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Linear GPR Inversion for Lossy Soil and a Planar
Air—Soill Interface

Peter Meincke

Abstract—A three-dimensional (3-D) inversion scheme for fixed- desirable to develop a version of the inversion scheme of [4] that
offset ground penetrating radar (GPR) is derived that takes into  rigorously takes into account the loss in the soil.

account the loss in the soil and the planar air—soil interface. The Deming and Devaney [5], [6] employed the Tikhonov-regu-
forward model of this inversion scheme is based upon the first . - ! . . .
Born approximation and the dyadic Green function for a two-layer larized pseudo-inverse operator to obtain an inversion scheme
medium. The forward model is inverted using the Tikhonov-regu- for GPRin which the background medium is lossy and homoge-
larized pseudo-inverse operator. This involves two steps: filtering neous. The pseudo-inverse operator implies two solution steps:
and backpropagation. The filtering is carried out by numerically 1) filtering of the radar data and 2) backpropagation of the filtered
solving Fredholm integral equations of the firstkind and the back- 13 | [5], a 2-D configuration was considered and the incident
propagation is performed using fast Fourier transforms (FFTs). . ' . .
Numerical results are provided to illustrate the performance of the fieldwas assumgd t‘? consist Qf Se}’e'ra' plf'zlngwaves with the same
inversion scheme. frequency but with different directions of incidence. Also, it was
shownthatinthe case of alossless background mediumand anin-
finite number of plane waves (infinite view), the pseudo-inverse
solution reduces to the filtered backpropagation algorithm of [1].
The approach of [5] was extended in [6] to a 3-D configuration in
I. INTRODUCTION which the incident field originates from an arbitrary transmitting
ITHIN the framework of geophysical diffraction tomog_antenna. The recgiving antepna can also be arbitrary and §everal
raphy [1], several inversion schemes have been dev@rgbmgfrequenue; can be|n.cluc.ied. Hovyever, the calqulatlon of
oped for monostatic or fixed-offset ground penetrating raddfi€ filters to be applied inthe filtering step is extremely time con-
(GPRs) [2]-[6]. Molyneux and Witten [2] derived two differentSUmMing since .|t myolves evaluatllon of several 4-D mtegra_ls with
two-dimensional (2-D) inversion schemes referred to as the fAghly oscillating integrands. This facthampers the practical ap-
field method and the Fourier transform (FT) method, reSpelgl_lcabllltyoffche approachin[6]. Also, in[6] the air—soil interface
tively. These two inversion schemes were tested on measufefOt taken into account. _ . _
data in [3] and it was concluded that the FT method is superior.!n the present paper, a pseudo-inverse based inversion scheme
In deriving the FT method it was assumed that the first Born af" fixed-offset GPR is presented that takes into account both the
proximation applies, the background medium is homogened@§s inthe soil and the al'r—s.on interface. The sFartmg pointis the
and the buried object, of which a quantitative image is desired f@ward model of [4], which is based upon the first Born approx-
located deep in the soil. Thereby, a relation between the oneJfiation, the dyadic Green function for a two-layer medium, and
mensional (1-D) spatial FT of the data measured over a line &g @Symptotic approximation valid when the object is located
the 2-D spatial FT of the permittivity variation in the soil was obd€ep (& few center wavelengths) in the soil. However, instead
tained. An inversion scheme involving a closed-form expressi@hinverting this forward model using the inverse FT, as done in
for the desired image was then derived using the inverse spakfdi(@nd thus neglecting loss in the soil), the Tikhonov-regular-
FT. This inversion scheme constitutes a more general form of t§gd pseudo-inverse operator is used. Since the applied forward
filtered backpropagation algorithm of [1] because it applies faodt_al is apprommgte the calcullatlon of the filters in thefllterlng
illumination by 2-D point sources and to multiple frequencie$tep is much less time consuming than the corresponding calcu-
Recently, Hansen and Meincke-Johansen [4] presented a $fpn in [6]. _ _
version of the FT method in which the planar air—soil interface The remaining of the paper is organized as follows. In Sec-
is taken into account. In [4] a configuration in which the GP#Eon Il the forward model is presented. The forward model ap-
antennas are 4 cm above the ground was considered and for g to a fixed-offset GPR placed upon a planar interface sep-
configuration an improved image quality was achieved whéhating Iqssy soil and air. It pred|ctsz Wlthln the first Born ap-
including the interface in the inversion. However, as also w&§oximation, the output, of the receiving antenna due to the
the case in [2] and [3], the background medium was assur¥dittering by a 3-D buried object. Arb|_trary GPR antennas are
lossless—an assumption that usually does not hold for soil.3&counted for through the current density of the transmitting an-
heuristic approach was suggested in [4] to compensate for {ﬁ@ng and Fhe plane-wave charactensmc ofthe repelvmg.antenna.
loss. Since this approach is not exact it produces unwanted afi€ inversion of the forward model is performed in Sections Iil,
facts in the image, as shown in [4, Fig. 5]. Therefore, itis highI&“'A and llI-B using the Tikhonov-regularized pseudo-inverse
operator. In Section IlI-D, it is shown that the pseudo-inverse
based inversion scheme reduces to the result of [4] when there

