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Change Detection for Thematic Mapping by Means of
Airborne Multitemporal Polarimetric SAR Imagery

Wolfgang Dierking and Henning Skriver

Abstract—The paper addresses the detection of changesin mul-  The optimal prerequisite for change detection by means of
titemporal polarimetric radar images, focusing on small objects SAR is that the images to be compared are measured with the
and narrow linear features. The images were acquired at C- and same sensor setup (same frequency, polarization, and illumina-

L-band by the airborne EMISAR system. Itis found that the radar . d d with identical .
intensities are better suited for change detection than the correla- 10N geometry) and generated with identical processing param-

tion coefficient and the phase difference between the co-polarized eters. In practice, small differences between the flight tracks
channels. In the case of linear features, there is no obvious differ- cause slight changes of the illumination geometry and, hence,
ence between C- and L-band, and slight variations of the flight \ariations in the signatures. Other technical problems, which

tracks are acceptable at look angles larger than 35 degrees. Theo- . . . R
retical detection thresholds are evaluated from the statistical distri- might contribute to the observed signature variability, are errors

bution of the intensity ratio due to speckle. For the linear features ?n th? image caIlibration, anq inaccuracies of the' image co-reg-
and for urban environments, the observed thresholds are larger istration. Even if the technical effects are negligible, several
than the theoretical predictions. This is interpreted as an effect of objects of interest reveal inherent temporal signature changes,
radar intensity variations on length scales smaller than the spatial \ynich are not subject of map updates. Intuitively this is to be ex-

image resolution. The signature of urban areas is very sensitive to ected, for example, for many types of natural vegetation (e
deviations between the flight tracks, and the sensitivity is larger at P ! pie, ytyp g 9.

C-band than at L-band. On the other hand, the intensity contrast  [2], [8]). The reason is that the dielectric properties and the scat-
between buildings and the urban background is smaller at L-band tering characteristics of many natural objects change as a func-
and larger at C-band. For change detection, thresholds may have tjon of time.

to be chosen separately for each object class because the intensity The objective of this work is to assess the possibility of uti-
ratios of different object classes vary differently as a function of - X et :
time. lizing multitemporal polarimetric images for change detection
Index Terms—Change detection, polarimetry, synthetic aper- of object (_:Iasses which are rel_evant for updating thematic maps.
ture radar (SAR). Small objects (such as buildings) and narrow linear features
(such as roads) are considered which usually are of great in-
terest to the mapping agencies. The paper deals specifically with
two items: Firstly, it is studied how useful different polarimetric
URING the last decade, the problem of change detectiparameters and radar frequency bands are with regard to the de-
by means of synthetic aperture radar (SAR) intensity intection of changes. Secondly, the separation of signature varia-
ages has been treated by several authors with focus on diffetéomns due to man-made changes (in most cases the addition or
aspects. The reduction of speckle and the co-registration of tiegnoval of an object to the scene), on the one hand, and due to
multitemporal images were pointed out as major topics for tisgeckle and natural scattering variations (as observed for vege-
development of a successful detection scheme [1]-[4]. Insteadion, for example), on the other hand, is addressed. Airborne
of working with data representing the difference of two imageésAR data are used which have a better spatial resolution than
as it is usually done in optical remote sensing, the ratio betwegpaceborne data and hence are better suited for the utilization in
two intensity images is preferable because of the statistical chivematic mapping. For the project, high-resolution aerial pho-
acteristics of radar data [5], [6]. The utilization of SAR imagetographs were available which made it easier to identify even
in change detection was assessed in the case of both spacebeagnesmall objects in the polarimetric images.
[3]-[7] and airborne sensors [1], [2], focusing on different land The data used in this work and their preparation for the anal-
cover classes such as agricultural environments, forests, st are described in Section Il. The section also includes an
urban areas. Specifically Weydahl [7] dealt with the identificaassessment of the relative calibration accuracy and comments
tion of small objects (i.e., objects covering only a few pixelghe choice of the object classes. In Section Ill, the average sig-
in ERS-1 scenes with the aid of SPOT and Landsat TM imagéwtures and the spatial signature variations of the different ob-
and discussed examples where physical changes of these objectslasses are evaluated. The signature averages are the starting
were reflected in the SAR data. point for analyzing the image-to-image signature stability of
each of the object classes as well as their signature contrast rel-
Manuscript received March 29, 2001; revised December 4, 2001. This Wd?lgve to one another. The results presented in Section 1l reveal
was supported by the Danish Research Councils under the ESA Follow-On Rés0 the contributions of natural variations of the radar signature
se?ﬁ:ehazrt?]%rrzgr?\r/vti?ﬁtlgg(ejsgﬁnzlrr\?jgﬁélectroma netic Systems Techniin Icomparison to the contribution of speckle. The usefulness of
p g y ' fie correlation coefficient and the phase difference between the

University of Denmark, DK-2800 Lyngby, Denmark (e-mail: wd@emi.dtu.dk): - i . -
Publisher ltem Identifier S 0196-2892(02)04354-1. co-polarized SAR channels is discussed. Section IV deals with
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TABLE |
Location Denmark, Jutland, around Research Center Foulum
Image type fully polarimetric

Bands (frequency, wavelength)

C (5.3 GHz, 0.057 m) and L (1.25 GHz, 0.24 m)

Incidence angle range 35 -60deg
Heading (flight direction) 117 deg
Pixel spacing S5m
Effective spatial resolution 8m

Number of looks

11 (C-band), 9 (L-band)

Backscattering coefficient

38 dB (C-band), and 47 dB (L-band)

619

equivalent to noise level at mid-

range

Time of acquisition March 98 (2),
(in parentheses, number of data | April 98 — August 98 (5, time interval about 1 month),

acquisitions in the given period) |June 99 (L-band only)

Differences of incidence angles | reference incidence angle 35 deg (April, May, July, August 98)
at a given position in the scene | 29.2 deg (March 98), 34 deg (June 98)

reference angle 60 deg (April, May, July, August 98)

57.8 deg (March 98), 59 deg (June 98)

