for discussion. However, despite
these discrepancies we feel that the present work repre-
sents a step forward in our understanding of the level
crossing rate for arbitrary random processes and should
be made available in the literature. Finally, in Section 4
we present our concluding remarks.
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2. GENERAL CONSIDERATIONS

Here we consider only differentiable stationary random
processes (i.e., random processes that are continuous in
the mean square sense) designated by “X” and “Y.” The X
process is assumed known in that all the various prob-
ability functions are implicitly given to us, and we would
like to find out the corresponding functions of the Y pro-
cess. In particular, we would like to obtain the joint prob-
ability density function of y and its time derivative, given
the corresponding joint probability function of the X pro-
cess. In the following we denote by x(¢) and y(¢) the values
of the random process X and Y at time ¢, respectively.

Let px(x) and py(y) be two arbitrary PDFs. Consider a
transformation of variables given by

x=fly), @)

where the arbitrary (real) function f is bijective (i.e., a
single value of y corresponds to a single value of x and
vice versa). By the standard laws of transformation of
PDF's we have

dfly)
py() =1 ¥)lpxlx()] (Where f'y) = W) 4)

Next consider the joint PDF of the random variable y and
its first derivative with respect to time y, pyy{(y,y).

Note that from Eq. (3) it follows directly from the chain
rule of differentiation that

d
X=———=f)y. (5)
Yy

Here we assume that x is not a function of y and thus the
joint PDF, pyy(y,y), is related to the corresponding joint
PDF of x and & by the Jacobian [15,16]:

ox ox
pyv(y,y) = pxx(xly]xly.y]) PR =pxx(x[ylaly.y])
X 0X
ay Ay
') . o

This is true for any bijective transformation of Eq. (3) that
is not a function of the time derivative. Equation (6) re-
lates the joint PDF of the random process of interest “Y”
to that of the corresponding PDF of the assumed known
process “X.”

Now consider the special case where X is a zero-mean,
unit-variance, normally distributed random process. It is
well known that for a normally distributed random vari-
able the joint PDF pxx(x,x) is given by (i.e., a normal sta-
tionary random process and its derivative are indepen-
dent [17])

Pxx(x,%) = px(x)px(x), (M

where px(x)=exp[-x2/2]/ \s’%, px(x) is also of Gaussian
form given by [17]
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1 %2
(%) = —— exp| - — |, 8

and o'?c is the variance of the time derivative of x. For the
zero-mean, unit-variance normal PDF, we obtain from
Egs. (7) and (8)

. 1 ) 1
py?(y,y)=f'(y)?exp - A

2w V2moy
e et e
exp| - 207 —PY(Y)\/TO_?C
f*)y?
Xexp| — — |- 9)
20

Next, we express o?c in terms of parameters related to the
random process of interest. To do this we note that the
mean value of the time derivative of any stationary ran-
dom process is zero [18], from which it follows that the
unconditional variance of the time derivative of the Y pro-
cess is given by

;= f J dydyy*(y)pyv(y.y). (10)

Substituting Eq. (9) into Eq. (10) and performing the in-
tegration over y, simplifying, and rearranging terms
yields

O'?C= (J'yZ/y, (11)

where the constant y (which is independent of the level) is
given by

py(y)

3y
Equation (11) gives the relationship between the variance
of the derivative of the zero-mean, unit-variance normal
distribution and the variance of the derivative of the ran-
dom process of interest. Thus, Eq. (9), with af given by
Eq. (11), depends only on parameters related to the ran-

dom process of interest. We note for any stationary ran-
dom process that

y=| dy (12)

%

dww’Sy(w)
- : (13)

j dwSy(w)
0

where Ry(7) is the temporal autocorrelation coefficient of
the random process of interest and Sy(w) is the corre-
sponding temporal power spectrum.