The author is with the @rsted-DTU, Electromagnetic Systems, Technical Ur|1? no loss in the soil. The special case of an infinitely long scat-

versity of Denmark, DK-2800 Lyngby, Denmark (e-mail: pme@oersted.dtu.ddg1Ng object, ref?rred t_o as .2-5'D- is considered in Section llI-E.
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Transmitter  Receiver where the reciprocity relatio@ (r', r,w)-J,, = J,,-G(r,r’,w)
is used. The dyadic Green function is written as a plane-wave
spectrum as

~ ]
G(r,r',w) = w/

Air g, € oo

IK'F(K',w)

Soil o, €1, O

exp(iko(K',w) - T — ki (K',w) - ')
Fig. 1. Fixed-offset GPR configuration. The offset is described by the vector 2> 0,2 <0. 2
ra = Ra 4+ 2zza.

In this expressionko(K,w) = K + z7(K,w), K = %k, +
s 70K, w) = VE3(w) — |K|?, and similarly fork; (K, w).
e square roots ifyy and~y; have nonnegative real and imagi-
ry parts. The dyadiE in (2), that accounts for the interface,

in permittivity (i.e., the difference between the permittivities O}Fk
the object and the soil) times the frequency is either much Iarq51
or much smaller than the contrast in conductivity. The first ca g
is considered in Section I, except in Section IlI-F in which thé&® (4. (6)]

second case applies. Numerical results for the 2.5-dimensional = . 2

(2.5-D) case involving a circular cylinder buried deep in lossy (K, ) (o + 1) (k2 + k2 + vov1)

soil is presented in Section IV. Finally, Section V draws conclu-
sions and makes suggestions for future research. . [&((kg + %%) X — kyk,¥
Il. FORWARD MODEL _ k,;yoi)

Consider the configuration in Fig. 1 in which a planar inter- R R 5 R
face separates air and soil. A Cartesiajx coordinate system + y(_kl‘kyx + (k% +707) ¥
is introduced such that the, plane coincides with the interface _k Z)
and such that > 0is air. The air has the permittiviyy and the yo
permeability..o, whereas the soil has the permittivity, con- + 2(_/%%& — kym¥
ductivity o1, and permeability:q. The constitutive parameters
€0, €1, 01, andug are all assumed to be real quantities and in- " (kQ " kQ) Z) 3)
dependent of both position and frequencgver the bandwidth r Ty

of the transmitted fields,j, < w < wyax. Thus, the prop- ) o o

agation constant of air iky(w) = w./fioéo and that of soil is Where it has not been explicitly indicated thap and
k1 (w) = wy/proler + 101 Jw) . A fixed-offset GPR configura- 7+ depend onK and w . When there is no inter-
tion is considered in which the position of the receiving antenace: 1-€-.k1(w) = ko(w) , (3) reduces toF(K,w) =
is described by the vecter. = R, + 2z, With z, > 0. The po- ki (K, w)ky (K, w)/kf(w))/71(K,w). Inserting the
sition of the transmitting antennais = r, +rA pelta with the plane—wave expansion (2) of the dy§d|c Green funcnon into the
offsetra = Ra + 24 kept constant. The forward model to be?XPression (1) for the background field, one obtains
presented in this section gives an expression for the owufmft , —wpio [ e, . ) ,

the receiving antenna that is solely due to the field scattered by E» (r,w) = S72 / d"K' exp (—ik; (K, ) - 1)

the buried object. Hence, does not include contributions from 7°f° e (K- w) -

the reflection in the interface and from the direct field from the (?,XP(L 0 (K',w) [ri +ral)
transmitting antenna. In [4], the first Born approximation and a Js, (ko (K',w)) - F(K',w) (4)

plane-wave expansion of the dyadic Green functi(r, r', w) where the relatiom; = r,. + r has been employed. The quan-

for a two-layer medium were useq j[o derive an'e'xpression fﬁ’t"y jsi is a spatial FT of the current density describing the trans-
the outputs, when both the transmitting and receiving antennqﬁimng antenna

are ideal dipoles [4, (12)]. In the following, a similar expression -

for s, valid for arbitrary transmitting and receiving antennas, is J. (k :/ Brd k- 5
derived. To this end, the background fidij in the soil, radi- s (k) I (r) exp(—ik - ). ®)
ated by the transmitting antenna described by the current den
J..(r — )t is needed