Analyzed parameters v, um, v, Py, Gy

temporal signature changes of each object class. A theoretiglrch to August 1998. At L-band, an additional image from
model of the statistical distribution of the intensity ratio is utiJune 1999 was available for this study. The nominal flight head-
lized in order to understand and to predict the differences abgs were identical for all flights. The local incidence angles at
served between the individual SAR image pairs. Thresholds diled ground range positions, however, were slightly different
determined from the data so that only a certain amount of idue to variations of the flight tracks. The images from April,
herent temporal variations (due to speckle and natural signativtay, July and August 1998, and June 1999 were measured with
variations) are classified as real changes. These thresholdstbessame illumination geometry and are used as references. Rel-
compared to the ones predicted theoretically. The outcomeative to the reference flight track, the two tracks flown in March
the study in a broader context is discussed in Section V, andviere shifted horizontally, and the track in June was flown at a
nally, the summary and conclusions are presented in Section Mrger altitude. At reference incidence angles of 35 deg and 60
deg, the deviations for the June 98 scenes are about 1 deg, and
for the March scenes, the deviations are 5.8 deg at 35 deg and
2.2 deg at 60 deg.

The images are in the covariance matrix representation which

The images used in this project were acquired by the Danisian operationally provided EMISAR data product. The covari-
airborne EMISAR (a detailed description of the EMISAR caance matrix elements are given in ground range projection with
be found in [9]). A summary of the image properties is givea pixel spacing of 5 by 5 m. The data are low-pass filtered such
in Table I. The test site is located in Jutland, Denmark, aroutitht the effective number of independent looks is constant over
the Research Center Foulum. The imaged area is a typigabund range. Therefore, the correlation length between neigh-
agricultural environment, consisting of agricultural fieldshoring pixels decreases, and the dimension of the effective spa-
farm buildings, and villages with detached houses and smtdll resolution cell increases from the near- to the far-range side
industrial complexes. The most prominent linear features in tbéthe image. From the variance-to-squared-mean ratio (VMR)
radar scenes are tree hedges which form obstacles for the wafidarge homogeneous areas within the images, the effective
and reduce erosion (see Fig. 1). numbers of looks were estimated. Thesefare 11 at C-band

The data were acquired simultaneously at C- and L-barehdL =~ 9 at L-band, the difference is due to different data ac-
The image sequence covers a time interval of five months framisition and processing parameters. The effective spatial res-

II. METHODOLOGY
A. Data Preparation

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 17,2010 at 06:11:30 EDT from IEEE Xplore. Restrictions apply.



620 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 40, NO. 3, MARCH 2002

Fig. 1. Radar image over a region within the test site which is a black-and-white representation of an RGB image showing the intensities at HV-, HH-, and
VV-polarization. The two smaller boxes show parts of an aerial photograph from the same area. Most of the prominent bright lines in the radarreeage are t
hedges (shown in the lowermost twositu photographs), whereas roads appear as dark lines. Radar images were geometrically corrected using a DEM. They
and the aerial photographs were registered to an internal radar mapping system. The test sites consists of agricultural fields and farsitoqis#egraphs,

upper row, left), and small villages with detached housesiu photographs, upper row, right).

olution is roughly 8 m at mid-range. The speckle noise is sufised in subsequent analyzes. The polarization is indicated by
ficiently reduced for the identification of smaller objects in théhe indices, where “V” denotes vertically, and “H” horizontally
image. polarized radar waves. Only the correlation between the co-po-
From the covariance matrix elements, the backscattering ¢arized channels VV and HH is considered, since the correlation
efficients o9, o, o, and the correlation coefficient be-between cross- and co-polarized channels (e.g., HH and HV or
tween the co-polarized channels (magnitpgg v~ and phase VV and VH) is very low for many targets at L-band, and can be
differences¢ypvvy) are calculated (see, e.g., [8] for details) andeglected at C-Band [10, Figs. 11.1 and 11.2].

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 17,2010 at 06:11:30 EDT from IEEE Xplore. Restrictions apply.
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Dealing with objects only a few pixels in size may requirand variance were calculated. The forests used for checking the
adaptive speckle filters which preserve more or less the fioalibration stability consist predominantly of coniferous trees
structural details in the radar image, e.g., [10], [11]. A numbevhich reveal only small signature changes in the period from
of sophisticated speckle reduction techniques is available whigpril to August.
have to be considered in devising a robust change detectiomhe example shown in Fig. 2(a) is the backscattering co-
scheme for practical use. However, they may alter the signateféicient at VVV-polarization. It should be noted again that the
mean and statistics in different manners, and they require re$ame areas were imaged with slightly different incidence angles
tive long execution times on the computer. In order to get resultdhich is reflected in Fig. 2(a) and also in the following plots.
not biased by a particular speckle reduction technique, the d@tse deviations between the intensities at VV-polarization mea-
used in this study were not filtered further than the usually preured over forest in the different images are at maximum about
vided operational image products. 2 dB, that s, they are well within the calibration tests mentioned

All radar images and aerial photographs were registeredabove. A peculiarity at L-band is the large difference of the av-
an internal radar mapping coordinate system [12] whereby tBmge intensities between the two data acquisitions in March.
registration procedure included the correction of geometric amtle processing log of the data was carefully examined, in par-
radiometric distortions using a digital elevation model (DEM}Yicular with regard to calibration, but an explanation for this dif-
The DEM was generated from interferometric EMISAR data aference could not be found.
quired in 1997. Although the registration to a DEM is not nec- The temporal variations of the average phase difference
essary for change detection (since all radar data were acquibetiveen the HH- and VV-polarized channels are depicted in
at an almost identical imaging geometry), it was nevertheleSg. 2(b). At C-band, the maximum observed deviation between
carried out in order to combine the polarimetric images directgingle images is slightly larger than 15 deg. At L-band, the
with aerial photographs, topographic maps, and thematic vectorresponding value is less than 10 deg, with the exception of
layers representing different object classes. The radar imagesdence angles-52 deg where the phase differences from
were registered to one another with an r.m.s.-accuracy of bet&girch differ more clearly from those of the other months. In
than one pixel [12]. Nearest neighbor interpolation was usedéomparison to the calibration tests mentioned above, there is
the process of resampling. Although, in general, strong aliasiagain no significant difference.
and blurring effects are associated with the nearest neighbor
method (e.g., [13]), it was regarded the optimal interpolatial, Opject Classes
scheme for the data available in this study. The reasons are that

th tial lution in the DEM dat dth larimetr In this work, three object classes are considered, namely
the spatialresolution n the ataandhe polarime rguildings, roads, and tree hedges which are examples of objects
images are identical,

