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Abstract. In a sun-exposure study, questionnaires concerning sun-

habits were collected from 195 subjects. This paper focuses on the

general problem of missing data values, which occurs when some,

or even all of the questions have not been answered in a question-

naire. Here, only missing values of low concentration are investi-

gated. We consider and compare two di�erent models for impu-

tating missing values: the Gaussian model and the non-parametric

K-Nearest Neighbor model.

INTRODUCTION

The missing data problem occurs in virtually any application of statistics to
real life problems. It is particularly important whenever statistical analy-
sis is based on human responses. Attempts to �ll in missing data ranges
from complex monte carlo procedures, like multiple imputation [4], over EM-
based, deterministic, yet iterative, procedures [1, 2, 5, 6], to basic statistical
methods based on simple multivariate parametric, typically Gaussian, density
approximations [3].

In the sun-exposure experiment studied, questionnaires concerning sun-
habits were collected from 195 subjects (the group of people involved in a
138 days lasting experiment). In addition, UV radiation were measured at
a 10 minute sampling rate. While the ultimate objective is to relate sun-
habits, UV dose, and risk of cancer, this work focuses on imputating missing
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questionnaire values. We present the analysis of two basic missing values
approaches based on parametric and non-parametric representations, respec-
tively. Rather than invoking complex statistical methods, we concentrate on
evaluating the two schemes using a modern learning theory tool, the \learn-
ing curve", which in the present context quanti�es the �ll-in error as function
of training sample size. Such analysis is important for experimental design.
Secondly, we investigate the utility of voting schemes for enhancing the per-
formance of missing data mechanisms.

DESCRIPTION OF THE DIARY DATA

In the experiment two types of data was collected. The subjects wore a
special designed watch called the \Sunsaver", which measured UVA and UVB
radiation. In addition, the following questionnaire was also returned:

1. Using Sunsaver (yes/no)

2. Working (yes/no)

3. Abroad (yes/no)

4. Sun Bathing (yes/yes-solarium/no)

5. Naked Shoulders (yes/no)

6. On the Beach/On the water (yes/no)

7. Using Sun Screen (yes/no)

8. Sun Factor Number (no/1-7/8-16/17-35/>35)

9. Sunburned (no/red/hurts/blisters)

10. Size of Sunburn Area (no/little/medium/large)

Each questionnaire was stored along with date and subject identi�cation
number. Some of the answers are binary (yes/no) whereas others are coded
using a 1-out-of-c binary representation. The 1-out-of-c coding ensures that
the Hamming distance between any two data vectors equals one, which pre-
vents the introduction of an arbitrary distance for categorical data such as
Sunburned.

The sun factor number (question no. 8) has a larger range of values.
In order to decrease the length of its binary representation, it is quantized
into �ve levels (no/small (1-7)/medium (8-16)/large (17-35)/huge (>35)).
Furthermore, it is combined with question no. 7 creating one binary vector
block.

Eventually, for every person and every day, a 17-dimensional binary vector
is created. It contains nine blocks from one to four bits each. There are 24212
data records in the diary, distributed among 195 persons and 138 days. There
is at least one missing value in more than 1000 vectors due to partially un�lled
questionnaires (i.e., in approx. 4% of the questionnaires) which leaves approx.
23000 complete records.
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MISSING DATA MODELS

The d-dimensional binary feature vector is de�ned as x = [x1; x2; : : : ; xd].
The data set is denoted as D = fx(n);n = 1; 2; : : : ; Ng, where N is the
number of questionnaires.

Two models for �lling in missing data are described here. The �rst method
is based on the assumption that the diary data vectors are Gaussian dis-
tributed. The second is a non-parametric K-Nearest Neighbor model. Many
di�erent models can be proposed, however, this paper focuses on comparing a
complicated stochastic model with a simpler non-parametric one for speci�c
diary records.

Due to the characteristics of data, there are three di�erent pro�les taken
into consideration. The �rst, called the Complete Diary Pro�le, uses the
full data set in the estimation. The second Personal Pro�le assumes that
questionnaires from one person have similar characteristics while the char-
acteristics across the persons di�er. This arise from the expectation that
human behaviour varies from person to person. The third pro�le is the Day
Pro�le, which assumes that data vectors for one day are similar or equiv-
alently belonging to one distribution while parameters of the distributions
across the days vary. This is due to the fact that human behavior is in
u-
enced by weather, temperature, the season of the year, etc. The model using
one from the described pro�les is called a method.

In addition, a Voting procedure is also considered. It compares proposals
from all the above mentioned methods and takes the majority vote among
the outcomes. This method is expected to give the best results, however, it
is much more computationally expensive since it combines the other three
methods.