ﬂg’fng the first Born approximation, the scattered field
E.(r.,w), due to the presence of the buried object, is explicitly

o _ expressed in terms of the background figlgdas
E)(r',w) ziwuo/ PrG(r',r,w)

E; (r.,w) = twuo &r'G (r,, v, w)-Ey (v',w) O (r',w)
) JS; (I‘ - rt) z'<0
, >~ _ _ o (6)
=twiio d’rds, (r —ry) where the object functio®(r’,w) is defined as
—o
-G(r,r',w) <0 1) O ,w)=0c(@)—o1—iw(c(r') —e1) = Ao (r')—iwlAe(r).
1The subscripts; on J, indicates that the current density depends on thc@ . . . . ()

input signals; . The form of this dependence can be either measured or calddSiNg this expression (6)_f0r the Scatter?d field, the plane-wave
lated. This matter is, however, not the concern of the present paper. spectrum (2) of the dyadic Green function and the plane-wave
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characteristiR (K, w) of the receiving antenna, the outpyt with O(r’,w) = O1(r',w) /2 = Ao (r') — iwAe ('), 1/ =

of this antenna can be written as

w g [ =
= d’K d’K’
st | o[

. exp(i [(kO(K,w) + ko (K, w)) - T,

S0 (rp,w)

. exp(—i [kl(K, w)+k; (K’,w)} . r’). (8)

R’ + 22/, and

iw? g 2 2
 64rk (W) (4k1(w) ~ K]

)
n () 2 ()
0. (1)) 5 ()
exp <L { 43 (w) — K| (7 n 7;)

1
-K-R; .
+2 RA:|>

DK, zr,w)

(13)

The plane-wave characteristR(K,w) is defined such that Equation (12) constitutes the 3-D forward model to be inverted
R(K,w) - E(K,w) is the output when the receiving antennén Section Ill. Although this forward model is derived using
is located atr = 0 and the incident electric field is the planethe assumption that the object is deep in the sail, it remains

waveE(K, w) exp(iko(K,w) - r) withko(K,w) -E(K) =0
[71, [8, p. 266].

valid for surprisingly shallow objects. In [4] it is shown through
numerical investigations that inversion schemes based on (12)

Defining the FT3,(K, z.,w) with respect to the horizontal give accurate images of objects buried just two center wave-

component®R... of the observation point as

50 (K, 2z, w) = /

ade o)

oo

d®R,.5, (r,w)exp (—iK-R;) (9)

and using (8), the expression f&y can be written as

30 (K, 2, w) :/ PK'C (K, K, 7, w)

/ Pr'o(r',w)
2'<0
. exp(—i [kl (K -K',w)

Tk (K’,w)} -r’) (10)

where
CK, K, 2, w) :”2“3R(K—K’ w)
o 1672 ’
(K- K’,w) 3., (—kO(K’,w))
F(K',w)

- exp <L [('yo (K- K, w)
+’70 (Klvw))zr
Tk (K, w) -rAD. (11)

As shown in the Appendix of [4], the double integral o¥&tin

lengths from the interface. Unfortunately, the asymptotic evalu-
ation in the Appendix of [4] becomes too inaccurate|isi >

2Rek; (w) , and the forward model (12) should therefore only
be used whelfK| < 2Rek;(w) . Physically, this means that the
forward model does include some of the evanescent plane waves
in the air but it does not include any evanescent plane waves in
the soil.

