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Restoration of Polarimetric SAR Images Using
Simulated Annealing

Jesper Schou and Henning Skriver

Abstract—Filtering synthethic aperture radar (SAR) images
ideally results in better estimates of the parameters character-
izing the distributed targets in the images while preserving the

structures of the nondistributed targets. However, these objectives

are normally conflicting, often leading to a filtering approach
favoring one of the objectives. An algorithm for estimating the

of the co- and cross-polarized channels, as in the work by Lee
et al. [5]. Also, the filtering techniques can preserve the entire
polarimetric information by estimating the CM. This is done by
Leeet al. [6] and by Lopés and Séry [3], where in the latter
case, textural information is also preserved. Oliver and Quegan

radar cross-section (RCS) for intensity SAR images has previously [7] derive a minimum mean square error (MSE) reconstruction

been proposed in the literature based on Markov random fields
and the stochastic optimization method simulated annealing. A
new version of the algorithm is presented applicable to multilook
polarimetric SAR images, resulting in an estimate of the mean co-
variance matrix rather than the RCS. Small windows are applied
in the filtering, and due to the iterative nature of the approach,
reasonable estimates of the polarimetric quantities characterizing
the distributed targets are obtained while at the same time
preserving most of the structures in the image. The algorithm
is evaluated using multilook polarimetric L-band data from the
Danish airborne EMISAR system, and the impact of the algorithm
on the unsupervisedH—« classification is demonstrated.

Index Terms—Complex Wishart distribution, maximum likeli-
hood estimation (MLE), polarimetry, simulated annealing, speckle
filtering, synthetic aperture radar (SAR), unsupervised classifica-
tion.

. INTRODUCTION

A

filter capable of reconstructing the CM in the case of texture.
The normal filtering approach is to apply a movidg x M
window (although edge-directed windows have also been ap-
plied [6]) and base the result upon the values inside the window.
The size of the applied window depends on the number of looks
of the input data, the desired variance of the estimates, and the
need to maintain structures in the image.

In this paper, we present a new polarimetric filtering algo-
rithm, where the mean CM is estimated. The algorithm is based
on the filters developed by White [8], [9], McConnetlal.[10],
McConnell and Oliver [11], and Oliver and Quegan [7], where
the radar cross-section (RCS) is estimated from single-channel
intensity data. By using Markov random fields (MRF) and sto-
chastic relaxation algorithms, very high speckle reduction is
achieved, while most of the structures in the image are pre-
served.

The algorithm described in this paper belongs to the class

FULLY polarimetric SAR system measures the elemeng; image restoration algorithms, where the goal is to restore
of the scattering matrix for each resolution cell. Assumingye true process from an observed process. Using Bayesian

a homogeneous surface, the data are completely describegyathods, the image is modeled as a random field, and the
the complex covariance matrix (CM), which carries the full pGmage restoration problem can be expressed as an estimation
larimetric information [1]. Data are often multilook processegromem_ As the individual pixel values generally depend on
by averaging neighboring CMs to reduce the speckle presefé surrounding pixels, an MRF is chosen due to its ability to
in SAR images. Standard multilook processing provides betiegdel spatial dependence [12]. By using the fact that the MRF
estimates of the polarimetric quantities, thus facilitating subsgyjiows a Gibbs distribution, the estimation problem can be
guent image analysis tasks, e.g., classification, segmentati%ressed as an energy minimization problem, which is solved
and visual inspection. As the structures in the image need[8ing the stochastic relaxation algorithm called simulated
be maintained, there is an upper bound on the degree of muét,imea"ng (SA) [12], [13].

looking performed, and often specialized speckle reduction fil- ope of the most important applications of polarimetric SAR

ters are applied subsequently.

images is classification of land use areas, and several supervised

Several papers have described filtering of polarimetric daigng unsupervised classification schemes have been proposed in
The fllterlng_technlque§ can res_ult in a single intensity image, #% literature [14], [15], [6], [16]. In this work, the polarimetric
for the polarimetric Whitening Filter by Novak and Burl [2] andestoration is shown to be an efficient pre-processing step for

the Multilook Polarimetric whitening filter described by Lopeshe unsupervised classification scheme suggested by Cloude and
and Séry [3] and Liet al. [4], or in speckle reduced imagespttier [15].

Manuscript received October 11, 2000; revised April 2, 2001.

The paper is organized as follows. Section Il describes the
concept of random field modeling of images, together with a
general description of SA. In Section Ill, the complex Wishart

The authors are with the Section of Electromagnetic Systems, Departmgiétribution is used to derive the maximum likelihood estimate
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(MLE) of the mean CM, an estimate that is used in an optimiza-
tion process to restore the mean CM. The restoration process is
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5413|415 analysis task, and for mean CM estimation, it is described in
41211]2)4 O & Section IlI.
311]X[1]3 Bayesian estimation methods are used intensively in image
analysis for retrieving information on a process underlying an
S1413]4]5 EH observed process. If the underlying process is cafleghd the
) ») © observed proces¥, then Bayes rule states that
Fig. 1. (a) Then-order neighborhood of the central site (denoted by “x”) Px|y) < P(y|x)P(x) (5)

contains the sites with numbers less than or equaktdb) cliques for
a first-order neighborhood, and (c) additional cliques for a second-or

neighborhood [13]. it P(y|x) being the likelihood function(x) the a priori

probability, andP(x|y) thea posterioriconditional probability.