. . regularly monitored by local authorities. These objects are

* and _the. angles between the interferometric and pc’I"’l{:'()mparatively small or narrow in the radar images. Buildings
metric flight tracks are very small. comprise only a few pixels, and roads and hedgerows are only

Hence, only a small number of pixels present in the original.3 pixels wide. Hence, these objects are often difficult to
image was omitted or used twice in the resampled image. @atect using radar images alone. Pixels in the radar images

the Other hand, the eﬁeCtiVe Spatia| reso|uti0n was not reduq%ionging to Certain Objects were |dent|f|ed by Comparison
Wh|Ch was essential for the preservation Of Sma” details in tb\ﬁth aeria' photography_ Stra|ght |ine Segments on roads and

resampled scenes. hedgerows as well as pixels covering buildings were marked.
Usually, small or linear objects are surrounded by extended
B. Image Calibration targets such as vegetated surfaces. For detecting changes

For a set of selected EMISAR scenes acquired at identiggl.sma" and linear objects, the signature characteristics of

illumination geometries, Christenseat al. [9] examined the neighboring extended targets may have to be considered as

map-to-map calibration stability and found that it v8.1 dB well. Investigations of temporal changes of extended targets

) ) - can be found, e.g., in [2], [5]-[8]. In this study, only forest areas
atC-band ané0.5dB at L-band (standard deviation, averageqid the urban background (which is the area within a village

over range). Unpuphshed te;ts by p|erk_|ng revealed that tﬁ%t covered by buildings) were included as additional object
peak-to-peak variations at single calibration targets are on the :

classes, the former as sort of a reference. Information about
order of+1 dB at C-band and-1.5 dB at L-band for the mea- : - :

. " . - éhfe signature characteristics of the urban background is (to the
sured intensities. The corresponding variations of the phase Aithors’ knowledge) not or only sparsely available
ferencepunvv, between the like-polarized channelstS deg 9 ysP y ’
at C-band and-10 deg at L-band. These tests were carried out
lumination geometries so that the local incidence angles at the CLASSES
positions of the calibration targets were different. . . _

In order to assess the calibration stability of the images used' here are two major factors which contribute to the perfor-
in this study, the average signature of forests obtained from #i@nce of any change detection technique applied to SAR data:
different images were compared as a function of the local inci- * the inherent temporal signature variability of an object
dence angle. For incidence angle intervals of 5 deg in width, all  class due to speckle and due to natural variations of the
pixels belonging to marked forest areas were pooled, and mean physical characteristics of the imaged scene,

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 17,2010 at 06:11:30 EDT from IEEE Xplore. Restrictions apply.
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Fig. 2. (a) Backscattering coefficients of forest at C- and L-band, VV-polarization, evaluated for different ground range intervals from imagdsbdiferent

times. Note that the radar signatures were determined for the same areas in all images. The number of averaged pixels for each area is largeexbapt28 000 (
for the near-range area, where the number of pixels is 2560), so that the effect of speckle can be neglected. (b) Phase differences between Hidrized VV-po
signals of forest at C- and L-band, evaluated in parallel to the backscattering coefficients shown in Fig. 2(a).

* the contrast of the average signature between an object aeds the temporal signature stability and object class contrasts.
its background or another object which replaces the firblatural signature variations within one scene relative to speckle
one. are examined.

The signature contrast may determine whether or not the adding
or the removal of a smaller object can be recognized in the radar
image. A road, e.g., may be built through a vegetated area. Th@he mean signatures of the different object classes, plotted
road is recognized as a change in a radar image pair if its sigr each acquired data set, are a useful indicator of general large
nature is different compared to the vegetation (the backgrounsjale changes. Since a large number of pixels is averaged, the
On the other hand, if, e.g., a building is pulled down, the suinfluence of speckle is negligible or at least very small.
rounding vegetation will not necessarily spread out during the The average intensity variations of hedges as a function of the
time span between data acquisitions over the place where ith@dence angle, shown in Fig. 3(a), are slightly larger than those
building was located. of forests. This can also be recognized by eye in the radar im-
In this section, the average signatures and the spatial sigages where a number of hedges show temporal signature varia-
ture variance of the different object classes are evaluated fortahs. Except for small incidence angles at C-band (March data),
used SAR scenes. Inter-comparisons of the average valueshefe is no significant decrease of the backscattered intensity as
the different polarimetric parameters are helpful in order to as-function of incidence angle which indicates that volume scat-

AverageSignatures
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Fig. 3. (a) Backscattering coefficients of hedges at C- and L-band, VV-polarization. The number of averaged pixels is larger than 900. (b)rBackscatte
coefficients of roads at C- and L-band, VVV-polarization. The number of averaged pixels is larger than 170 so that the effect of speckle is small.