I1l. | NVERSION

To carry out the inversion, it is assumed thahe > Ao
over the frequency interval of consideration;, < w < Wmax
(the case in whiclvAe <« Ag is dealt with in Section IlI-F).
ThenO, (r') = —iwAe;(r') and the forward model (12) can be
written as

50 (K, 2p,w) =(LA€) (K, 2, w)
=SS 0
=—iwD(K, 2z, w) / d°R/ /

-exp (—iK - R/)

- exp <—fm/4k§(w) - |K|22')

. Aél (I‘/)

dz'

(14)

wherel : U — V is a linear operator mapping into V. U is
the space of square integrable functions of positforonfined
within 2’ < 0. V is the space of square integrable functions

(10) can be asymptotically evaluated when the object is locagfined on{(K, w)|wmin < w < wmax A [K| < 2Rek:(w)}.
deep in the soil and the GPR antennas are close to the interfaf§ inner products i” andV” are defined in the usual way

to yield
§o (K7 Z’I‘v (,d) N‘D(K7 Z’I‘v (,d)

[e%9) 0
. / ’R/ / dz' O (r',w)
~exp (—iK - R)

-exp <_m/4k§(w) - |K|2z’> (12)

(Aer, Aer)yy :/ PrAet(r)Ac(r) (15)
z<0
<§Ol7502>‘/ :/ dw
: / d’K
|K|<2Rek1(w)
551 (K, w)sea(K,w) - (16)
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where* denotes the complex conjugation. Introduciig, = The spatial bandwidth of the filtered data is assumed to be the
2Rek; (wimax), it is seen that {K| > K, thens,(K,w) =0 same as that of,, that is,s! (K, w) = 0 for |[K| > 2Rek; (w).
for wpin < @ < Wnax. Using the definition (20) along with (18), the contrast in permit-

Due to the compactness of the kernel in the integral equatitivity is obtained from
(14), the solutionAe¢; of the inverse problem defined in (14)
is unstable [9], [10], that is, the solution is highly sensitive to Acy = LT5]. (21)
noise in the radar data. Regularization is therefore needed, in
particular when dealing with noisy data, to obtain a stable aftence, by solving (18) using the solution steps (20) and (21),
useful solution. In this work, Tikhonov regularization is appliethe data are first filtered and then backpropagated to obtain the

) ) ) priori information can be incorporated to give a better estimate
min (I£Ae — 5|13 + A2 Ae]]3) (17)  of the object function.
€1

_ ) _ The backpropagation (19) can be easily and efficiently calcu-
is considered. This problem can also be formulated @ged using fast Fourier transforms (FFTs). The filtering, on the

minae, [|[£Ae — Sofl2 subject tof|Ae |z < n, wheren  other hand, is more complicated. The next section is devoted to
depends on [9, p. 85]. The regularization paramet&rin his filtering step.

(17) controls the amount of filtering applied to obtain the

solu_tion. The larger t_he value o‘f the more filt_ering. Itis A Filtering
obvious that there exists an optimum value)ef-if A is too

small, the residual noriLAe; — 3,2 is small but the norm
I Ae |2 is too large because the solution is affected by noisgPressed as

If A is too large on the other hand, the nofj¢; ||2 is small i af

but the residual norm is too large. In fact, whiris large the (LL 30) (K,w) =wD (K, 2, w)

high spatial frequencies of the solutiahe; are efficiently R L
damped. Consequently, the spatial bandwidth of the solution is : / "R / dz / dw'w
determined by\. A discussion on the difficulties in choosing P = “min

The term£.£75/ in the filtering step (20) can be explicitly

the optimumA for the inversion scheme of this paper is found . / &P’K'D* (K, 2,.,0")
in Section III-C. IK’|§2Rfjk1(w’) /
The minimization problem (17) could at this stage be solved -exp (i [K' - K] - R)

by discretizing the continuous operatbrsuch that it becomes

. P 20,0\ _ / 2*
a matrix A and then using standard techniques for solving dis- “xp <L [ 4k (W) — K]

crete ill-posed problems by Tikhonov regularization [9, Section . iy

5.1]. However, in this way the matrix becomes unpractically —y/4ki(w) — K| } z )
large and also, the advantage of having the operator in the conve- 5L (K 2 22)
nient explicit form (14) is not taken into account. Therefore, the o Ve

operatorZ is here kept in continuous form and in line with th sing the fact that there is loss in the soil,(fm(w)) > 0 and

procedure in [5], .[6]’ the minimiz_ation p“’b'e”.‘ (17) is solve he integrations in (22) ovdR’ and>’ can be evaluated to yield

by applying the Tikhonov-regularized pseudo-inverse operator . ) 5 5 5 S+

[11, p. 88] (2m)%6(K — K')/(/4ki(w) — [K|” — \/4k{ (') — [K']2).
By subsequently evaluating the integration ol&yr the relation

L“'nlax

(ﬁﬁTé'f;) K,w) = (27r)2iwD(K,zr,w)/ dw' &'
where the adjoint operatof’ defined by (3,, LA¢)y = Wmin
(LT3, Aet)y is U (2Rek (w') — |K|)3/ (K, ')