evaluated using multilook polarimetric SAR data from an angodgllngX asa MRF fOHOW'.n.g a Gibbs distribution, we can
cultural site in Section IV, In Section V, an unsupervised cla5&Write thea posterioriprobability as

sifier is applied to the restored polarimetric data set, and Sec- 1 )

tion VI contains the conclusions. Plxly) = > e 1V G)/T] (6)

[I. RANDOM FIELDS AND ENERGY MINIMIZATION using thea posterioriconditional energy functio¥(x|y). The

We first briefly describe the Markov random field modeling'é:nﬁguration& that maximizes the posteriori conditional

of images and the use of Bayesian estimation methods. T
the energy minimization algorithm simulated annealing is di
cussed. The description in this section follows Li [13].

bability is called the maximum posteriori(MAP) estimate.
| knowledge about thea priori probability is omitted, the
resulting estimate is the MLE. For the mean CM restoration
algorithm in this paper, the aim is to estimate the underlying,

A. Markov Random Fields unspeckled imagé& from the observed, speckled imadé
. ing the MLE, as di d in Section IlI.
Let S = {s1, s2,..., sy} denote theN sites of a 2-D using the as discussedin section
image. The pixel values = {zi, ..., zy} are realizations

of the stochastic variablé§ — {X,, ..., Xx} and the set of B. Energy Minimization Using Simulated Annealing

variablesX defined onS is called a random field?(X = x)is ~ Finding the global maximum of the posterioridistribution
the probability of a particular configuration (image)Xf[13], in (6), or equivalently the global minimum of the energy func-

and all the possible configurations are calfed tion is often made difficult by local maxima (minima), which
The set of sites neighboring.\V; is a subset of having the can easily trap the optimization algorithm. In the present work,
following properties [13]: the stochastic optimization method SA is applied to find the
global minimum of the energy function.
i gN; (1)  SA searches for the configuratior that minimizes an

p . (multidimensional) energy function/(x). It is iterative
CEN; e ieNy 2) by nature, where a new configuratioif )for iteration j is
where the first condition states, that a site is not a neighbor tofeund from the previous configuratior’—* by applying a
self, and the second that the neighboring relationship is mutu@gneration mechanism and accepting the new configuration
The collection of all the neighbor sets is called the neighborho&8iNg an acceptance criterion based on the energy divergence
system\" = {A;|V i € S}, and the order of the neighborhooddU = U(x’) — U(x’~*). The temperaturd’ controls the
system can be seen in Fig. 1(a). A clique is defined as a sub@@timization, and it is decreased throughout the optimization
of S, for which every pair of sites are neighbors, and the set Bfocess. For the first iterations whéhis high, there is a high
cliques corresponding to the first-order and second-order neigtiobability of accepting configurations resulting in an increase
borhoods are shown in Fig. 1(b) and (c), respectively. in the energy, thus making SA able to get out of local minima.
Using these definitions we have that the random filde- As the temperature is gradually decreased, the probability of
fined on S is a Markov random field (MRF), and using thedccepting configurations resulting in increasing energies is
Markov—Gibbs equivalence, the joint distribution of the MRteduced, and at the end of the minimization no increases are

follows a Gibbs distribution [12], [13] accepted, and the global minimum configuration is ideally
reached.
P(X =x)= %e—[b’(x)/T]’ xeN ©) The SA algorithm can be described as in [13], [17].

1) Initialize T andx®.
whereT" is called the temperature, and the normalization func- 2) Iteration;

tion Z, denoted the partition function, is defined as a) Propose updated configuratig.
_w b) Computel/(x’).
- [U(x)/T] /
Z= Z © ’ ) ¢) Accept/rejeck’ based omMAU and7.
i d) Stop if stop criterion is fulfilled.
The energy functiol/ (x) depends on the pixel values contained e) Decreasé& according to cooling schedule.
in the cliquesl/(x) is highly dependent on the specific image f) Next iteration.
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of the backscattered signal, the complex scattering matrix is
formed. In the following, we will assume that reciprocity [1],
[20] holds, i.e.,S), = S, (for backscattering alignment) with

Sy, being the complex scattering amplitude for receive polar-
izationp and transmit polarizatiog, thus the single-look polari-
metric data at each pixel can be represented using the complex
scattering vectos

Fig. 2. Set of 12 connection filters used by the generation mechanism to find t t
the new estimate of®. “x” denotes the central pixel, and each filter has two 5= ( Sun S Suw ) = ( S1 Sy S ) 8)
neighbors to the central pixel.

wheret denotes transpose. The scattering vector from a homo-

Since the elements in the covariance matrix are continud@@neous surface is a zero mean multivariate complex Gaussian
rather than belonging to a discrete set, a continuous minimiza@hdom variable [21] and from, the Hermitian sample CNE
tion method is needed to estimate and this is reflected in the is formed as
choice of generation mechanism in step 2 a). In the original y . .
work by White [8], [9], the new pixel value, which in White's [S1[F S155 5153
case reflected the RCS, is derived from a set of 12 connection X = 4r(ss™) = 4r < [SQS{ |Sa]? SQS;;] > 9)
filters. Thus, instead of choosing from an infinite number of S3S%  S38%  |Ss)?
. . . 301 3-2 3
pixel values, the generation mechanism only needs to choose

between 12 different values. The set of connection filters, Whigv erex denotes complex conjugation. The sample covariance
is a subset of the possible cliques for a fifth-order neighborho trix follows a complex Wishart distribution, which is a func-

system, is seen in Fig. 2. The central pixel has two neighbqrgn of the number of lookd and the Hermitian mean CI\I'
for each of the 12 filters, and for each filter the new value ], [21]

the central pixel is based on the original value of the central

pixel and the present values of the neighboring pixels. In the LLp|s|Epe-tis (c1x)

following, a more general desgripti_on of f[he filters is proposed, p(Z|C) = RTeT: (10)
where the number of connection filters is denofédand the (L, p)|C|

number of neighbor pixels within each filter is denoted i.e., _ _ . _ _ . .
N, = 12 andn,, = 2 for Fig. 2. wherep is the dimension 0§, i.e.,p = 3 assuming reciprocity,