Gaussian Model (GM)

Assume that x is Gaussian distributed with mean � and covariance �. Fur-
ther that the feature vector is divided into observed and missing parts, as
x = [xo;xm]. Under the Gaussian model assumption, the optimal inference
of the missing part is given as the expected value of the missing part given
the observed part, i.e.,

E(xmjxo) = �m +�mo�
�1
oo � (xo � �o) (1)

where

� = [�o;�m] and � =

"
�oo �om

�>om �mm

#
(2)
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The Gaussian imputation model is then given as:

GM Algorithm:

1. Divide the data set D into two parts. Let the �rst set contain data
vectors in which at least one of the features is missing, call it Dm.
Then the remaining part, where all the vectors are complete is called
Dc.

2. Estimate mean � and the covariance matrix � from Dc, i.e.,

b� =
1

Nc

X
n2Dc

x
(n); b� =

1

Nc � 1

X
n2Dc

�
x
(n) � b���x(n) � b��> (3)

where Nc = jDcj is the number of complete vectors.

3. For each vector x 2 Dm

� Divide the vector into two parts x = [xo;xm], where xo is the
observed vector features and xm the missing vector features.

� Estimate the missing binary vector as the sign of the conditional-
distribution mean for the missing part given the known features:

bxm = sign
hb�m + b�mo

b��1oo � (xo � b�o)
i

K-Nearest Neighbor Model (KNN)

The distance measure for binary vectors (Hamming distance) is de�ned as
follows:

D(p; q) =

dX
i=1

jx
(p)
i � x

(q)
i j; (4)

where p and q are two binary vectors and i is a bit (dimension) index.
The algorithm for the non-parametricK-Nearest Neighbor Model is given

as:

KNN Algorithm:

1. Divide the data set D into two parts. Let the �rst set contain data vec-
tors in which at least one of the features is missing, Dm. The remaining
part where all the vectors are complete is called Dc.

2. For each vector x 2 Dm:

� Divide the vector into observed and missing parts as x = [xo;xm].

� Calculate the distance Eq. (4) between the xo and all the vectors
from the set Dc. Use only those features in the vectors from the
complete set Dc, which are observed in the vector x.

� Use the K closest vectors (K-nearest neighbors) and perform a
majority voting estimate of the missing values.

492

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 29,2010 at 10:09:48 EDT from IEEE Xplore.  Restrictions apply. 



EXPERIMENTS

In order to compare the performance of the models on the diary records, a
validation set was taken out from the fully completed questionnaires. We
perform a leave-one-out permutation estimate of the generalization error as
in 500 repeated permutations one validation sample is chosen randomly from
the complete data set, then a number of training samples. The performance
is then averaged over the 500 permutations. As an example if considering
the Day Pro�le the day number of the validation sample speci�es the day
number of the training samples of which there are at most 194 persons to
choose from. When training set size, N , is smaller than 194 we randomly
choose N out of 194.

We are investigating errors of low concentration, i.e., only one block (ques-
tion) in the vector is missing at the time. The �nal error rate is an average
over such single errors made in all possible nine blocks.

In the case of the KNN, the model number of nearest neighbors is op-
timized separately for each pro�le and for each block using another set of
500 repeated permutation samples. The optimal K in the range 1{30 is then
found by picking the one which has the lowest leave-one-out error.
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Figure 1: Learning curves for the Gaussian model. Four di�erent methods are

presented here: Personal Pro�le, Day Pro�le, Complete Diary Pro�le and Voting.

Error bars show deviation from the mean curve over 500 runs.

Figure 1 and �gure 2 presents learning curves for the Gaussian model and
the K-Nearest Neighbor model, respectively. The deviation from the mean is
shown with the error. It decreases slightly with increasing training set size.
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Figure 2: Learning curves calculated for the K-Nearest Neighbor model. Four

di�erent methods are presented here: Personal Pro�le, Day Pro�le, Complete Diary

Pro�le and Voting. Error bars show deviation from the mean curve over 500 runs.

Voting, as it was expected, gives very good results both for Gaussian
model and K-Nearest Neighbor model, however in this case Day Pro�le per-
formers the best for every training set size.

Figure 3, basically, presents the same as in �gures 1 and 2, however with
the focus on comparison. Clearly, for large training sets and every pro�le,
the Gaussian model (light) performs better than KNN model (dark).

Figure 4 and �gure 5 presents the error rate separately for each of the nine
blocks. Every sub-�gure corresponds to one question in the questionnaire.
For both models the learning curve for block no. 2, which is \Working",
(middle-top sub-�gure) presents the highest error rate. The error rate for
this block basically creates the overall error rate for the validation sample.
Not surprisingly, the value of this �eld is best predicted by Day Pro�le. For
the rest of the blocks, Personal Pro�le imputate with the smallest error. The
situation is similar for the KNN model. However, it is possible to see (also
from the �gures 1, 2 and 3), that the error rate does not decrease much with
increased size of the training set.