tering is dominant at larger incidence angles. This is consistenbnth to month which is reflected in the observed signature
with a relatively large cross-polarization intensity which lies berariations of the class “roads.” This interpretation is supported
tween—17.3 dB and-13.3 dB at C-band, and14.3 dB and by the observation that the signature difference is small between
—18.1 dB at L-band in the incidence angle range between 36ne 1998 and June 1999 [Fig. 3(b)].
and 60 deg. The temporal signature evolution shown in Fig. 3(a)The backscattering coefficient of buildings varies much more
does not indicate any clear correlation with the season, i.e., wikig. 3(c)], and it does not show any clear correlation with the
the development of the leaves. incidence anglef, which is not surprising. The backscattered
Roads reveal a significantly lower average intensity andigtensity observed at a certain radar incidence angle depends
slightly larger signature variation between the different images the occurrence of specular facets, dihedrals or other struc-
than forests or hedges [Fig. 3(b)]. The general tendency of a deral elements as part of the buildings and the urban background,
creasing intensity with increasing incidence angle is expectadd on their relative orientation to the radar. Slight variations of
for surface scattering. At C-band, however, the intensities mehe radar imaging geometry, i.e., of the incidence and azimuth
sured in May and June increase at larger incidence anglesahgle, might cause considerable changes of the measured sig-
the interpretation of the signatures, it has to be considered thature. That explains why the signature variation of buildings,
the roads at the test site are relatively narrow. Several pix@lbich are stable objects, can be larger than the signature varia-
contain signature contributions of the vegetation adjacent to tti@n of more changeable object such as hedges. At C-band, the
road. The physical characteristics of the vegetation change fretrape of the curves{-,(#) obtained for the different data ac-
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Buildings L-band) between the different images (not shown). The largest
2 T T T difference of the average values pfigvv is observed for
3 Q il C-Band . object class “roads,” too, and is on the order’y ~ 0.2.
oy o \ m S - The backscattered intensities of the data sets from March and
3 : \\ NI 1 June 1998, which were acquired with slightly different illumi-
é’ 2+ ”\‘ \ \ o I,' ‘/\ . \ . nation geometries, do in most cases not deviate much from the
2 - VoA, \;/ /Aﬂz ] signatures observed in the reference images (1998: April, May,
£ 4r N §Y“}Q a0\ 7 July, August; 1999: June). The only significant exception is ob-
3 | . O - X \my ] - Lo .
1) oY f AT served for buildings at L-band at the incidence angle interval of
2 5 N I 52.5-57.5deg [Fig. 3(c)] as was already mentioned above. Since
Ej I NS | volume scattering is dominant for hedges, the sensitivity of the
3 M d ) backscattered intensity to variations of the incidence angle is
§ 10 _ | only weak over the SAR swath (incidence angle interval from
o | i 35 deg to 60 deg) [Fig. 3(a)]. The observed sensitivity for roads
ol v e is also comparatively weak [Fig. 3(b)], since the pixels marked
30 40 50 60 70 as belonging to object class “roads” may include a contribution
Incidence Angle [deg] from the vegetation adjacent to the roads. In general, the sensi-
tivity to the incidence angle is larger for surface scattering than
N for volume scattering, and it is larger for smoother surfaces.
Buildings Hence, changes of the illumination geometry due to varying
2 — T flight tracks should be kept smaller for surface scatterers than
_ - ®---©@ June99 4 for volume scatterers. Urban environments, with their complex
S, o +— -+ August 4 reflections mechanisms, are in general very sensitive to changes
S - A——24 July 1  of the illumination geometry.
° 2+ =---m June -1
jé i o 2\"33_" 1 B. Signature Variations
E B | Z,\; Mzr,'ch 2 Th_e signature variation_s are Que. to §peck|¢ aqq texture. Tex-
> 6k o —o Marchi - ture is a measure of the intrinsic (r-situ) variability of the
§ | § backscattering coefficient (which would also be observed in
§ 8| . the absence of speckle). It is hence related to spatial inhomo-
2 . . geneities of the scattering surface and/or volume, e.g., [10], [14].
§ -10 |- - The term “texture” as used here differs from its usual defini-
- T tion. Here, it denotes also spatial variations of the mean values
-12 e of pprvy and¢unvy, and it refers both to the spatial varia-
30 60 70 . " .
tion of the backscattering coefficient within the area covered by
incidence Angle [deg] a certain object (such as a hedge) as well as between different
© objects within one class. Texture is a function of frequency, in-

. _ _ N o cidence angle, polarization and spatial resolution of the imaging
Fig. 3. (Continued.)(c) Backscattering coefficients of buildings at C- andsensor A useful parameter for the investigation of the inherent
L-band, VV-polarization. The number of averaged pixels is larger than 525. . L . .

intensity variability caused by speckle and texture is the vari-
ance-to-squared-mean ratio (VMR3},/(P)?, wheres? is the
quisitions is highly variable. At L-band, all curves have a similasariance of the received powét, and( ) denotes the expected
shape, whereby the two March acquisitions are shifted by 3v&lue. In this paper, the power is modeled by [15]
deg toward smaller values éf(because of a different illumina-

tion geometry, see Section I1). Only at 55 deg (March: 52 deg), P =[II) + (n)]s 1)

there is a large deviation between the data from March and fro Tis th back dqf distributed
the other months. Since for given positions on the ground, therere Is the power backscattered from a distributed target,

local incidence angles differ between the March scenes and 'ﬂ“néhe t_exture random vgrlabLéJs the speckle random variable,
other images, the intensities backscattered from these positigﬂgn_ is the gystem NOISE POWET. .

are also different. The difference of the intensity levels betweenUSIng the image model _deflned by (1),_one obtains the VMR
the two March data acquisitions which is almost constant o 7 @ functhn of the effectwg number of mde_pendent lodks,
the whole incidence angle interval [Fig. 3(c)] compares well 2e power S|ngaI-to-n0|se ratiSNR and the variance of texture,
the 2 dB difference observed for forests in Fig. 2(a). or (15, €q. 3]:

The correlation coefficientsygrvy and the phase differ- 2 1 < 1) < 1 >—2

(o2
ences,¢nnvy, between the HH- and VV-polarized channel <PI;2 =7+ 1+ 1) 1+ 53z oF. 2
are the parameters which are gained from a fully polarimetric
SAR. The averages ofypvv as a function of incidence For all images used, the VMR-values were evaluated as a func-

angle vary at maximum by 30 deg (for object class “roads” &bn of the incidence angle by pooling all pixels belonging to
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TABLE I
(a2) VMR RANGES OFDIFFERENTOBJECT CLASSES OBSERVEDMINIMUM AND MAXIMUM VMRS oOUT OF THE7 (8) IMAGES AT C-BAND (L-BAND), COMPRISING
ALL INCIDENCE ANGLE INTERVALS. (b) STANDARD DEVIATIONS OF THE CORRELATION COEFFICIENT AND THE PHASE DIFFERENCEBETWEEN THEHH- AND
VV-POLARIZED CHANNEL. MINIMUM AND MAXIMUM STANDARD DEVIATIONS OBSERVED IN THE7 (8) IMAGES AT C-BAND (L-BAND), COMPRISING ALL
INCIDENCE ANGLE INTERVALS. (NOTE THAT CORRELATION COEFFICIENT AND PHASE DIFFERENCEWERE EVALUATED FOR EACH PIXEL IN THE RADAR IMAGES
BEFORE THESTANDARD DEVIATIONS WERE DETERMINED FOREACH OBJECTCLASS AS A FUNCTION OF INCIDENCE ANGLE)