The Metropolis criterion is applied as the acceptance crite- - | andtz(- - -) denote the determinant and trace, respectively,
rion, where a new configuration resulting in a negative energdf (L, p) is given by
divergence is always accepted, while a configuration resulting in

positive divergence is accepted with probability®"/7 [13]. L1 T ,
As the stop criterion, Hellwich [17] suggests using either a given J(L,p) = alt/Bpe=) H ML-j+1) 1)
number of iterations or when an insignificant number of changes =t

is made over a given number of iterations. SA finds the global ] ]
minimum of I/(x) provided that the temperature is cooled sufith I'(- - -) being the Gamma function. As shown by Goodman

ficiently slowly toward zero. The cooling schedule needed i1 = is an unbiased estimate of the mean CM. The mean CM
however, too slow to be of any practical use, and we apply tfkecontains the full polarimetric information for a homogeneous

following logarithmic cooling schedule [7], [13], [18] surface, and represents the quantity we want to estimate in the
CM restoration, and (10) thus represents the likelihood func-
1o ) tion, as described in Section Il. It should be noted that multi-

T =—— . . .
7 In(1 + 3y) frequency, and/or multitemporal polarimetric data can also be

ith 7 being the i . h . described using the complex Wishart distribution, and hence,
with j being the iteration numbet; the starting temperature i, remainder of this work is applicable to these kinds of polari-
that should be “large enough” [19], amda constant. metric SAR data as well

We assume homogeneous areas in this work. If texture is
IIl. COVARIANCE MATRIX RESTORATION present, a possible approach would be to apply the product
In this section, we first describe the complex Wishart dignodel, where the mean CM is the product of a texture variable
tribution, and then this distribution is used in the optimizatioand a mean CM from a homogeneous surface [3], [7], [22].
process to restore the mean covariance matrix from the multPpés and Seéry [3] derive various estimates of the texture
looked polarimetric SAR data. These latter data will in the fomariable, which must be included in the likelihood function.
lowing be denoted as the original data. Finally, a bias in the mean
CM estimate is discussed. B. ML and MAP Estimates of the Mean CM
i o Using the connection filters shown in Fig. 2, the new esti-
A. Complex Wishart Distribution mate of the mean CM for the central pixel is based on the orig-
A polarimetric SAR transmits horizontally and vertically poinal sample CM at the central pixel and the present estimates of
larized signals alternately, and by measuring both polarizatioiie mean CM for the neighbors. Denoting the original, central

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 23,2010 at 10:32:33 EDT from IEEE Xplore. Restrictions apply.
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sample CM ag, and the neighboring mean CM estimates awatrix. Using expressions for the derivative of trace

Zy, ..., 7, ,we find thea posterioriprobability as dir (X1Y)/dX = —-X'Y'X"!, with —¢ denoting
inverse transpose, and the derivative of the logarithm of the
P(Cix|Z0, Z1gy -y Zn k) determinantdlog(|X|)/dX = X~ [23], the MLE is found

x P(3o, Ziky -y ZLn,k|Cir) P(Cir) from

=Pl Cat) P(Zuk|Cir) - P il CadlP(Co) (A2 g o4 1~ (L nam)Ci =0 (16)

where the suffixi denotes the site and the suffix denotes resulting in
the connection filter. The brackets encompasses the conditional

probability density function, where independence between the o + I (Zik+ -+ Zo 1)

neighboring pixels has been assumed. This assumption facili- ¢ = L _ " (17)
tates the derivation of the mean CM estimate considerably, but 14+n, —

it has limited validity because on the one hand, the neighboring L

mean CM estimateZ, ..., Z,,, are initialized using the orig- From this equation it can be seen, that the locally estimated

inal sample CM, which correlates each of them w3y as- number of looks s, controls the degree of averaging. For a
suming correlation between neighboring pixels in the origingmooth surface: is high, resulting inC;. ~ (1/n,)(Zy +
data, and on the other hand, the neighboring estimates becomerznnk), whereas a discontinuity in the lodal x M window
increasingly dependent as the algorithm iterates. We will digrakesr small, and thus gives a higher priority to the original
cuss the effect of this assumption further after having derived t§gmple CM. This expression is a generalization of the result
mean CM estimate. The original sample CM, which is includeglven by McConnelet al.[10], McConnell and Oliver [11], and

in the conditional energy function to ensure that the present egdtiver and Quegan [7], where they find the MLE for the RCS,
mate is consistent with the original data [7], and the neighboringingn,, = 2, as

mean CM estimates are all assumed to be realizations of a com-

plex Wishart distribution having mean C;;.. L is the number Io + i (z1k + T2p)
of looks for 3y, and L is constant throughout the algorithm. Giw = L = (18)
The number of looks for the neighboring mean CM estimates, 142 7

k is estimated for each new pixel visited, as the estimates are
continuously being updated, ards taken as the average of thewith 5, being the estimated RC$, the original sample in-
locally estimated number of looks for each of the three polarizeensity, andr; andx» the current estimates of the RCS at the
tions, where the estimation is performed idax M window neighboring pixels. Estimating the RCS can be seen as a spe-
around the central pixel cial case of mean CM estimation, as the RCS are the diagonal
, terms in the covariance matrix. As previously mentioned, the es-
P Z {O'AJ} 7 = hh, v, v (13) timateC;; assumes that the_ nelghborlng CMs are unco_rrelated.
34~ V{5;} One approach to correct this assumption could be, to include a
! factor describing the effective number of independent samples
with &; being the backscattering coefficients for polarizatjon represented by the neighboring sites; this, however, has not been
from the restored CM. attempted in this work.
We first derive the MLE of the mean CM using (10) and (12). For obtaining the MAP estimate of the mean CM, éariori