In general, for an arbitrary transformation function
f(y), one does not obtain a normal process x. We will show
that the transformation of variables given by

oh= —Ry(7| 0=

x =2 erf '[2Fy(y) - 1], (14)

where Fy(y) is the cumulative distribution function (CDF)
of the arbitrary stationary random process characterized
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by the PDF py(y), yields a zero-mean, unit-variance nor-
mally distributed random variable x. The transformation
given by Eq. (14) is bijective (i.e., one-to-one) and thus the
transformed PDF, px(x), is given by (see [15], Sec. 5-2, pp.
125-126)

pyly(x)]
pxx)=—F"7. (15)
dx

dy
From Eq. (14) we obtain

d dF:
B mexpllert 2Ryt - 1212
dy dy

= \2mexpl(erf [2Fy(y) - 1)%pyly(®)],  (16)

where py(y) is the corresponding PDF of the arbitrary dis-
tribution. Substituting Eq. (16) into Eq. (15) and simpli-
fying yields

© pyly)]

px(x)=—

X V2w expl(erf 1 [2Fy[y(x)] - 1])2]pyly(x)]
1

S . (17)
V2 expl(erf ' [2Fy[y(x)] - 1]))]

Now from Eq. (14) we obtain that 2Fy[y(x)]-1=erf[x/ \5],
from which it follows that

exp[-x%/2] 5D 18
pX(x) = \/ZT ) Q . ( )

Thus, the transformation given by Eq. (14) transforms the
arbitrary random process of interest into a zero-mean,
unit-variance normal process, and hence Eq. (9) is the
joint PDF of an arbitrary random process and its time de-
rivative. Each level “y” is uniquely mapped onto a single
normally distributed level “x.” Hence the mean level
crossing rate for the Y process can be obtained from Rice’s
results for the zero-mean, unit-variance normal process.
The mean level crossings at level x (i.e., for the sum of
both positive and negative crossings) for a zero-mean,
unit-variance normal process, as obtained from Eq. (2), is

given by
\/;ch xoz
v(xg) = —exp| - — |. (19)
T 2

Substituting Eq. (14) into Eq. (19) [or, equivalently,
substituting Eq. (14) into Eq. (1) and performing the inte-
gration over y] yields that the mean level crossing rate for
an arbitrary random differentiable process is given by

9y

Hyo) = expl- Plyo)2] = = expl- 2], (20)

w \,/;

where y and oy are obtained from Eqgs. (12) and (13), re-
spectively, and
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x0 = flyo) = \2 erf-'[2Fy(yo) - 1]. (21)

This is the main result of this paper. For a given analyti-
cal representation of the CDF, the corresponding mean
level crossing rate is given by Eq. (20). If, however, the
CDF is not available in analytic form, numerical results
can be obtained readily from the corresponding integral
form of the CDF. Examination of Eq. (20) reveals that, in
general, the maximum value of the mean level crossing
rate occurs at the level y,, ., that satisfies Fy(ymay) =1/2.

Note that oy=1/ (dwa?Sy(w)/ [fdoSy(w) is indepen-
dent of the level; rather, it depends on the specific physi-
cal circumstance of the problem at hand and represents a
relative measure of the absolute magnitude of the mean
level crossing rate. For example, the clear-air turbulence-
induced scintillation power spectrum for slant range
propagation through the atmosphere is a function of both
the zenith angle and the direction and magnitude of the
normal component of the “effective” wind speed with re-
spect to the line of sight. As a result, in the following, we
focus our attention on the profile shape function of the
mean level crossing rate, given by the exponential on the
right-hand side of Eq. (20), and, in the following figures,
we normalize the maximum value of v(y() to unity.

In general, the mean frequency of negative crossings,
v~, must equal the mean frequency of positive crossing,
v, so that v=v*+1v =21"=2p". Thus, for example, the
mean duration of a fade at level y,, T (y) is

Fy(yo)

T (yo) = e (22)
v Yo

while the corresponding duration of a surge, T*(y,), is

1-Fy(yo)

T (yo) = A (23)
v o

The crossing level for which the mean duration of a fade
equals the mean duration of a surge occurs for Fy(y,)
=1/2.