éd S0 Gy
C-Band L-Band C-Band L-Band C-Band L-Band
Hedges 0.19-0.45 | 0.24-0.62 | 0.16-0.50 | 0.33-0.77 | 0.20-0.46 | 0.33-0.67
Roads 0.2-1.0 0.3-24 0.2-1.5 0.6-6.0 0.4-2.1 0.8-7.1
Buildings 1-100 1-170 2-90 1-192 1-70 1-34
Urban background 1-125 1-570 4-85 1-587 1-60 1-52
Forest 0.17-048 | 0.19-0.45 | 0.16-0.50 | 0.21-042 | 0.15-0.49 | 0.18-0.37
@
P Duayy [deg]
C-Band L-Band C-Band L-Band
Hedges 0.15-0.17 0.16-0.20 20.6-58.0 50.6-85.6
Roads ©0.13-0.19 0.15-0.23 14.4-42.6 29.0-63.2
Buildings 0.20-0.29 0.18-0.23 46.7-72.3 70.0-85.2
Urban background 0.17-0.22 0.18-0.21 46.7-54.4 67.7-83.2
Forest 0.14-0.18 0.15-0.16 24.3-41.9 46.4-68.4

(b)

the selected object class within an incidence angle interval o¥/&ry different scattering mechanisms such as slightly rough sur-
deg width. The results are listed in Table Il(a). For the EMISARace scattering, on the one hand, and mirror and double bounce
covariance matrix product, the number of independent looksréflections, on the other hand. Note that (2) is strictly valid only
L = 11 at C-band and. =~ 9 at L-band. If the backscatteringfor distributed targets, that is, for SAR resolution cells con-
coefficient of a distributed target in the EMISAR scene is containing a larger number of randomly distributed scatterers, none
stant (that isgZ = 0), the VMR is 0.09 at C-band and 0.11 abf which is dominant. Urban areas are a mixture of pixels rep-
L-band. The lowest VMR observed in the analyzed data setr&senting distributed targets and point targets (the latter are tar-
0.15 at C-band, and 0.18 at L-band (forest areas, cross-polggts dominating the return in a resolution cell). The radar re-
ization, see Table Il). Since the number of pixels from whichponse from sufficiently large point targets (which appear often
the VMR was evaluated is larger than 170 in all cases, the estery bright in SAR images) does not exhibit speckle. In the an-
mation error of the VMR is negligible (see [15, appendix Al)alyzed scenes, pixels representing point targets make up only a
Hence, the contribution of texture has to be considered for aéry small fraction of the total area covered by villages but they
object classes. have a very strong effect on the value obtained for the VMR be-
The values given in Table lI(a) indicate that the signatures cfuse of the very large backscattered intensities relative to the
the selected object classes are not homogenous, that is, natisitibuted target responses.
variations of the backscattering coefficient (within one image) The correlation coefficienpyyvy, and the phase difference,
have to be considered. For change detection, it is hence imppryy, are not affected by texture provided that the length
tant whether or not the natural spatial signature variation of anales of the signature variations are larger than the multi-look
object remains temporally stable. By means of (2), it is posesolution cell [16]. Hence, if theoretically predicted and ob-
sible to calculate the texture variance. In particular for roadsgrved variations gbppvy andéunvy are different, this indi-
the signal-to-noise ratio in the EMISAR images can be as lovates the influence of short-scale changes of the scattering char-
as 10 dB at C-band which means that its influence on the VMiRteristics. The standard deviation @7y depends on the
cannot be neglected. The VMR can be extremely large in therrelation coefficienpgyvv [10, p. 344], [16]. The estimate
case of buildings and urban background due to the mixture affthe correlation coefficient is strongly biased for small “true”
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Fig.4. Backscattering coefficients at VV- and HV-polarization and variance-to-squared-mean ratio (VMR) of different objects, obtainedfrram{EMISAR
images. Open circles are used for hedges, open triangles for forest. The incidence angle range in the reference images is 52.5-57.5 deg.oAljipirets bel
an object class within the incidence angle interval were pooled before calculating average backscattering coefficients and VMR’s. Numberef26iéls
(hedges), 539 (roads), 31 359 (forest), 1885 (buildings), and 13 400 (urban background). (a) C-band. (b) L-band.

values ofppyvy and a small number of looks [10, p. 345]; theand 13.6 deg fopupyy = 0.7. The standard deviations eval-
estimated value is too large in this case. For example, if thated for the used images are within this range, a significant
number of looks id. = 9, and the true correlation coefficient istexture component cannot be identified. With regard to change
pauvy = 0.0, one obtaingggyyv = 0.3 for the estimate. The detection, it is important to note that averages over single in-
correlation coefficients observed for the selected object classédence angle intervals revealed estimategigfyy as low as
vary between 0.3 and 0.7, whereby the largest values were found (0.5 for roads) at C-band and between 0.3 and 0.4 at L-band
for roads. From the probability distribution function given irfor all object classes. This means that the phase difference varia-
[10, p. 345], the standard deviation of the correlation coefficietibns due to speckle alone can be considerable. If two images are
is calculated. Usind, = 11 at C-band, it lies between 0.11 andacquired at different times, the statistical uncertainty gfiyv

0.13, and withL = 9 at L-band, between 0.12 and 0.15. Here, & each of the two images will in many cases be very large com-
possible bias at low values ¢fiyvy was considered by taking pared to the differences of average phasgsyy between dif-
punvy = 0.0 as the lowest true value. Most of the minimunferent object classes.