For each of the connections, the likelihood function at sie Probability, P(C), needs to be included. The problem is, that
given by this distribution is not known, making it impossible to derive

the MAP estimate. It is however noticeable, tha€if for lack
P(Zo, Zks .. » Zn,1|Cit) of a known distribution, is assumed to follow a complex Wishart
distribution, having, number of looks and the “true” mean CM
M, then the log likelihood function for the MAP estimate using

-1
LLp|2O|L7p e Ltr (C;,” Zo)

f(L, p)|Cix|" ) n, = 2is given as
Ty Iimp|zjk|n_p e—mr(Ci_k Zir)
14
TG pical D Lcn)
= log P(32, Z1x, Zox|Cix) + log P(Cyy)

By omitting terms not involvindgC;;, the log likelihood function = —(Ltr (C o) + wtr (Ct Zix) + wtr (C Zan)

s glven as + Ctr (M7 Cix) + (L4-264p—() log [Cir[).  (19)
Lf(Cix) = log (30, Z, - - Zun, k|Cir) Using the following expressiodtr(Y1X)/dX = Y [23]

=—(Ltr (C;'Z0)+ £ (tv(C Zux) + -+ and the ones mentioned previously, we obtain the MAP estimate
+ tr(ci—kl an)) + (L 4 n,5) log |Cik|)- (15) of C;x as the solution for,, = 0

We find the MLE of the mean CM by solving (CaM ™ Cyp + Cipe(26 + L +p — () — LE
dLf(Cix)/dC; = 0, with o being the 3 x 3 null — ’(Z1x +Z2) = 0. (20)

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 23,2010 at 10:32:33 EDT from IEEE Xplore. Restrictions apply.
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This quadratic matrix equation is, again, a generalization of tseow, however, that the connection filter resulting in maximum
MAP estimate of the RCS [7], which is given by the solution ta posterioriprobability leads to a biased mean CM estimate.
the scalar quadratic expression fgr = 0 From Section IV-C we have that connection filigrresulting

in MLE Cko is chosen from the set d¥,. possible connection

Vo oG (26 L+1—v)— LIy—r(z1+22) = 0 (21) filters iff

wherey andy are the mean RCS and order parameter, respeB(EO, Lipy, -y Ly iy |Ck0)

tively, and the rest of the parameters are similar to equation (18). R

The MAP estimate for the mean CM is not used in the following, 2 P(EO’ Zik, -5 Lk Ck)’ ko, k < Ne, ko # k.

because, on the one hand, the assumptidn foilowing a com- (26)

plex Wishart distribution is not supported, either in this work

or in the literature, and, on the other hand, the solution to ththe overall most likely connection filter is the

quadratic matrix equation (20) is far from straightforward [24filter where the n, neighboring CMs result in the

overall highest probability (26), and these values

C. Mean CM Restoration Using Simulated Annealing are found by solving the log likelihood equation
The mean CM restoration is performed as a Gibbs enertflog P(Zo; Ziky, - s Zn,ko|Chio)l/dZ1xy -+ dZip 1y = 0.

minimization process, with the likelihood amdposteriorien- To be able to solve this equation, we need to introduce

ergy functions given as a constraint. In Section IV-E it is shown that the
backscattering coefficients of the restored CM are biased
U(So, Ziks -- -5 Zo, 1 |Cir) with approximately the same amount, whereas the complex

correlation coefficients are practically unbiased, hence

=~ (P(Zo, Zuk, - s Znk[Ci)) (22) " the bias must be of the forC) = constant x (o).
Unr(Cirl| 2o, Zik, -, Zn, 1) We therefore define the neighboring CM’s by means of
=U(Xo, Z1g, -y Zn, k|Cir) (23) the original central sample CM, i.eZ;x, = x>0,
with the factorsw,;, being real scalars. Solving the log

From (22) and (23) it is verified, that a high likelihood probalikelihood equation with respect to these factors, i.e.,

bility results in a smalk posteriorienergy; a necessary condi-l210g P(Zo0, Ziky, -+, Zn, ko |Chio)l/ A1, » - dvnn, = 0,

tion when the restoration is performed as an energy minimi24€lds

tion process. For each of the connections, we calculate the prob- L(x—p)

abilit = ——— 27 7 < Ny 27
y Ujko I‘E(L-I-?’an)’ J= Ny ( )