3. ILLUSTRATIVE EXAMPLES AND
COMPARISON TO PREVIOUS WORK

In what follows, as appropriate, we normalized the level
either to its mean or otherwise, as noted.

A. Log-Normal Distribution
The log-normal PDF and CDF are given by

(logy - w)?
exp| - ————
P 252 fory=0

\”2 may

py(y) = ,  (24)

0 otherwise

where “log” denotes the natural logarithm, x and o are
the mean and standard deviation of logy, respectively,
and
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1 logy -
Fyly) = §<1+erf[w]>. (25)

\;”2 g

Substituting Eq. (25) into Eq. (20) and simplifying yields
that the profile shape for the log-normal distribution is
given by

1 _ 2
(logyo — w) } 26

v(y,) = constant X exp{— Py

in agreement with the results of [13].

Next, we illustrate the usefulness of Eq. (18) by pre-
senting the mean level crossing rate for a number of PDF's
that have not been previously obtained and compared
these results with numerical simulations. The CDF of an
arbitrary random process is a bijective monotonically in-
creasing function of its argument. Consider two random
processes specified by CDFs Fx(x) and Fy(y). Now for any
given value of x, the transformation y =F§1[FX(x)] yields a
single unique value of y that satisfies Fy(y)=Fx(x). In par-
ticular, a discrete random sample set x; is mapped onto a
corresponding set y; whose underlying statistics are given
by py(y). In particular, the analytic results are compared
with corresponding numerical simulations of discrete cor-
related signal samples, as such samples are generally ob-
tained in practice. The method used here to obtain corre-
lated signal samples for an arbitrary random process Y is
as follows. Let x be a zero-mean, unit-variance normally
distributed random variable. Then, because a normal pro-
cess plays such a central role in obtaining correlated
simulation samples, we show explicitly in Appendix A
that F{;l[FX(x)] has the PDF of interest py. Correlated
normal signal samples for a zero-mean, unit-variance nor-
mal process are readily obtained using the Uhlenbeck—
Ornstein method of producing a normally distributed sig-
nal x with an arbitrary degree of correlation [19]. This
inverse method can be used when the inverse function Fy*
can be obtained explicitly or can be accurately approxi-
mated. For each of the comparison cases shown below,
more than 10° samples have been employed.

1'[’»‘ ! e o0 j . * e ' '00 '_
0sf m=1/2 & 1
w |
ﬁ 0.6F | 4
g2
[&]
2 |
g 04l 4 ]
-
i 9
02l 1
UD: 1 1 1 n 1 l_
0.0 0.2 0.4 0.6 0.8 L0

Normalized Level

Fig. 1. (Color online) Relative level crossing rate for the power
law PDF for various values of m. The analytic and simulation re-
sults are given by the solid and dotted curves, respectively.
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B. Power Law Distribution
The PDF is given by

my™ 1, for0<y<1

py(y) = , (27)

0, otherwise

where m is an arbitrary real number greater than zero.
For example, such a PDF describes the irradiance statis-
tics for a Gaussian-shaped laser beam in the presence of
line-of-sight mechanical platform jitter, where m is given
by the square of the ratio of the 1/ V’Z angular beam radius
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to the 1-o, single-axis standard deviation of jitter [20].
For this PDF we have

Fyly)=y™. (28)

Figure 1 is a plot of the relative level crossing rate as a
function of normalized level for various values of m. Ex-
amination of Fig. 1 reveals that excellent agreement is ob-
tained between the analytic and the simulation results.
Note that the special case m=1 corresponds to a uniform
PDF between zero and unity, and hence the m=1 curve

