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In future high-speed networks, interferometric 
structures based on semiconductor optical ampli- 
fiers (SOAs) are strong candidates for wavelength 
conversion applications and signal regeneration.' 
One of the latest reported interferometric devices 
is the Semiconductor Delayed-Interference Sig- 
nal-wavelength Converter (DISC)? which allows 
for high-speed switching by exploiting the fast 
carrier-depletion related refractive index changes 
in the SOA. 

Here we use a numerical model of the DISC 
configuration including saturation and dynami- 
cal effects in the SOA, to generate pattern de- 
pendent transfer functions. These transfer func- 
tions are used to evaluate the noise accumulation 
and the BER of concatenated regenerators in a 
manner similar to the one proposed in,' but here 
the analysis is extended to the dynamic case, 
which becomes very important for bitrates > 10 
Gbls. The results are also valid for other interfer- 
ometric based convertershegenerators. 

In the numerical simulations we use a 1500 
pm long SOA, the input pulse width is 5 ps  
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CThU4 Fig. 1. Transfer characteristics for the 
DISC model. Left plot is for 2.5 Gbls where no 
pattern effects are visible and right plot is for 40 
Gbls where the memory effects of the SOA are 
clearly visible. 

(FWHM, RZ signal) and the signal intensity is 
adjusted in order to ensure a x phase-shift in the 
SOA. In Fig. 1 we observe the transfer character- 
istic of the DISC-model at two different bit-rates. 
The SOA is fast enough to fully recover between 
pulses at low bitrates. At high bitrates (> 10 Gbls) 
the SOA no longer recovers fully between bits, 
causing the observed pattern dependent transfer 
functions. 

The evaluation of the transfer functions are 
done without including noise effects. These are 
included in the following noise accumulation 
analysis, where the pattern dependent nonlinear 
transfer functions are approximated by "stair- 
casen functions made by discrete sets of values 
{xi]. Assuming Gaussian noise, from inline am- 
plifiers and SOAs in the regenerators, added to 
the signal s. = xj before the n'th node, we calcu- 
late a transfer probability matrix T consisting of 
the transfer probability elements; t i j  = P ( S , + ~  = 
xi I s, = xi). Defining a discrete probability density 
function (pdf) for the ZERO and ONE signal as 
p. = [ ~ ( s ,  = XJ . . . P(S,  = xN)lT, we calculate 
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CThU4 Fig. 2. The BER evolution of the sys- 
tem up to 100 concatenated repeaters. The 
Gaussian noise level is set to give a BER of 
after one link. Also shown is the BER evolution 
with a linear- (no regeneration) and a step-func- 
tion (ideal regeneration) characteristic. 

the pdf at node n as p. = T" . p,,.' The model 
takes full account of the noise-redistribution, 
leading to non-Gaussian distribution at the re- 
generator output. 

In Fig. 2 we have plotted the BER as a function 
of the number of concatenated regenerators at 
different bit-rates. Pattern effects strongly influ- 
ence the accumulation of noise at bitrates > 10 
Gbls. 

The regeneration capability is significantly 
improved by combining two DISC devices in 
each node, as done with two MZIs converters in.4 
This improves the nonlinear transfer characteris- 
tics significantly and results in a reduction of the 
BER by two orders of magnitude, as shown in 
Fig. 3. 

In conclusion, we have extended previous 
static analyses of noise-redistribution in all-opti- 
cal regenerators to take dynamical effects into ac- 
count and shown how pattern effects degrade the 
regeneration capability at high bitrates. 
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CThU4 Fig. 3. As in figure 2, but this time 
with two interferometers at each node. Strong 
improvement of the BER is observed. 
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Multiple Wavelength demultiplexlng using 
an ultrafast nonlinear interferometer 
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Optical rate conversion at user access nodes is a 
necessity in slotted optical time-division multi- 
plexed (OTDM) networks. Various methods of 
rate conversion have been previously proposed. 
For instance, a receiver can optically buffer in- 
coming slots and perform an all-optical rate- 
conversion down to electronic rates.’ A more 
practical approach to rate conversion is to con- 
sider the incoming slot as N bit-interleaved 
OTDM channels which can each be optically de- 
multiplexed, detected, and buffered electronical- 
ly. Multiple channel demultiplexing has been 
previously demonstrated in a nonlinear optical 
loop mirror’ and using four-wave mixing in 
fiber3 and a semiconductor optical am~lifier.~ 
Here, we use the ultrafast nonlinear interferome- 
ter (UNI)5 to demonstrate multiple wavelength 
all-optical demultiplexing. 