standard deviations gfygyv listed in Table ll(b) are smaller

for C-band than for L-band, as is expected from theory. On tie Comparison of Signatures of Different Object Classes

other hand, some of the maxima of the measured standard deFhe average signatures of different objects together with their
viations of jrryvy are significantly larger than the theoreticaVMR’s are shown in Figs. 4 and 5, focusing on a particular in-
values, in particular for buildings at C-band. The standard dewidence angle interval in the reference scenes (it is considered
ation of pgrvv due to speckle alone was evaluated numericaltyiat the same area lies in different angle intervals in March and
from the probability distribution function given in [10, p. 344].June). It is worth to note that the average intensities of build-
Itis 104 deg for a “true” correlation coefficient pfirvv = 0.0, ings and the urban background do not differ much at L-band.
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Fig. 5. Correlation coefficient and phase difference between HH- and VV-polarized channels, shown for different objects. The results weir tigsast:
way as described in the caption of Fig. 4 after correlation coefficient and phase difference had been evaluated for each pixel. (a) C-band. (b) L-band.

At C-band, on the other hand, there is a difference of aboutXkertain agricultural crop are similar in both images. Moreover,
dB at VV-polarization [Fig. 4(a)]. This has to be considered faince signatures vary considerably dependent on crop type, the
detecting the adding or removal of a building in an urban enviatensity contrast between agricultural crops, on the one hand,
ronment. and hedges, roads, and buildings, on the other hand, can only be
For change detection, the signature variations (due to speckiaximized locally but not over the whole image.
and temporal changes of backscattering characteristics) of botlfrig. 5 is an example where the phase difference and the cor-
the object (which is added to or removed from the scene) arelation coefficient hardly contribute to the detection of changes
the “background” (which is covered by the added object or ekecause the observed differences between the object classes are
posed after removal of the object) are of importance. A corstatistically not significant, considering the magnitude of the
prehensive analysis of the radar intensity contrast betweenstfindard deviation. If the objects of interest are embedded in a
object classes relevant for change detection related to thematickground of agricultural crops, the phase and correlation con-
mapping is beyond the scope of this paper. In an agricultutedst between target and background may be large enough only
environment as it is typical for most parts of Denmark (and fat a few occasions dependent on crop type and season as can be
large parts of Europe), object classes of interest for thematieduced from the signatures presented by Skave.[8].
mapping are often embedded in a background of agriculturalThe presented examples demonstrate that, all in all, the di-
crops. The polarimetric signatures of the latter (intensities at aect use of the correlation coefficient and the phase difference
and cross-polarization, correlation coefficipatyyy and phase between the like-polarized channels is not “first choice” in a
differencedynvv) are discussed in detail in [8]. The backscathange detection algorithm for the object classes considered
tered signatures of agricultural crops are highly variable over there but has a clearly lower priority. Therefore, the focus in the
period of one year. This requires that the image pair to be utiext section will be mainly on the measured intensities at the
lized for change detection is chosen such that the signatureslifferent polarizations.
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IV. TEMPORAL SIGNATURE VARIATION o T T T

This section deals with the temporal changes of object cla
signatures as it is observed in a sequence of multi-date S/ ;:“
images. Besides “relevant” changes of the radar signatug
at a given position due to adding, removing or changing
an object, the signature might vary because of the inhere§
natural variations of scattering characteristics and dielectr s
properties. These variations are modeled as texture and spec g
Technical factors to be considered are slightly varying imaging
geometries, misregistration, and calibration errors which ce
be minimized by adequate measurement and data process
techniques. For the used data set, the magnitude of possible ¢ — s 10 5 20
ibration variations is small but not negligible as is indicated b
Fig. 2(a) and (b). The effect of misregistration is more difficult
to assess because of the random signature variations betv@%{ﬁ-e v;anc::tgzenflgrdd‘i)f?ggL fggrrilatri]%rtli gr?sef(f)i’giemlaznzs afunTc:]ignCSI Vtgse
different Im.ages'.A thoro”gh InSpeCtlon.Of th_e posmons (?f tt@ere evaluated uging (5) assuming that the numggr of Iof)iéile oT1 =
marked objects in the registered polarimetric images did ngt,, and the SNR is large.
reveal any recognizable deviations. Hence, it can be assumed
:jhui[ tgsii:igu-:zgifsozil tsr:gnraetqre va_rlatlons Of. |r_1d|_v|dual plxelss%t to one (“false alarm rate”). This requires that the calibration

gistration are minimized as much . .

as technically possible. The change of the local incidence ans{ro_r is negligible. . . .

. NN - . . ; ince the used data are in the covariance matrix format, only
at a given position is explicitly considered in the foIIowmg[he correlation between the received | b
subsections. o power evejs, can be

calculated which in the absence of texturgjs= |p|? [5], [18].
. . In its most general form, the correlation coefficient obtained

A. Image Ratio and Correlation from the intensity data is, using (1) as a model for the received

When dealing with speckled data, the ratio of two intensityower:
images is better suited for change detection than the difference
[5], [10, pp. 385-388]. For a speckled, but otherwise homoggp12
neous region (texturer = 0), the estimated intensity ratio L L
Q = {I,)/{I) is distributed according to [16], [10, p. 346]: ps12 (1+m)(1+m)+(L+p512)pT120T10T2

) \/U%I(L—i-l) +(1+S+m)2 \/0%2(L+1)+(1+5A+R2)2
)