10r Lof” '
08 0.8}
o 0o
06 £ 06
g
O S
g ]
% 041 B 04f
a a
02 02l !
00+ ) N N : 0.0 ' i . i1
00 05 10 15 20 0.0 0.5 1.0 1.5 2.0
(a) Normalized Level (b) Normalized Level
10 1.0FT
08 0.8
oo oo
S06f g 06
g g
O S
s T ‘
304 B 04L
a A
02 0.2+
004 ) ) ) ' 0.0 ) ) ) s
00 05 10 15 20 0.0 0.5 1.0 1.5 2.0
(c) Normalized Level (d) Normatized Level
10
08},
&
7 06
g
=
E 04l (:.2— 0.75,8=075 1
2= 444
02 4
00} ) X X 4
00 05 10 15 20
(e) Normalized Level
Fig. 2. (Color online) Mean level crossing rate for the gamma-gamma distribution as a function of the level for various values of a and

B. The solid curve is the analytic result, the dashed curve is the “new integral expression” obtained in [14], and the points are our simu-
lation results, which are obtained from a very accurate inversion approximation to Eq. (30).
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represents the mean level crossing rate for the uniform
distribution.

C. Gamma-Gamma Distribution
The PDF of the gamma-gamma distribution is given by
[21,14]

2(a18)(a+3)/2
yPRIK (2 aBy), fory=0,

PYO) = T orE

(29)

where K,,(+) is the modified Bessel function of the second
kind of order n, and « and B are free parameters. The cor-
responding CDF is
mesc[m(B-a)]

L(@)I'(B)

L(e)(aBy)” 1Fola;1+ @, 1+ a - B;aBy)
-T(B)(aBy)? \Fo(B;1+ B,1-a+ Bapy) |
(30)

Fyly) =

where I'(+) is the gamma function and ,F, denotes a gen-
eralized hypergeometric function [22]. It can be readily
verified that the mean of this distribution is unity and the
variance is given by

o+ —. (31)

The gamma-gamma distribution has been used to model
the irradiance distribution for moderate-to-strong clear-
air turbulence-induced scintillation in the atmosphere,
where o2,>1 [23]. The resulting mean level crossing rate,
obtained from Egs. (30) and (20), is plotted in Figs.
2(a)-2(e) as a function of the level for various values of «
and B consistent with a variance =1. The solid curve is
the analytic result, the dashed curve is the “new integral
expression” obtained in [14], and the points are our simu-
lation results, which are obtained from a very accurate in-
version approximation to Eq. (30).

1.0

0.8

o
o

Level Crossing
o
Fy

0.2

00F, e e ou e e NN .

Normalized Level

Fig. 3. (Color online) Mean level crossing rate for the Laplace
distribution as a function of normalized level. The solid curve
and the dotted curve are the new analytic results and the simu-
lation, respectively, while the dashed curve is the analytic result
of Khimneko.
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Examination of Figs. 2(a)-2(e) reveals very good agree-
ment between the analytic theory and the numerical
simulations. In contrast, the “new integral expression” for
the mean level crossing rate, which is based on an unjus-
tified simplification [see the paragraph below Eq. (21) of
[14]] is less accurate, and this inaccuracy increases with
increasing values of the variance.

D. Laplace Distribution

The statistics of the intensity difference obtained from
two small separated apertures is described by the Laplace
distribution [24]. For simplicity, consider a Laplace distri-
bution with zero mean and a scale parameter of unity.
The PDF and CDF of this distribution are given by [22]

1
py(y) = 3 exp(-ly))  for —e<y=<o (32)
and
ey
— <0
2’ Y
Fy(y) = o . (33)
1- — =0
9”7

In Fig. 3 the mean level crossing rate as a function of the
level (normalized here to unity) is compared with both
simulation and the analytic results of Khimenko. Exami-
nation of Fig. 3 reveals excellent agreement between our
“new” analytic results, based on Eqgs. (33) and (20). In con-
trast, Khimenko’s corresponding result of vgpimento(¥o)
=constant X exp(-|y,|) is inaccurate.