P(CiklEo, Zig, ..., an) This shows, that the overall highest probability (26) is obtained,
1 . if the n,, neighbors within the connection filter are given as
= Zefb““(c“"'zo’Z“"""’Z””"")/T (24)  Zj, = [L(k — p)/s(L + nnp)]Xo. The mean CM estimate
from this specific filter is biased a&(x — p)/x(L + npp) < 1,
with the partition function given as and to derive the expression of the bias resulting from this filter,
we insertZ,, in the MLE for the mean CM (17) giving
_ —Unr.(Cin|Z0,Ziky ooy Znpy 1)/ T
e (25) (€)= = (%), (28)
L+n,p

and identify the connectiok, resulting in the highest poste- ) )
riori probability (the lowesa posteriorienergy). This connec- This expression only depends on the number of looks
tion is then accepted or rejected based on the Metropolis crifd- the original data, L, on the number of neighbors

rion, as previously mentioned in Section II-B. within the connection filter, n,,, and on the dimen-
sion of the CM, p. It should be mentioned that for the

D. Bias of the Mean CM Estimate RCS reconstruction algorithm the log likelihood equation
dP(Io, Llkgs - -Tn,nk0|6k0)/d$1k0 "'d-TnnkO = 0 can be

In the case of RCS reconstruction, Oliver and Quegan [7] nQ- . . o .
. L ) o solved using the appropriate Gamma distributions and without
tice a bias in the estimate of the RCS, resulting in lower valuge . ) L
- . ntroducing any constraint, resulting {&) = L /(L +n.,.){{o},
of 6 than expected, and we observe a bias for the restored C as o iar to (28) withp = 1
well. The bias of the estimate is a result of the choice made l)y o
the algorithm between the different connection filters. As dis-
cussed in Section 11I-C, the connection filter resulting in the
highesta posterioriprobability is chosen from the set of connec- In this section the mean CM restoration algorithm is evalu-
tion filters. If the mean CM estimate is unbiased, the averageatkd using airborne EMISAR data, with focus on the preserva-
then,, neighboring covariance matrices within the connectiaiion of polarimetric information and structures. In addition to
filter must be equal to the average of the original sample CM, ti® restoration algorithm, the polarimetric SAR speckle filter

this in turn is an unbiased estimate of the mean CM [21]. We wiily Leeet al. [6] is applied for comparison.

IV. EXPERIMENTAL RESULTS
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[z} (€]

Fig. 3. Covariance matrix estimation using 13-look polarimetric C-band EMISAR data, color codedvudirggl), 2k (green), andv (blue). (a) Original data
including test areas and profiles, (b) mean CM restored data ing 12 filters, (c) mean CM restored data using filter banks, each had¥ipg= 4, and (d)
polarimetric SAR speckle filtered data.

A. SAR Data the following EMISAR images, are all shown in logarithmic

The mean CM restoration algorithm is evaluated using ful§F@/€)- The test area is a subset of the area shown by Chris-
polarimetric C-band data from the Danish airborne polarimetgnseret al. [25] and Skriveret al. [26], where RGB versions
SAR, EMISAR, developed at the Section of ElectromagnetSing the same color coding for both frequencies are shown
Systems (EMI), Orsted, DTU [25]. EMISAR operates at L- anlf Figs. 8 anq 1, respectlve_ly. In the following _the EMI_SAR
C-band (1.25 GHz and 5.3 GHz, respectively). Flown on boafd-00k covariance data having a55 m ground pixel spacing
a Gulfstream G-3 aircraft from the Royal Danish Air Force &'€ used for the mean CM restoration algorithm. These data are
an altitude of typically 12.5 km, it acquires data with a groung€noted as the original data.
range swath of 12 km and incidence angles ranging frof 35
to 60°. The test image covers approximately 8%(B50 x 580 _B. Estimated Polarimetric Parameters
pixels), and includes several agricultural fields, forests, build-
ings, roads, and natural vegetation. The area is located in JutThe 12 connection filters from Fig. 2 are applied in Fig. 3(b),
land, Denmark, and a RGB image using thgred),/x (green), where an RGB image usirgg,;,, o7..,, ando,, resulting from the
andwvv (blue) polarizations is shown in Fig. 3(a) (this image, anchean CM restoration is shown, using 100 iterations and a local
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3 x 3 window for estimating: (note that we restore all the ele-of the structures are maintained in the speckle filtered result,
ments of the mean CM, and hence, the diagonal elenggreiee  and especially the boundaries between different land-use classes
only part of the result). It is seen that the homogeneous areagfialds, forest, and natural vegetation) are preserved very well.
the restored image, especially the agricultural fields, contains aThe mean CM restoration also provides an estimate of the
number of small patches having different intensity levels. Tlmmplex correlation coefficient between chanrahdy, p; ; =
patches in the restored image, which do not disappear when &-57) /1/|S:|?[S;|?, ¢ # j. Fig. 4 shows the amplitude (coher-
plying more iterations, reflect small areas in the original imagence) and phase (phase differencepgf ... for the original

that appear either darker or brighter than their surroundinds3-look data and for the MLEs. The MLEs of the coherence has
Hence, they are caused by the restoration algorithm being higblgarly less variance in the homogeneous areas than the orig-
sensitive to the original data. Although the patches in Fig. 3(Ijal coherence. In general, the variance is higher for the esti-
reflects physical changes in the original data, a more homogeates around the structures because the presence of a structure
neous result is desirable for many applications. One method fgves a higher priority to the original sample CM in the MLE,
obtaining this would be to include more neighbors within eads discussed in Section I1I-B. Comparing the original phase dif-
filter, i.e., increase,,, but this increases the already significanference image with the original coherence image, it is seen that
computational load of the algorithm. Another method is to appthe phase difference has the largest variance in areas with small
fewer connection filters in the restoration, i.e., redd&eas this coherence [7]. In Fig. 4(d) showing the estimated phase differ-
reduces the capabilities of the algorithm to track and mainta@émce, we see that most of the fields appear very smooth, and the
the small patches throughout the iterations, but this also resdiédds having low coherence appear somewhat inhomogeneous
in loss of some of the actual structures in the scene as fewer filkdthough a high degree of filtering has occurred.