-1
Aep = L= (w + )\QI) 3, (18)

Wmax 'D*(K’ Zr, w/) 2 2 2 2
(£75,) (') =U (=) / dit VAR ) — [KP - /4R () - K]

“min

= (23)

/ PRD* (K, 2, 0) exp (7K - R) @s obtai_ned. When inserting (2_3) into (20)_, an integral equation
K |<2Reks () AT p is obtained for _the_determlnanon of the fllter_ed dé_féK,w)
" for eachK, satisfying|K| < K,,, whereK,, is defined fol-
- exp <i\/4k§(w) — K[ z’) 56 (K, 2, w) lowing (16¥. To solve this integral equation numerically it must
be transformed into a matrix equation by discretization. There
(19) are many ways to discretize such an integral equation. In this
and the unit step functioki (—2') serves as a masking function.ase, the discretization method should be chosen such that the
Itis seen that when applyingj to 5,, the outputs, at the plane resulting matrix Ais self adjoint (Hermitian). The reason for this
z = 2, is backpropagated to the plame= z’. To proceed, the iSthatAreflectsthe self-adjoint operatoc . This requirement

filtered datas’ are introduced as the solution to is satisfied by using a simple quadrature rule. To this end, first
R ~ Af |K| > K., thens! (K, w) = 0 for wmin < w < wmax and no integral
5 p
(,C/j + A I) 57 =3, (20)  equation must be solved.
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assume that the radar dataare available alv,, equidistant fre- Wherej’-"u—p1 denotes the inverse FT with integration in the upper
quencies half space only. When loss is present in the soil the argument of
(24) Ae; in (28) is no longer real, and the inverse FT cannot be used
to accurately invert the forward model. The artifacts in Fig. 5
whereAw = (Wmax —wmin) /(N —1). With ¢(K) denoting the  of [4] are the result of such an invalid application of the inverse
lowestintegerintherange. .., N, forwhichs,(K, wyx)) # FT. To getrid of the artifacts, the pseudo-inverse operator of this
0, there areg(K) — 1 values of the radar dat& (K, w,) and  paper must be applied. Unfortunately, it is difficult to incorpo-
the filtered datas(K,w,) that are zero andV,,. = N. — ratea priori information exactly using the pseudo-inverse oper-
q(K) + 1 values that are nonzero. Second, a simple quadratgfgr, However, since the pseudo-inverse operator reduces to the
rule applied to (23) transforms the filtering step (20) into thpwerse FT when there is no loss (see Section I1I-D) it is sug-

wp=pP-DAw+wym p=1,...,N,

following matrix equation: gested to incorporata priori information in the same way as
N done in (29). Hence, instead of using (21), it is suggested to use
50(K,wp) = Ry (K)sd (K, w,y 25
s ( 70’)])) ,z(:K) PP ( )SO( 7“')27 ) ( ) Afl — 2Re(£1‘§£) (30)
r=q
wherep = ¢(K),...,N., K| < K,, and§,, denotes Kro- 0 obtain a more accurate estimate/of; .

necker’s delta. Moreover
Ry (K) = (27)%iw, D(K, 2, wp) W (K) + 6,y A2 (26)

C. Discussion
Although there exist many other and more accurate dis-

and cretization methods the simple procedure outlined above turns

W, (K) = AwD*(K, 2, wp Ywpy out to give surprisingly good results even for low values of
PP 5 3 5 o N, see the numerical example in Section IV. A more accurate
\/4k1(wp) — K[~ \/4k1 (wpr) = [K] method of moments approach with pulse expansion functions

. L ) ) @7) and point matching has been investigated [12]. The image
This completes the derivation of the inversion scheme. In SUllliality of this method is not significantly better than that ob-

mary, to obtain the image of the buried object one must firgli, from the simple quadrature rule of the present paper. The
filter the radar data using (25) and subsequently backpropagai@|e quadrature rule is preferred here due to its simplicity.
the filtered data employing (21). The FT5,(K, 2,.,w) in (9) is most conveniently calculated
using FFTs. Hences, is available atVk discrete values oK

and for each of these values, (25) constitutes\an by ...