Figure 1 shows the configuration for multiple 
wavelength demultiplexing using the UNI. In this 
setup, the aggregate OTDM data stream at a bit 
rate of N*10 Gbit/s is used as the control input to 
the UNI. We use pulse-position modulation 
(PPM) to eliminate patterning due to gain-satu- 
ration effects in the SOA.6 The signal input is 
comprised of N optical pulse sources at 10 
Gbitls. These sources must be at N different 
wavelengths and their pulse widths must be less 

than the bit period of the aggregate OTDM data 
stream (100 ps/N). The N signal wavelengths are 
each temporally aligned with successive bit-in- 
terleaved OTDM channels on the control input. 
In this way, the N OTDM channels are wave- 
length converted to the N signal wavelengths. At 
the output of the UNI, the N signal channels are 
separated using a wavelength division multiplex- 
er (WDM) and electronically processed at 10 
Gbit/s. 

Experimentally, we have demonstrated multi- 
ple wavelength demultiplexing of a 20 Gbit/s 
OTDM data stream using the setup shown in 
Figure 2. The control pulse source is a mode- 
locked fiber laser (MLFL) producing 2 ps pulses 
at 1545 nm. These pulses are pulse-position 
modulated (PPM) with a 10 Gbit/s pseudo-ran- 
dom bit pattern of length z3’-l. We optically 
multiplex these pulses to create a 20 Gbit/s 
OTDM data stream. Two additional MLFL pro- 
ducing 2 ps pulses at 1550 nm and 1552 nm pro- 
vide the signal pulse sources. The two signal 
lasers are combined and temporally aligned with 
the control pulses using optical delay lines 
(ODL). At the output of the UNI, the two signal 
wavelengths are filtered and separated. These two 
outputs are then sent to a 10 Gbit/s optically pre- 
amplified receiver for bit-error-rate (BER) analy- 
sis. 

Figure 3 shows the results of the bit-error rate 
tests for multiple wavelength operation. In each 
of these experiments, the individual signal pow- 
ers at the input of the UN1 are -5 dBm while the 
control power is 0 dBm. The baseline is measured 
using the 1545 nm output directly from the mod- 
ulator. The unfilled points represent the BER 
performance of the switch when only a single 
wavelength is used for demultiplexing while the 
filled points show the BER performance when 
both signal wavelengths are used for simultane- 
ous demultiplexing. The maximum observed 
power penalty for a BER of 

In conclusion, we have demonstrated multiple 
wavelength demultiplexing of a 20 Gbit/s pulse- 
position modulated data stream. The interfero- 
metric SOA-based switch design requires less 

was 1.5 dB. 
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CThU5 Fig. 3. Bit-error rate test results on 
demultiplexed UN1 output. 

control pulse power and has less latency than 
previous work making it an ideal solution for 
rate conversion in an OTDM receiver. Previous 
switching results suggest that this technique 
should readily scale to OTDM data rates of 80 
Gbit/s, or more.7 

This work is sponsored by DARPA under AF 
Contract #F19628-00-C-002. Opinions, interpre- 
tations, recommendations and conclusions are 
those of the author and are not necessarily en- 
dorsed by the United States Air Force. 
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A novel technique for compensation of 
birefringence in active elements of 
solid-state lasers 

Efim Khazanov, Institute of Applied Physics, 46 
U!janov st., N. Novgorod, 603600 Russia; email: 
khazanov@appl.sci-nnov. ru 

Heating of active elements (AE) of solid-state 
lasers gives rise to a thermal lens and birefrin- 
gence. The problem of how to compensate for 
the birefringence in AE has been studied for 
many years and continues to be a subject of in- 
vestigation at present. Various designs were sug- CThU5 Fig. 2. Experimental setup. 
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