orientations are examined. By applying an alternate subset of

the connection filters in the restoration, however, it is possibte. Speckle Reduction

to obtain a high degree of filtering for the homogeneous areas. . octimated equivalent number of looks (ENL) afor a

while maintaining the actual structures. . -
We divide the 12 connection filters in Fig. 2 in three ﬁlterhomogeneous area [field 1 in Fig. 3(a)] as the mean CM restora-

. ) : I:tion algorithm iterates, is shownin Fig. 5. Also shownin Fig. 5is
banks, where each bank consists of the four filters in a row. or . ) . . .
the estimated number of looks for the noniterative polarimetric

a specific iteration, we apply a given filter bank, and we altefz , . . -
nate between the three banks for each new iteration. A structurAeR speckle filter. The number of iterations used for a specific

oriented according to one of the connection filters in bane- application is obviously a compromise between the desired de-

sults in a higha posterioriprobability (24), where the partition ﬂrgﬁ(ﬂljpbe;i:]lgt;eddlf[ﬁgl(t)r;sr;?r:;estv\ll%rg;??gl;‘;(;Eeb;e;\:gg“?r?é
function Z is derived from theV, = 4 filters in the bank. The ’

filters in the other filter banks are oriented differently and result eed-ups and _the number of Processors 1 expected if applying
. o . . parallel computing to the restoration algorithm [27].
in lower a posterioriprobabilities, and are thus likely to be re-
jected based on the Metropolis criterion, hence a new estimate i
is only obtained when filter bank is applied. For the homoge- D: Structure Preservation
neous areas no preferred orientation exists, and each of the filtewhen looking at the structures in Fig. 3(c), it is observed
banks are likely to generate a new estimate of the mean CMthat the MLE preserves most of them very well. It is primarily
The restoration estimate in Fig. 3(c) is produced using thise contrast of the structures to the surroundings and the
procedure, and it is verified that the fields appear very smoottimensions of the structures, which affect the result. Structures
while practically all of the actual structures have been preservé@ving a large contrast are generally preserved, while small
It should be stressed that applying an alternate subset of conreetd/or narrow linear structures can be blurred, provided they
tion filters is theoretically fully acceptable. The set of filters irhave low contrast to the surroundings. The buildings in the
Fig. 2 is actually a subset of all the possible connection filtensiage are examples of structures having large contrast to the
havingn,, = 2 itself. The number of filters in each filter banksurroundings, and they are all preserved without any visual
must be equal, however, as the partition function (25) is forméturring. Some of the roads, on the other hand, cause problems
as the sum o& posterioriprobabilities within the bank. Also, for the restoration process, partly due to the small spatial extent
the filters in each bank should have significantly different orierat the 5-m pixel spacing and partly because the surrounding
tations, so afilter oriented along a structure results in highs- fields have comparable intensity levels. Also, the orientation
teriori probability. Finally, it is desirable that the computationabf the structures can influence the result. Structures having an
load of the algorithm is reduced by a factor of 3, approximatelgrientation along one of the connection filters are more likely to
by applying the filter bank approach as compared to applyisgirvive the restoration than structures having other orientations,
all 12 connection filters. hence in general a symmetric set of filters should be applied.
The polarimetric SAR speckle filter proposed by Leteal. Fig. 6 shows the profile [marked &3 on Fig. 3(a)] for the
[6] has been implemented for comparison, and Fig. 3(d) shoadginal data, the polarimetric speckle filtered data, and the
the filtering result. The polarimetric SAR speckle filter clearlynean CM restored data. Obviously, the profiles support the
reduces speckle in the homogeneous areas, although not tostiéement that structures having a large contrast are preserved
same degree as the mean CM restoration filter. Also, the stribg-the mean CM restoration algorithm, while structures having
tures having small spatial dimensions seems a bit more bluri@dower contrast, such as the dirt road, can be blurred. The
than the results using iterative filtering. However, quite a felomogeneous fields all appear extremely smooth. In the profile
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{e) (d)

Fig. 4. Mean covariance matrix estimation. {a);., ...| original, (b) Zp:. s, ». original, (€)|pn1, v-|, and (d)Zps 1, ve-

from the polarimetric SAR speckle filter it is observed that ngilex correlation coefficient is examined by comparing the coher-

all of the valleys in the intensity profile for the building area arence and phase difference of the restored and original data, i.e.,

fully preserved, and that the fields appear less smooth. Finally,,, . .| = [/an, vul = |Prh, vol andAthh,w = Lpnh vo —

it should be stressed that structures appearing significant4pns, ..

one of the parameters of the CM may be less significant in theApplying a set of filters having:.,, = 2 and using (28), the

remaining parameters of the CM and it is the entire CM thabckscattering coefficients of the mean CM estimate resulting in

has been applied by both filtering algorithms. maximuma posterioriprobability are biased by3/(13 4+ 2 x

3) = —1.65 dB. Average covariance matrices have been esti-

mated for the eight areas marked in Fig. 3(a) for the original and

the restored data, and Table | shows the bias estimates. The re-
To investigate the bias of the restored CM, we form the ratored backscattering coefficients are all lower than the original

tios between the corresponding backscattering coefficientshackscattering coefficients, but the bias is smaller than that pre-

the restored and original data = 6, /o;. The bias of the com- dicted by (28). Also, there is some variation of the bias factors