Due to the fact that the buried object can be illuminated froghuare matrix equation, whepé,. defined following (24) de-
one side only in a GPR survey, the obtained radar data d?f@hds orK. When|K| = 0, N,,. is maximum and equal¥,,

not contain enough information to estimate the correct Va"s}\%ereaanZ takes on the minimum value 1 whii{| = K,,..

of Ae; using a linear inversion scheme. Howeveraipriori The filters R, depend on the properties of the GPR, i.e.,
information about the object can be incorporated in the inversigi, frequeNCieSnin, wmax, Aw), the offset £), the antennas
scheme, a l_Jetter_estimate Mk, can be qbtained. _Thi§ is the_(JSi,R(K,w)) and the distance over the air-soil interfaeg)(
case in [4], in which the fact that the object function is real ighey also depend on the electromagnetic properties of the soil
used as priori information. Unfortunately, the same procedur&l’ o1). All these quantities are independent of the radar data

cannot be applied in an exact manner in this work becausgfiqr  , can therefore be calculated in advance before data are
requires that the soil is lossless. However, the procedure Ggne processed.

be used approximately. To see this, consider the forward modefrpere exist many methods for an efficient determination of
(14). This model can be written as the optimum regularization parametgr e.g., the generalized

B. Incorporating a Priori Information

5,(K, 2, w) = —iwD(K, 2, w) cross-validation and L-curve methods [9, Ch. 7]. It is important
- R N 5 to note that these methods must be applied to the problem (18).
Ae <K + 7/ 4ki(w) — K| ) : (28)  They cannot be applied to the filtering step (20) because it does

___hot satisfy the Picard condition [9, p. 9]. This is explained more
When there is no loss aniK| < 2k (w) the argument of\e;  carefully in the Appendix of this paper. Future research aims to
is real and thus, the forward model (28) can be inverted usifigd an efficient way to determine the optimukrfor the special
the inverse spatial FF~*. This is indeed the procedure of [4].problem (18). Until this goal has been achieved, the regulariza-
Hence,Ae; = F1(Ae;). From (28), it is seen that the radarion parameten is to be determined by trial and error.
data only provides information abotde; (k) in the upper half ~ There are several differences between the pseudo-inverse
spacet. > 0 .To obtain the information in the lower half spacebased inversion scheme of this paper and that of [6]. First, the
the relationAe; (k) = Ae; (—k) is used, which holds for real forward model of this paper takes into account the air—soil
functionsAe; and for real arguments. Using thisa priori in-  interface which, as mentioned in the Introduction, is not

formation yields accounted for in [6]. Second, by using the asymptotic forward
_ B e model (12) instead of the full model (10) the filters in the

Aey =2Re []:“P (Ael)} filtering step become much easier and faster to calculate.
_9Re| -1 3.(K, 2z, w) (29) The application of the asymptotic foryvard quel implies,

W\ —iwD(K, z,,w) however, that evanescent plane waves in the soil are neglected
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and that the object must be buried a few center wavelengthleres,(k,, ., w) is the 1-D FT of the radar data defined by

from the interface. As illustrated in Section IV below, a high oo
image quality is obtained despite these assumptions. Third, the $,(ky, z,w) = / dy s5o(y, zr,w) exp(—ikyy)  (34)
frequencyw is assumed continuous in (14) and thereby, the -

filtering step consists of solving Fredholm integral equatiorandD(k,, z.,w) is obtained from (13) witlK = yk,.

of the first kind. It is thus evident that the accuracy of the As an example, assume that the transmitting and receiving
filtering depends on the discretization method chosen to sol@etennas ar&-directed ideal dipoles such th& = x and
these integral equations. In [6], on the other hand assumed J = I(w)x. Assume also that the antennas have the saamel
discrete from the very beginning and therefore, one specificcoordinates, i.eza = za = 0. In this case D(ky, z,,w)
discretization method is chosen and the fact that the filterifgcomes

step is an integral equation does not become clear. iw? I {w)(4k3 (w) — k2)
D(ky, 2z, w) = Y 5
D. No Loss in the Soil Ay (w (\/4k2 — B2+ \[4#k}(w) - 2)
If o1 = 0, that is, the solil is lossless, the step from (22) to . e 5 1
(23) does not hold. Instead, the integrations deérand 2’ in rexp | | /4kg(w) — Kz + §kyyA . (35)

the expression (22) fat£" can be evaluated to yiekdr®§(K —
K')8(\/4k3(w) — |KI* — \/4k?(w’) — [K’[*). Using the rela- F. Case in WhichyAe < Ao
tion 6(f(w)) = 8(w — wo)/|f'(wo)l, where f(wo) = 0and  \whenuAe « Ao the object function can be approximated

subsequently integrating ovi’ and.’ yields asO.(r') =~ Ao (r') and the forward model (12) becomes
273w 2
[,[,T 2 K W —— D K,zr,w ? SO(szTv ) ('CAO—I)(K Zr, W )
(LLS))(K, w) = (o )M' ( )|
5 =D(K, 2, w / d2R’/ dz
43 (w) — K3 (K, w). (31)
-exp(—iK -R/)

Hence, according to (30), the expressionfor = 2Ae¢; is as
(32), shown at the bottom of the page. This result is identical to - exp <—i 452 (w) — K| Z’) Aoy (r).
the one presented in [4, Eqg. 20].