E. Weibull Distribution

For simplicity we consider a Weibull distribution with
shape parameter £ and a scale parameter of unity. The
PDF and CDF of this distribution is given by [22]

py(y) =ky*texp[-y*], y=0, (34)

and
Fy(y) =1-exp[-y"], (35)

where % is a real number greater than zero. For example,
this distribution is used to model wind speeds at a given
site. Note that for £=1 and 2 the Weibull distribution re-
duces to the exponential and the Rayleigh distribution,
respectively. In addition to the general inverse CDF
method, discussed in Appendix A, of simulating correlated
discrete samples, there exists for the Weibull distribution
an alternative method for doing the same. As shown in
Appendix B, the transformation of variables

x2 a2\ Vk
= , 36
z B (36)

where x; and x9 are zero-mean, unit-variance indepen-
dent normally distributed random variables and % is a
real number greater than zero, yields the Weibull distri-
bution. In the following we refer to this as the “sum of
squares” method. In Figs. 4(a)-4(e) the mean level cross-
ing rate is plotted versus the level, (normalized to unity)
for various values of 2 and compared with both simulation
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Fig. 4. (Color online) Mean level crossing rate for the Weibull distribution as a function of normalized level for various values of the

shape parameter k. In each panel the right-hand solid and dotted curves are our analytic result and simulation results, respectively,
based on the inverse CDF method, while the left-hand dotted black curves and dashed curves (for =1 and 2) are the simulation results

based on the sum of squares method and Khimenko’s analytic results (for £=1, v(y,) = yéme’yo, and for k=2, v(yy) = yoe’ygm), respectively.

methods and for the exponential and Rayleigh distribu-
tion with Khimenko’s analytic results. In each of Figs. 4
the right-hand solid and dotted curves are our analytic re-
sult and simulation results, respectively, based on the in-
verse CDF method, while the left-hand dotted black
curves and dashed curves (for =1 and 2) are the simula-
tion results based on the sum of squares method and Khi-
menko’s analytic results (for k=1, v(yg) = yé/ 2¢~%0 and for
k=2, v(yg) Dcyoe‘y%&), respectively.

Examination of Fig. 4 reveal that for £ of the order
unity our analytic results and the simulations based on
the inverse CDF method do not agree with the analytic
results of Khimenko for £=1 and 2 and simulations based

on the sum of squares method, while for larger values of &
the simulation-based on the sum of squares method tend
to coalesce both to the present analytical theory and to
simulations based on the inverse CDF method. The dis-
crepancy for small & values is reduced as the £ number
increases, which is accompanied by the PDF being less
discontinuous at zero signal level. Thus, this discrepancy
could have either of two causes. The first possibity is a nu-
merical instability, as the transformation from, e.g., an
exponential (k=1) to a normal PDF will call for the ma-
jority of occurrences of exponentially distributed signal
level near zero being transformed toward large negative
values in the normally distributed regime. A second rea-
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Fig. 5. Mean level crossing rate for the gamma distribution as a function of level normalized to the mean. In each panel the solid and
dashed curves are our analytic results and the corresponding results of Barakat, given by Eq. (4.2) of [4], respectively.

son for the discrepancy could be that simulations have
shown that the level crossing rate depends on the corre-
lation time versus the sampling time interval. Simula-
tions with signals derived by different numerical methods
have even yielded different results for the level crossings,
yet their statistics yield virtually identical moments,
which are in accordance with textbook values. The reason
for this discrepancy, however, is currently not understood.

F. Gamma Distribution

Next, we consider the gamma distribution, which has
been used extensively in the literature to model the PDF
of aperture-integrated speckle [4,10]. This PDF and cor-
responding CDF are given by

1
py(y) = ——a®y*texp[- ay], fory=0 (37)

I'a)
and

I'(a,ay)

FY@)=1—W,

(38)

where for simplicity in notation we have normalized the
level, y, to its mean and I'(a, ay) is the incomplete gamma
function. The parameter « can be physically interpreted
as the mean number of speckles contained within a col-
lecting aperture [10]. Figures 5(a)-5(d) compare the
present analytic results (solid curves) for the mean level
crossing rate with the corresponding results obtained by
Barakat [Eq. (4.2)] [4] (dashed curves) for various values

of a. Because for a=1 the PDF of the gamma distribution
becomes the exponential PDF, we omit this case from Fig.
5, as it has been considered previously.