E. Accuracy of Estimated Parameters
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0 T Woan G rost o) —— TABLE |
Moan O reat. g e BIAS OF RESTOREDCOVARIANCE MATRIX
400 |- Polarimetric specide fifter (hh) -
350 Area  Crop ThaldB]  Tho[dB] roo[dB] Ayl Alps,. [deg]
1 Rye -0.463 -0.295 -0.427 -0.022 -0.15
00 2 Oats 0.493 0278 -0434 -0.035 031
3 Winter wheat -0.530 -0.439 -0.470 -0.020 -0.81
250 | 4 Spring barley -0.462 -0.364 -0.496 -0.032 0.00
2 5 Grass -0.382  -0.312 -0.439 -0.012 -1.40
& 6  Forest 0318 -0.509 -0.469 -0.007 168
20 7 Forest 0523 -0.443 -0.483  0.008 -0.46
8  Water 0.530 -0.335 -0566 -0.030  0.11
150 |-
S e
e V. UNSUPERVISEDCLASSIFICATION USING RESTOREDDATA
sof 2 T . e
/ ————— The unsupervised classification scheme by Cloude and Pot-
o = - po o lier [15] examines the coherency matiixwhich can be formed
lerations

directly from the complex scattering amplitudes, or by a linear

. . . . transformation of the covariance matrix [28]. According to the
Fig. 5. Estimated equivalent number of looks for homogeneous field no.\gﬁe o LS
for the mean CM restoration (all three polarizations) and for the noniterati#©COMPOsition .by Cloude [28], the_ coherency'matrlx IS com-
polarimetric speckle filter/(h polarization). posed of three independent scattering mechanisms. The impor-
tance of each mechanism is found from an eigenvalue analysis
of T. Furthermore, from the eigenvalugs the parameteH is
defined as

0 T T T

ginal ——
Mean CM restoration ——
Potarimetric speckle fiter --------

3
H:Z _-F)iloggpiv

=1 Z )\J

H is called the entropy and provides information about the ran-
domness of the targell € [0, 1] with H = 0 for a simple
target (single scattering mechanism) add= 1 for a random
target. Thav angle is derived from the associated eigenvectors,
and« equals 0 for surface scatterimg'4 for dipole scattering
and /2 for double-bounce scattering.

The entropy and the meananglea = Ef’:l P;«; form the
basis of the unsupervised classification scheme by Cloude and
Fig. 6. Profile forkk polarization for the original data for the mean cMPottier [15]. TheH — classification space is divided into nine
restoration and for the polarimetric SAR speckle filter. zones based on general properties of the scattering mechanisms

in the respective zones, making the classification approach data

for the different polarizations within the respective fields. Thandependent and truly unsupervised.
complex correlation coefficient is practically unbiased for all As discussed in Section IlI-D, the restored CM is biased, and
the areas. The areas all have coherences above 0.45, excepdttee coherency matrix is obtained by a linear transform of the
forest areas havingy,, .»| =~ 0.3 and grass havinp.;, .., = CM, the eigenvalues & will be biased as well. If the bias of the
0.07. If the comparisons are based on the entire scene, we @M is given by a scaling of the true mean CM with a real scalar
tainry,, = —0.522 dB, r1,, = —0.500 dB, r,, = —0.519 dB, as suggested by (28), the eigenvalues are all biased by the same

lonn, ool = —0.010,andA /- = —0.11. factor as the restored CM. In this case, the entropy is not influ-

This analysis has shown that the backscattering coefficientsinced by this bias, as only the relative values of the eigenvalues
the restored mean CM are not biased by exactly the same facéoe used for finding the entropy. Theangles are unaffected as
The factors are in the same range, however, and the complex eeell, as the eigenvectors are not affected by this bias, and hence,
relation coefficient remains practically unbiased, thus justifyiniipe classification is insensitive to a scaling of the CM with a real
the discussion in Section IlI-D. The bias of the restored CM iscalar. As shown in Section IV-E, however, the backscattering
the homogeneous areas is significantly lower than the bias ewefficients in the restored mean CM are biased with slightly
pression in (28), but this expression is for the ideal case, wheaifferent factors, and this affects the estimate of the entropy as
the n,, neighbors within the connection filter all are given bywell as the meaw angle.

Z;i, = [L(rx —p)/s(L + npp)]30. In practice, we sample the  To obtain a sufficiently high degree of multilooking, we apply
complex Wishart distribution using a very limited set of filtersthe unsupervised classification to polarimetric SAR data filtered
This means that (28) cannot be used directly for correction by the polarimetric speckle filter as done by let@l.[16] and to

the bias, rather, it justifies that bias is indeed introduced by theean CM restored data, respectively. Fig. 7 shows the resulting
algorithm. If the bias is compensated using the bias estimawgropy for the two cases, and we see that especially the CM
from the entire scene, the backscattering coefficients are gerrestored data results in highly filtered estimates for the homo-
ally biased less than 0.2 dB in the homogeneous areas. geneous areas. Fig. 8(a) shows the classification space using the

(29)
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{a) )
Fig. 7. Entropy from the Cloude decomposition using filtered polarimetric data. (a) Using polarimetric SAR speckle filtered data and (b) usiMyrestare@
data.
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Fig. 8. H—a« classification space including the zones Z1: High entropy multiple scatter; Z2: High entropy vegetation scattering; Z4: Medium entropy multiple
scattering; Z5: Medium entropy vegetation scattering; Z6: Medium entropy surface scattering; Z7: Low entropy multiple scattering; Z8: Lowdipnteopy
scattering; and Z9: Low entropy surface scattering. Al$eq distribution for eight land-use areas. (a) Using polarimetric SAR speckle filtered data and (b) using
mean CM restored data.