(36)
E. 2.5-D Case

The image ofAs; is obtained using
Assume now that the object function is independent dthis _ tf
would be the case, for instance, when the buried object is an in- Aoy = 2R(L5;) (37)
finitely long %-directed pipe. The solution steps (20) and (3Gyhere the adjoint operatat’ is
still hold in this case but to apply the other expressions in Sec-[/T~ N (o
tion 11, the relationK = 3k, must be enforced and the expres- (£78)(r) = (_? )

sion (19) for the adjoint operator must be replaced by . /w"m dw/ PKD* (K, 2y, w)
K|<2Rek1 (w)

(L3509, 2") IQWU<_Z/) -exp(iK - R)
. dw iw/ dk,D*(k,, zp,w * -
L |k | <2Reks (w) vy ) exp< 4k (w) — |K[? z’) 5,(K, 2z, w).
- exp(tkyy’) (38)
- exp < 4k (w) — k2 z’) So(ky, zr,w) In addition, in the matrix (25)R,,,» must be

(33) Ry (K) = (2m)2D(K, 2, w, )W, (K) + 8,y A2 (39)

64z(ri0e1)”"* Y2 proma
Ae(r) =Re / dw/ K3, (K, w)
Wmin K| <2k1(w)

(e[ )
exp (i |4k~ IKP? o= \Jak3(0) = IKP G + (1205 )

w(ak2(w) — K1) RI1/2)K, w) - F(1/2)K, w) - 3, (~ko((1/2)K, w)) - F((1/2)K,w)

(32)
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% Transmitter Receiver 0
A A N
Air ¢, . - ’
T €0, Mo % Tocm t 4 cm -0.2 0.08
Soil €1, (o, 01 0.06
-0.4
| 1m 0.04
~0.8
15 cm 1 l = =0.02
€ N
7 -0.8
0.02
Fig. 2. Configuration consisting of a circular cylinder located in lossy soil -1
The constitutive parameters gre., o..) = (8.1¢y,0.01 S/m) and(e, o1) = 0.04
(8€0,0.01 S/m).
) 12 -0.06
-0.08
-1.4

~-06 -04 -02 0.2 0.4 0.6

0
y (m)

Fig. 4. Image ofAe/«, for the configuration shown in Fig. 2. Gaussian noise
with variance 16* is added and the regularization parametet 0.

0.04

0.02

0.02
Fig. 3. Image ofA¢/¢, for the configuration shown in Fig. 2. The regulariza-
tion parameteA = 0. -0.04
with
AwD*(K, z., w,y
WPP’(K) ( — p)

VA (wp) = [K[2 = \/4kf (wyr) — IKI2T(4O)
The equations for the 2.5-D case is straightforwardly obtain%fﬂ'] 35”
by following the same approached as that outlined in Segigss.
tion II-E.

Image ofAe/ e, for the configuration shown in Fig. 2. Gaussian noise
ance 16+ is added and the regularization parameter is giveAy

(25), (30), (33) and (35) witth = 0. It is noted that there are
no artifacts below the pipe as was the case in [4, Fig. 5]. This
To demonstrate the performance of the inversion schemestiows that the method of this paper produces images of higher
this paper the 2.5-D configuration shown in Fig. 2 is considjuality than that of [4] because the loss is rigorously taken into
ered. This configuration is similar to the one considered kaccount. The example also shows that it is not necessary to reg-
Hansen and Meincke-Johansen in [4] and consists of an infilarize whens; = 0.01 S/m and simultaneously, no noise is
itely long %x-directed circular cylinder with diameter 15 cm lo-present in the data.
cated at(y, z) = (0,—1) m. In the first example, the constitu- To show the need for regularization, consider again the con-
tive parameters of the cylinder afe., o) = (8.1¢,0.01 S/m), figuration in Fig. 2 but for this second example, Gaussian noise
and those of the soil ar@;, o1) = (8¢, 0.01 S/m). The GPR with variance 10* is added to the radar data. Fig. 4 shows the
uses 60 frequencies equally spaced in the r@oddHz < f < image withA = 0 and in Fig. 5, the regularization parameter is
1.3 GHz, wheref = w/(2r). Moreover, the ideal dipole an- given byA? = 5-1033. Clearly, the effect of increasing the reg-
tennas of the GPR are directed, have a fixed offset @k, = ularization parameter is to reduce the impact of the noise. How-
—10 cm and are located, = 4 cm above the interface. Theever, since also information about the object is filtered away
synthetic scattering data are obtained from an exact method deéen increasing, the estimate of the maximum valuett /¢,
scribed in [13]. Fig. 3 shows the image At /¢, obtained from is not as accurate as in Fig. 3 where no noise is present.