We remark that simulations of the mean level crossing
rate for the gamma distribution based on the inverse CDF
method are in excellent agreement with our analytical re-
sults, and therefore, for presentation purposes they are
not shown in Fig. 5. Examination of Fig. 5 reveals that for
a less than about 4 our analytic results are somewhat dif-
ferent from the corresponding results of Barakat [4],
while for larger values of « the two results are in very
good agreement. Again, the reason for this discrepancy for
small values of « is currently not understood.

G. Rice-Nakagami Distribution

As a final example we illustrate the utility of obtaining
the mean level crossing rate for a PDF whose correspond-
ing CDF cannot be obtained analytically [25]. The PDF
and CDF of the Rice-Nakagami is given by

py(y) =2y exp[- (y*+ CH(2yC),  fory=0 (39)

and

y
Fy(y) = f 2x exp[— (x% + C?)]I(2xC)dx, (40)

0

where Iy(-) is the modified Bessel function of the first
kind the order zero, C is a real constant, and both y and C
are normalized to twice the variance of the underlying
normal distribution [26]. In a variety of applications, the
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Fig. 6. (Color online) Mean number of (normalized) level cross-
ings for the Rice-Nakagami distribution as a function of normal-
ized level for various values of C. For each C value the right-
hand solid curve and dotted curve are our analytic result and
simulation results, respectively, based on the inverse CDF
method, while the left-hand dotted black curve and dashed curve
are the simulation results based on the above sum of squares
method and a normalized version of Eq. (42), respectively.

Rice—Nakagami distribution is used to model the inten-
sity distribution in a speckle pattern that consists of a
specular component and a diffuse scattered component
[27]. Rice has shown that the mean level crossing rate is
directly proportional to the PDF and is given by [28]

[-R(0)
uyo) = 2—py(yo)~ (41)
T

In addition to the inverse CDF method of obtaining corre-
lated sample simulations, one also can obtain such
samples for the Rice-Nakagami distribution from an ex-
tension of the sum of squares method discussed in Appen-

dix B given by
(x1-C)? +x3
yENTT (42)

where x; 5 are independent, zero-mean, unit-variance nor-
mal distributions and C is a real constant.

The mean number of (normalized) level crossings for
the Rice-Nakagami distribution as a function of normal-
ized level for various values of C is plotted in Fig. 6 [29].
For each C value the right-hand solid and dotted curve
are our analytic result [i.e., obtained from Eq. (20)] and
simulation results, respectively, based on the inverse CDF
method, while the left-hand dotted black curve and
dashed curve are the simulation results based on the
above sum of squares method and a normalized version of
Eq. (41), respectively. Because the inverse CDF function
cannot be obtained explicitly for the Rice—-Nakagami dis-
tribution, the corresponding inverse CDF simulations are
obtained from an accurate curve fit to Fy'. Similar to
what was obtained for the Weibull and gamma distribu-
tion, examination of Fig. 6 reveals that for C less than
about 1.5-2 the results obtained from Eq. (20) and the in-
verse CDF method are somewhat in disagreement with
Rice’s result and simulations based on the sum of squares
method. However, for C larger than about 2, both analytic
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and theoretical results are in very good agreement. As
stated above, the reason for this discrepancy is not pres-
ently understood.

4. CONCLUSION

A method of transforming a series of random signals with
known PDFs into a corresponding new series of random
signals with a normal PDF has been obtained with the
purpose of deriving the mean level crossing rate for the
signal under consideration. The method is based on using
known results for the mean level crossing rate for a nor-
mally distributed signal. The present results have been
compared with numerical simulations derived by using an
inverse transformation method based on having random,
correlated samples of a normal process. These simula-
tions have shown good agreement with the transforma-
tion method presented in this paper, although some dis-
crepancies have been observed, the explanation of which
has been laid open for discussion.