TABLE I
AVERAGE VALUES OF H AND a ESTIMATED FROM THE ORIGINAL
AND THE MEAN CM RESTOREDDATA

same boundaries as Cloude and Pottier [15]. Ahev distribu-
tion for the eight land-use areas using the polarimetric speckle
filtered data are shown as well in the figure, and we see that

the distributions generally overlap. In Fig. 8(b), the distribution Area Crop Hoeon  Omean  Hrost  Orost
using the mean CM restored data is shown, and it is noticeable, 1 Rye 0.486  19.30 0.505 20.24
that most of the land use classes are now clustered and easily 2 Oats 0.523 3245 0.547 33.40
T . . 3 Winter wheat 0.490 19.03 0.505 19.56

separated due to the significantly lower variance of the indi- 4 %pring barley 0.659 37.93 0.673 38.71
vidual distributions. To investigate the bias of the entropy and 5 rass 0915 5087 0918 5l.11
9 Py 6 Forest 0.858 43.42 0.852 43.46

mean alpha angle, the center of each land use class has beenes- 7 Forest 0.832 4448 0.837 44.78
timated. Table Il shows the result when applying original data 8 Water 0.331 30.69 0.350 31.42

and mean CM restored data, and we observe maximum devia-

tions of 0.024 forlf and 0.95 for 7. The polarimetric speckle [15]. Several of the crops also have surface scattering charac-

f||t|er g_oessr_]tqt result ;ﬂ T?ﬁﬁ distribution terisi teristics, as the radar signal penetrates through the crops to the
th nI '9. tl IS seenf a tt_a' Istrioution from Wtader Itsllnb surface below. This behavior is most pronounced for rye and
€ low entropy surface scattering zone as expected at L- %ﬂter wheat, and it has been confirmed by investigation of the
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(] )]

Fig. 9. Classification map using unsupervised classification. (a) Using polarimetric SAR speckle filtered data and (b) using mean CM restored data.

polarization responses [29]. Grass has a much larger entrapyiable in the complex Wishart distribution describing the
compared to the other crops due to the totally random orientmlarimetric SAR data. In the optimization we apply simulated
tion of the blades. Forest lies primarily in the medium entropgnnealing, which is normally characterized by its slow conver-
vegetation zone located at the high end of the entropy range, g@nce rate, but when using SAR data having a relatively high
dicating that volume scattering from the canopy is a substantralmber of looks, only a rather limited number of iterations
contribution. is necessary to obtain highly filtered results. By subdividing
Some of the distributions in Fig. 8(a) and (b) are centered atthie set of filters the computational load of the algorithm is
near the boundary between two zones, and this is reflected inthduced by a factor of three, approximately, thus making
classification maps shown in Fig. 9. As expected from Figs.tiie restoration algorithm feasible. The restoration introduces
and 8 the result using the mean CM restored data appears nraiometric distortion, and an analytical expression of the bias
homogeneous due to the clustered distributions. Still, the strigpresented. The expression explains the bias in an ideal case
tures are preserved in the image. Also, itis quite interesting thand is not directly applicable for compensating for the bias,
in the case of mean CM restored data, the classification map bat using an average bias estimate, the homogeneous areas
the rye and winter wheat fields, both appearing as a mixture k&e biased less than 0.2 dB. The restored mean CM contains
tween two scattering mechanisms in Fig. 8, has connected arémsfull polarimetric information and can thus be used by any
within the field which is either low- or medium entropy surfacepplication using polarimetric data. It has been successfully
scattering rather than having a more random appearance. Tpgplied as a preprocessing step for an unsupervised classifica-
suggests, that it could be related to actual physical charactiion scheme, resulting in a quite homogeneous classification
istics of, e.g., the soil. The unsupervised classification schemasult. Also, it can be used in combination with segmentation
in combination with the restoration algorithm proves in gerand target-detection algorithms.
eral to be an effective and consistent method for partitioning the
area into classes having distinct scattering mechanisms, thus as- ACKNOWLEDGMENT
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In this work, a novel approach for mean CM estimation [aper.
presented, capable of handling multifrequency and/or multi-
temporal polarimetric SAR data. By incorporating the statistics
of the polarimetric SAR data in the restoration and applying [t] Ulaby and Elachi, Radar Polarimetry for Geoscience Applica-

. . . . : tions  New York: Wiley, .
a Se_t of S'ma” f.”ters in an iterative scheme, the algorlthm [2] L. M. Novak and M. C. Burl, “Optimal speckle reduction in polari-
provides highly filtered data for the homogeneous areas while  metric SAR imagery,IEEE Trans. Aerosp. Electron. Systol. 26, pp.
maintaining most of the structures in the image. The algorithm _ 293-305, Feb. 1990. ~ _
h £ but the approach should Bsé A. Lopés and F. Séry, “Optimal speckle reduction for the product model
assumes nhomogeneous suriaces, bu pp u in multilook polarimetric SAR imagery and the Wishart distribution,”

applicable for textured surfaces as well by including a texture  IEEE Trans. Geosci. Remote Sensing. 35, pp. 632-647, May 1997.
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