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TRANSPARENT DISPERSION COMPENSATOR WITH BUILT-IN GAIN
EQUALIZER

Karsten Rottwitt (1) and Chris Doerr (2)
1: OFS Fitel Denmark, present address Research Center COM, Technical University of Denmark, Building 345v,
2800 Lyngby, Denmark, e-mail: kar @ com.dtu.dk
2: Lucent Technologies, 791 Holmdel-Keyport Road, Holmdel, NJ, 07733, USA

Abstract: In this work we describe a method to obtain a transparent or even an amplifying dispersion
compensating module with built-in gain equalization functionality. The principle of operation and experimental

results are illustrated.

Introduction

In  high capacity systems both dispersion
compensation [1] and dynamic gain equalization [2]
is necessary. The latter is for example utilized when
the transmitted signal power varies with distance
due to a change in the channel count in systems
where many channels are dropped or added.
Dynamic gain equalization may also be needed in
Raman amplified systems where Raman gain is
used either to counterbalance the loss of dispersion
compensation blocks or in distributed amplifiers. In
both the spectral shape of the Raman gain depends
on the wavelength(s) of the pump(s) used in the
system.

Thus the use of a Raman-pumped dispersion
compensating module (DCM) and a dynamic
adjustable gain element is easily justified. To obtain
a dynamically adjustable gain element one may use
multiple pump wavelengths as a pump source for
the Raman pumped DCM. By using 3 pumps a gain
ripple of 0.3dB is obtainable at a gain of 8dB
throughout the C-band [3]. Alternatively one may
combine the Raman pumped DCM with a dynamic
gain equalization (DGE) filter.

Here we describe experimental results on a Raman
pumped DCM followed by a DGE. The benefits of
this approach compared to the multiple wavelength
pumped Raman amplifier include: less sensitivity to
the exact wavelength(s) of pump(s), higher spectral
_resolution, and easy automatic control.

The proposed setup

The proposed module consists of two elements. The
first is a Raman pumped DCM. Such a fiber is well
suited for Raman amplification since it has high
germanium content and a low effective core area.
The second element is a DGE, based on waveguide
grating routers [4]. The composite noise figure of
the proposed module, F, equals:

1-T
G, T

F=F,+ (1)

where Gpg is the net-gain of the Raman pumped
DCM, Fpg, the corresponding noise figure, and T the

transmission of the DGE. GgT is the composite gain
of the proposed module. The dispersion
compensator is transparent when GgrT equals one.
In this case the noise figure is between Fgp and
Fr+1, since the transmission is between 1 (loss
less) and 0 (opaque). Thus, the composite noise
figure is determined mainly by the Raman pumped
DCM.

The noise figure of a Raman pumped DCM can be
made small by using a short length of fiber that is
highly pumped. The remaining pump power after the
short DCM fiber may be re-used either to pump a
second piece of dispersion compensating fiber
placed after the DGE [5], or as a pump for a
distributed Raman amplifier located in front of the
proposed module.

Experimental setup

To demonstrate the behavior of the proposed
configuration, a model was constructed. In the
model, the signal was initially launched into an
isolator after which the signal was passed into the
DCM. The DCM was counter pumped using a high
power pump module emitting light at 1455 nm. Then
the signal was launched to the DGE which was
remotely controlled using a computer.

The DCM had a dispersion of 330 ps/nm at
1550 nm. The length of the fiber in the DCM was
3.2km. The loss at the pump wavelength was
measured to 0.6 dB/km. The Raman gain
coefficient peaked at a value of 2.6 (Wkm)' for a
signal wavelength close to 1555 nm, see Fig. 1.

The peak of the Raman gain coefficient is
approximately 4 times that of the peak in a standard
dispersion shifted fiber. Using a pump power
330 mW at 1455 nm, a peak on-off Raman gain of
8.7 dB was expected close to 1555 nm, assuming
undepleted pump. With a loss of the DCM close to
3dB at this wavelength, this is approximately the
gain required to counterbalance the insertion loss of
the DGE. The corresponding noise figure of the
Raman pumped DCM is expected to be close to
4 dB.
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Fig. 1: The measured Raman gain coefficient
spectrum for the used DCM module.

The pump module was a high power pump module
based on a cascaded Raman resonator [5] emitting
light at 1455 nm with maximum output power close
to1W.

The spectral response of the DGE was adjusted by
controlling the attenuation on wavelengths placed
on a 100 GHz frequency grid. The DGE was
designed for operatiorr in the C-band (1530 nm to
1565 nm).

Results

Figure 2 iflustrates the performance of the proposed
module. By launching close to 330 mW of pump
power to the DCM, the bottom curve, in Fig. 2a was
achieved. From this we increased the signal gain,
i.e. the ratio of the signal output power to the signal
input power, in steps of approximately 2 dB, Fig. 2a.
Fig. 2b illustrate the corresponding noise figure

In general, the composite noise figure, fig. 2b,
reduces as the composite gain, fig 2a, increases as
expected from eqgn.(1). The reason for this is that
the noise figure of the Raman pumped DCM
reduces as the pump power is increased. However,
increasing the composite gain from 1 to 3 dB does
not lead to a significant reduction in the composite
noise figure. This is explained by the insertion loss
of the DGE, which in this case was higher around
the center-wavelengths, to counter balance the
spectral profile of the Raman gain.

The shape of the noise figure curves, fig. 2b, is
explained by the applied spectral loss profile. For
example in case IV where the Raman gain is
significantly higher for the center wavelengths than
the wavelengths at the edges of the DGE. In this
case, the second contribution, in eqn.(1), to the
composite noise figure becomes more significant for
the center wavelengths compared to the
wavelengths at the edges.

The noise performance in fig. 2b, has to be
compared against the performance of a component
with similar functionality. As mentioned earlier one
alternative is a DCM pumped with multiple pump
wavelengths. Such a module may have a noise
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performance closer to the ideal limit of the proposed
setup, i.e. Fp, in eqn. (1), However, it requires the
use of multiple pumps and at the expense of an
increased gain ripple. Another alternative model
consists of an erbium-doped fiber amplifier followed
by a unpumped DCM and a DGE. The composite
noise figure of such a module will be close to the
noise figure of the EDFA, i.e. close to the noise
figure of the proposed setup or potentially a dB
lower. However, the main drawback of such a
module is that its window of operation is limited to
the wavelength region of the EDFA.
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Fig. 2a (Top) Measured composite small signal
gain versus wavelength for the module and Fig. 2b
(Bottom) the corresponding noise figure. In both

figures, the curves are labeled with increasing

pump power.

Conclusion

A dispersion compensator with built-in dynamic gain
equalization is demonstrated. In one example a net-
gain of 2.9 dB from 1532 nm to 1564 nm with a gain
ripple less than 0.2 dB, and a noise figure better
than 4.5 dB is obtained. In addition, the module is
largely tolerant to the wavelength(s) of the pump
laser(s), very simple and may be easily redesigned
to operate at other wavelengths.
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