The following examples with relevance for the optics
community have been analyzed:

e The log-normal distribution applicable for laser com-
munication under weak scintillation conditions.

e The power-law distribution describing intensity
variation for line-of-sight propagation with platform
jitter.

e The gamma-gamma distribution previously pre-
sented as a model for intensity fluctuations under
moderate-to-strong scintillation conditions.

e The Laplace distribution describing the distribution
of intensity differences in speckle fields.

e The Weibull distribution used for describing distri-
bution of wind velocities, here relevant for LIDAR sys-
tems.

¢ The Rice-Nakagami distribution applicable for irra-
diance conditions arising when a speckle field consists of
a specular component and diffuse components or a dif-
fused speckle field that is interfered with a deterministic
local oscillator.

APPENDIX A

Consider the transformation of variables
z = Fy'[Fx(x)], (A1)

where X is a zero-mean, unit-variance normal random
process. Inverting Eq. (Al) for the zero-mean, unit-
variance normal distribution yields

x =F3[Fy(z)] = \2 erf [2Fy(z) - 1], (A2)

where erf-1(-) denotes the inverse error function. We will
now show that the PDF of the Z process is py, the PDF of
the process of interest. Because we are dealing with bijec-
tive functions, the PDF of the transformed random vari-
able is given by

dx

e (A3)

pz=pxlx(z)]

We have
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pxlx(2)] = exp[ - (erf '[2Fy(z) - 1])*], (A4)
and from Eq. (A2)
dx _ — 1 2
E = 27 exp[(erf '[2Fy(z) — 1])°1Fy’ (2)
= \2m exp[(erf [2Fy(z) - 1)*Ipy(z).  (A5)
Substituting Eqs. (A4) and (A5) into Eq. (A3) yields py
=pPy- QED

Our simulation of correlated samples for an arbitrary
PDF py is based on Eq. (A1) where a correlated zero-
mean, unit-variance normal sample distribution x; is ob-
tained from [19]

2%,

xj=eox;  +\1-ePox,,,  j=1,2,..Ng, (A6)

where x;=x(¢;), Ng is the number of samples, and for each
J the numerical value of x,,.,, is obtained from an indepen-
dent zero-mean, unit-variance normal distribution (i.e.,
xj_1 and x,, are independent). Physically, £, can be inter-
preted as the ratio of the sampling time interval to the
correlation time of the process. For ¢{y<1 and ¢,>1 Eq.
(A6) yields correlated and uncorrelated samples, respec-
tively. Here we consider only correlated samples, obtained
from Eq. (A6) with £,<0.1, and Ng=10°. Then the simu-
lated level crossing rate, vgy(yg), is obtained from

Ng-1

vamo) = >, ¢, (AT)
J=1

where the count for the j sample is
1 if either y; >y, and y;,; <yq

¢;=10ry;<yoand yj,1 >y . (A8)
0 otherwise

APPENDIX B
Consider the transformation of variables
oo\ V¥
z= ( p ) , (B1)

where x; and x5 are zero-mean, unit-variance indepen-
dent normally distributed random variables and % is a
real number greater than zero. We now show that the
PDF of the Z process is the Weibull distribution consid-
ered in the text. Because x; and x, are independent, we
have that the PDF of Eq. (B1) is given by

o ) x% +x§ 1/k
pz(z) = f dx; f dxopx(x1,%9) 8| 2 = 5
o ) x% +x§ 1/k
= f dxq f dxopx(x1)px(xg) 8| 2 = 5 ,

(B2)

where px(x)=exp[-x2/2]/y27 and &(-) is the one-
dimensional Dirac delta function.

Substituting px(x;) and px(xy) into Eq. (B2), performing
the integrations, and simplifying yields

H. T. Yura and S. G. Hanson

ok

pz(2) = k2"t exp[— z}‘”]l A = k2"t exp[-2"]

z T 5E A2 k_ .2 ’
—\2z* V42T — Xy

(B3)
which is the Weibull distribution.
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