Table 1 presents error correlation matrices for Gaussian and K-Nearest
Neighbor model, respectively, for three methods. The Eij entry of error corre-
lation matrix is de�ned as Eij = Probferror in method i^error in method jg
estimated by the number of examples where errors occured both in methods
i and j relative to the total number of examples. As earlier, each example
contains only one block error, and all possible block errors are examined. If
only one method out of 3 makes an error it will be corrected by Voting. That

494

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 29,2010 at 10:09:48 EDT from IEEE Xplore.  Restrictions apply. 



40 60 80 100
0.08

0.085

0.09

0.095

0.1

0.105

0.11
Personal Profile

Training set size

E
rr

or
 r

at
e

40 60 80 100
0.075

0.08

0.085

0.09

0.095

0.1
Day Profile

Training set size

E
rr

or
 r

at
e

40 60 80 100
0.1

0.105

0.11

0.115

0.12

0.125

0.13
Complete Diary Profile

Training set size

E
rr

or
 r

at
e

40 60 80 100
0.08

0.085

0.09

0.095

0.1

0.105

0.11
Voting

Training set size

E
rr

or
 r

at
e

GM 
KNN

Figure 3: Comparison between GM (light line) and KNN model (dark line) for all

the pro�les shown separately.

is, the error made by Voting, is given by
P

j>i;i 6=j Eij + P3, where P3 is the
probability of all 3 methods, simultaneously making an error. The gain in
error rate by using Voting relative to one of the other methods is given as
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Figure 4: Learning curves for GM model shown separately for all 9 blocks. Block is

de�ned as answer to the question represented binary. On x-axes size of the training

set is shown and on the y-axes is error rate. Learning curves for the block no. 2

present the highest error rate. In this case, Day Pro�le gives the best results in

imputating. In the other cases Personal Pro�le performs the best.
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Figure 5: Learning curves for GM model shown separately for all 9 blocks. Block is

de�ned as answer to the question represented binary. On x-axes size of the training

set is shown and on the y-axes is error rate. Learning curves for the block no. 2

present the highest error rate. In this case, Day Pro�le gives the best results in

imputating. In the other cases Personal Pro�le performs the best.

Ejk �Eii, where (j; k) 6= i ^ k > j.
The error rates are shown for two extreme training set sizes, namely 30

and 100 samples.
Figure 6 shows the error rate for 50 validation samples as a function of

training set size. All the methods share the same set of validation samples.
Color bars show error rate. It is interesting to see that for some of the
validation samples, the error does not depend on which method or model
is used, nor the size of the training set (see the sample no. 36). In other
cases, increased size of the training set reduces the error rate (sample no. 14

PP DP CDP

PP 0.0271 0.0051 0.0229

DP 0.0051 0.0238 0.0258

CDP 0.0229 0.0258 0.0413

P3 0.0347

PP DP CDP

PP 0.0187 0.0040 0.0267

DP 0.0040 0.0169 0.0218

CDP 0.0267 0.0218 0.0322

P3 0.0344

PP DP CDP

PP 0.0260 0.0056 0.0227

DP 0.0056 0.0109 0.0222

CDP 0.0227 0.0222 0.0258

P3 0.0480

PP DP CDP

PP 0.0280 0.0060 0.0249

DP 0.0060 0.0127 0.0213

CDP 0.0249 0.0213 0.0287

P3 0.0416

Table 1: Error correlation tables for GM (top row table ) and KNN (bottom row

table). Left and right column tables present data for small training set (30 sam-

ples) and large training set (100 samples), respectively. Used abbreviations: PP -

Personal Pro�le, DP - Day Pro�le, CDP - Complete Diary Pro�le.
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Figure 6: Error rate for di�erent pro�les in the GM and in the KNN. Figures show

for speci�c validation samples the dependency on the size of the training set. The

methods share the same set of validation samples. Color bars present error rate. 0

corresponds to the situation when for all 9 blocks no error was made and 1 when

an error occurred in every block.
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for the Gaussian model, Personal Pro�le). It can also be seen that for other
validation samples, the error rate varies from method to method and between
the models. In such cases, Voting may return the lowest error rate.

CONCLUSIONS

It is generally expected that the models perform better for large training
sets. However, the error rate is strongly sample related, i.e., it can increase
signi�cantly with just the one \unlucky" sample.

Applying di�erent methods depending on the block number can be rel-
evant for this data set. In this case using Day Pro�le in the prediction of
the value of block no. 2 and Personal Pro�le for the rest of the blocks may
give considerable improvement in the error rate. However, such mixing of
the methods is highly data dependent and has to be tuned manually.

In conclusion, for the present data set, the Gaussian model is superior to
the non-parametric K-nearest neighbor model although the Gaussian model
assumptions are violated for binary data vectors. The Day Pro�le method
gave best results indicating a strong daily variation. If the errors made by
di�erent methods had been uncorrelated, the results returned by the Vot-
ing would give the best imputation performance of missing data. For small
training sets Voting resulted in improved performance, while severe corre-
lation among the errors of the methods disfavors Voting for large training
sets. In addition, the use of overlapping training sets additionally improved
correlation among the methods.
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