Texture Variance

r2L) (1 1pP)" (v + Q)QL 1y~

RID T ERT A e

PQ) =

whereP is the probability density function (PDF,is the true whereL is the number of looksis12 = |p|?, pr12 is the corre-
intensity ratio,L is the number of lookd, is the gamma func- lation between the textures in images 1 and, is the texture
tion, andp is the complex correlation coefficient between thgariance andNR is the signal-to-noise ratio in imagelf the

two images which is estimated using [5]: signal-to-noise ratio is very large, ang; = oro, (5) is iden-
tical to (20) presented by Rignot and van Zyl [5]. It is noted that
(a1a3) the correlation coefficients;» is independent of the number of
p= —F— 4 ; .
(|a1]2){|az|?) looks [18]. Results fopp12 as a function of texture variance are

shown in Fig. 6. From the figure and from (5) it is clear that the

wherea; andas are the SAR complex amplitudes measured itexture component has a strong influence on the magnitude of
image 1 and image 2, affd indicates averaging over a windowp p1 2, in particular, ifL is very large. In this case,» cannot be
comprising an appropriate number of pixels. Equations (3) addectly used in (3). For the presented data set, the VMRs found
(4) are still valid in the presence of texture, provided that tHer the different object classes [Table ll(a)] reveal that the tex-
backscattering coefficient within onk-look pixel is constant ture component is significant in most cases.
[16], [17]. The coherencgneeded in (3) can be evaluated from the com-

The correlatiorp as defined by (4) is influenced by thermablex amplitude (magnitude and phase) image even if the signa-
noise, the antenna baseline separation, and temporal changesrefvariations include a texture contribution, provided that the
the scattering characteristics (due to variations of the physidéahgth scales of the signature variations are larger than the SAR
properties and/or positions of the scattering elements). The P@Bolution cell [17]. However, complex amplitude data could
given by (3) is useful for quantifying theoretically how often thaot be utilized within the time frame of the project. The com-
ratio (@ exceeds a selected threshold [10, ch. 12.4]. For objepiex amplitude may be, in general, of interest for a pixel-to-pixel
where the average intensity does not change between the thiange detection approach. If the power magnitude within a res-
images, the probability of classifying inherent intensity variaslution cell does not vary with time, but the effective phase (for
tions as a real change is obtained for a given thresholdisf example, as the result of a relative motion of the scatterers), the
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complex correlatiom between image 1 and image 2 reflects thi , 10 [ ! ! : : o

change, but not the power correlation coefficient.. Since,on = (L c L '. ii, : 4

the other hand, such phase variations are rarely of importarg v HH Y | | ; - .

in the type of change detection discussed here, the utiIizati’g 06 x | N ol Ko » o i

of the intensity image is sufficient as long as the knowledge g " \\ ;Ei Voo .:d!.! o : i.';

coherencep is not required explicitly in the change detectiors %4 4= ;“i:lv " o ]

algorithm. S ool v °';§' I tat ::!i i
If the scatterer configuration within a resolution cell does n¢® '; v j v ¥ 3. !

change as a function of time, the correlatjign, is determined £ o} | ’ : e o -

only by the system noise contribution and the antenna basel hedges  roads  forest buidings | AR

(antenna separation). If a large signal-to-noise ratio is assum %2, " 2 s p 5 6

the difference between the flight tracks (which determines tl Object Class

baseline) is the dominant factor. The spatial baseline decorrela-

tion coefficient is [15], [19] Fig. 7. Range of observed correlation coefficiepis» for different object

classes, evaluated using (6). The range intervals shown to the left of the dashed
lines are for C-band, the ones to the right for L-band. The order of the depicted
ranges is VV-, HH-, and HV-polarization.

2(Bcos0)Aycos

AR

PB =

(6)
wherevar{ } is the variance, an®; denotes the magnitudes
where it is assumed that the baselifejs horizontal Ay is the  of power of a group of adjacent pixels belonging to a certain
spatial resolution in ground rangR,is the range distance to theobject class in image If the variance of the differencB,—P;
target ¢ is the incidence angle, aridis the radar wavelength. If is identical to the sum of the variances Bf and P, the in-
the target lies on the plane to which the flight altitules ref-  tensities in image 1 and image 2 at a given position are uncor-
erenced, the range 8 = H/ cos 6. The baseline decorrelationrelated 1> = 0). The estimate of the correlation coefficient
depends strongly on the range position within the illuminated-,> was first computed as a function of incidence arfjley
swath, and on the radar frequency. It is larger at near range gualing all pixels of an object class within a 5 deg wide inci-
at shorter radar wavelengths. dence angle interval. However, a clear and systematic sensitivity
The EMISAR navigational system permits to hold the aimf pp12 to 6 was not found. Hence, all pixels in the image be-
plane within a few meters [9]. Even if one takes variations ilonging to the object class were used to calculate the variancesin
the aircraft attitude (pitch, yaw) into account, it can be assumédg). The results are shown in Fig. 7. For the distributed targets
that the image pairs acquired with nominally identical illumi¢hedges, roads, and forests), the correlation can be as large as
nation geometries (April-May, July—August) reveal correlatiof.6. The very low correlation coefficients for classes “buildings”
coefficientspp significantly larger than zero (in particular atand “urban background” at C-band are obtained for the image
far range). The reference images (April, May, July, August, anirs March—April, since the shorter radar wavelength is more
June 1999) were acquired at an altitudefbf= 7600 m. The sensitive to changes in the illumination geometry. At L-band, on
single-look slant range resolution for the used EMISAR datatike other hand, the largest value$gf » are found for buildings
2 m. The ground range resolution is obtained fipfsin 6 [m].  and urban background which indicates that, at the longer wave-
The critical baselineds = 0) is 113 m at§ = 35 deg and length, urban environments may reveal a more stable signature
753 m atd = 60 deg at C-bandX = 0.057 m). The corre- as a function of time than the distributed targets.
sponding numbers at L-band & 0.25 m) are 496 m and 3304
m, respectively. The horizontal flight track shift of the Marc
scenes relative to the reference images is about 1080 m. He