IV. NUMERICAL EXAMPLES
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APPENDIX

This appendix explains why the various methods for deter-
mining the optimum regularization paramefedo not apply to
the filtering step (20). The starting point is the singular value

04 expansion (SVE) of the operatérin (14) [9, p. 6], [11, p. 86]
LAg = Zﬂivi<A51an>U- (41)
=1

Herein, u; are the singular values and, v; are the singular
0 functions and the inner product {is defined in (15). The sin-
gular values.; are nonnegative and they can always be ordered
: in nonincreasing order such that > s > pus > --- > 09,

-02 p. 7). Similarly, the SVE of the adjoint operatéf is

=3 mii(So, vi)v (42)
i=1

Fig. 6. Image ofAc¢ for the case in which the pipe in Fig. 2 is perfectIyV\Iher.e the inner product il is defined in (16) and the SVE of

electrically conducting. The regularization parametet 0. LLT

T — 2045 s
Inthe final example, it is shown that the inversion scheme also LLls, = Z“Z vi{So, vi)v (43)

can be used to detect perfectly electrically conducting (PEC)

pipes, although the Born approximation in this case is violate@onsequently, the Tikhonov-regularized pseudo-inverse oper-
The configuration is the same as that shown in Fig. 2, excegtbr in (18) can in terms of the SVE be written as

that the object is a PEC pipe. The imaged, derived from

the procedure described in Section IlI-F with= 0, is shown LY (LLT + N°1) s Z Hi{30, vi)v .4

in Fig. 6. Of course, the maximum value Afr is wrong, but a 2 + A2

perfect estimate of the location of the PEC pipe is obtained. The

center of the image is at the top surface of the pipe, as also va— obtain a square integrable solution, from the Tikhonov-
the case in [4]. regularlzed pseudo-inverse operator, the summation oirer

(44) must converge. In fact, if there is no noise (such that the
datas, belong to the range of), a square integrable solution
must exist forA = 0. Thus, to ensure convergence foe= 0, the

This paper presented a diffraction tomography inversi@absolute value of the coefficients;,, v;)v in (44) must decay
scheme for fixed-offset GPR that accounts for the loss in tifi@ster than the singular valugs for somei. This requirement
soil and the planar air—soil interface. The inversion scheme wiaseferred to as the Picard condition [9, p. 9].
obtained by applying the Tikhonov-regularized pseudo-inverseConsider now the filtering step (20) and note that the operator
operator to the approximate forward model (12). By using thiz.£" + )\QI)’lgé can be written as
forward model, which is valid for objects buried just a few
center wavelengths from the air—soil interface, the filtering step ot s = - ‘<§o,v7‘,>v
becomes conveniently simple and consists of solving integral ( + ) N Z !

y p g g

equations of the first kind. Through numerical examples, it
was illustrated that a satisfactory image quality is obtained @nce the Picard condition is satisfied for the original problem
solving these integral equations by simple quadrature. Inde&t8) as explained previously, the absolute value of the coeffi-
the artifacts in the image produced by the method of [4] are GIENtS(s,, vi)y are guaranteed to decay faster than the singular
longer present when using the inversion scheme of this pap&uesy; of £ for somes:. However, they are not guaranteed
The regularization parameter, however, is at present determit@dlecay faster thap? for somei, and the summation in (45)
by trial and error. An efficient determination of the optimunyill not converge forx = 0. Consequently, the Picard condition
regularization parameter is important to make the inversid@f the filtering step (20) is violated and the methods for deter-
scheme complete and future research will therefore addr&d§ing the optimum can therefore not be applied to (20).
this problem. Another issue subject to future research is the
derivation of an approximate forward model that also works for ACKNOWLEDGMENT

evanescent plane waves in the soil. With such an approximatérhe guthors would like to thank the Danish Technical Re-
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V. CONCLUSIONS AND FUTURE WORK

(45)

i=1 i
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