the correlatiorp 12 between image pairs March—April is zero  5ying dealt with the theoretical fundamentals which have
over the whole swath at C-band and over a stripe on the nggihe considered in the analysis of intensity changes in SAR
range side of the swath at L-band. If the basellne_z is vertical, tnﬁages, one can now turn to the practical applicability of the
term (B cos 6)) has to be replaced by(sin 6). In this case, the ) hematical models. In Fig. 8, theoretical histograms of the in-
minimum for the critical baseline is @& = 35 deg. It is 162 (ensity ratio of forest areas which were evaluated using (3) are
m at C-band and 681 m at L-band. The vertical offset for thg,nnared to the histograms measured for the six image pairs at
June 1998 flight track is 277 m, which means that for image. and |-band separated by one month in time. The “measured”
pairs May—-June and June-July, the speckle patterns at C-bgapghgrams were obtained by using all pixels belonging to the
are completely decorrelated in the near range part of the imaggiect class “forest” hence neglecting any sensitivity to the in-
From the images, an estimate of the correlation coefficiegijence angle which is justified in view of Fig. 2(a). The forest
pr12 of the different object classes was evaluated using the tgaa5 were selected as object class because they comprised a
lationship [10, p. 386] very large number of pixels. The agreement between theoretical
and observed histograms is satisfactory at C-band and good at
L-band, considering a slight uncertainty in the magnitude of the

tbceTheoretical Prediction of Thresholds

priz = var{Py} + var{Py} — var{P — P\ } (7 equivalent number of looks, and the presence of natural signa-
2y/var{ P, }var{ P>} ture variations with unknown length scales.
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Fig. 9. Threshold above which 5% of all pixels would be classified as real
changes although the magnitude of their ratio is due to speckle.

L-Band

o — T ——] month. The theoretical thresholdg,}...., were obtained by

A ] evaluatingP (@) using (3) with a value op = 0. Object classes

| “hedges” and “forest” were chosen for a more detailed analysis
. since their VMR-values were smallest. First, the investigation
. was carried out focusing on a particular incidence angle interval
1 of 5 deg in width in which a large number of pixels for each
object class was available. As estimates of the true intensity
ratio,~, the observed average intensity ratios were taken. Then,
average intensity ratios and histograms were evaluated from the

data pooled over the entire swath width. It was found that the

Percentage of Occurrence

forest areas | results did not differ significantly, and the conclusions which
e can be drawn from both cases are identical. The results obtained
6 8 over the whole swath width are listed in Table lli(a) and (b).
Intensity Ratio [linear], VV-Polarization The values of the thresholds determined from the measured

Fia 8. C ) " d (dashed lines) and theoretical (solid hi)stograms reveal the tendency predicted by the curves shown
ig. 8. Comparison of measured (dashed lines) and theoretical (solid lines) . . .
histograms of the intensity ratio at C- and L-band, VV-polarization, for foreéﬁ. Fig. 9'. namely tha.t the magnitude of the threshold increases
areas. The measured histograms are for six image pairs with a tempatdth the intensity ratio. All observed thresholds are larger than
separation of one month, including all pixels belonging to object class “foregfa predicted ones whereby the differences between observed
over the whole swath width. The theoretical curves were evaluated using thed th tical val ’ llest for f t t L-band
minimum and the maximum of the observed average intensity ratios frod! eoretical values are smalleéstoriorestaréas at L- an_ (On
Figs. 2 and 3. average 0.1) and C-band (on average 0.3). The average differ-
ences for hedges are 0.47 at C-band and 0.85 at L-band. For

The probability of classifying noise as a “real” signal is defoads, values of 0.86 at C-band and 1.1 at L-band were obtained.

noted the probability of false alarmsy,. This probability is The;ieid:]f{erepcei mcrnea:iﬁi |fhlargne:l Vf‘LLi'reS tflorbth% cto rrrrilii“%n
given by [10, p. 387] coefficientp are chosen (which can not directly be dete e

from the intensity data, see above). The difference values were
o0 found for image pairs with a one-month period between data ac-
Pro =Prob{Q > T} = / P(Q)dQ. (8) quisitions as mentioned above. For the one-year pair at L-band,
r the corresponding values are 0.1 for forests, 0.7 for hedges, and
In this study, a probability of?;, = 0.05 is used, and the cor- 1.0 for roads.
responding threshold is denoted@s. For this threshold, 5 per The baseline decorrelation coefficient for most of the image
cent of the observed changes would be misinterpreted as neails listed in Table Il is significantly larger than zero. A small
changes although they only reflect the variations due to specldéference between observed and theoretical thresholds is ob-
In Fig. 9, thresholds are shown as a function of the correltained only if the theoretical thresholds are calculated assuming
tion coefficientps1, and the true intensity ratio, using (3). Thep = 0. This means that the temporal decorrelation coefficient
threshold decreases with a decreasing intensity ratio and anrmist be small in order to justify the assumptionof= 0.
creasing correlation coefficient. For vegetated areas, this is plausible. For forests, for example,
How do the results compare to the thresholds which can Bekneet al. [20] observed coherencieg,, between 0.26 and
found from the intensity ratio histograms evaluated for the daie47 at C-band (the given values include both baseline and tem-
set? The observed thresholds5,,,, were determined from poral effects) which means thgi|? lies in a range between
the measured histograms for all image pairs separated by @7 and 0.22. Roads, on the other hand, should reveal larger
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TABLE Il
(a) HEDGES (b) FOREST THRESHOLDS FOR AFALSE ALARM RATE OF 5%, T'5, OBSERVED FOR THEBACKSCATTERING COEFFICIENT AT VV-POLARIZATION. THE
“TRUE” | NTENSITY RATIO, 7, WAS ESTIMATED USING THE DATA DEPICTED INFIGS. 2(a) (FOREST) AND 3(a) (HEDGES. FOR THE OBJECT CLASSES SELECTED
HERE, THE INTENSITY RATIO DOESNOT REVEAL LARGER VARIATIONS AS A FUNCTION OF INCIDENCE ANGLE. THE THRESHOLDS 1'5, WERE OBTAINED FROM
THE OBSERVED HISTOGRAMS OF THEINTENSITY RATIO. THE DIFFERENCEBETWEEN OBSERVED AND THEORETICAL THRESHOLD ISAT = T5-T5 00y -
THE THEORETICAL THRESHOLD WAS OBTAINED FOR A CORRELATION OF p = (. THE OBSERVED CORRELATION COEFFICIENTS
pp12 (WHICH INCLUDE THE TEXTURE COMPONENT) ARE ALSO SHOWN

C-Band L-Band

Image pal r 7’ [dB ] T5 AT P observed /J'{dB ] T5 AT p observed

March 1 — April | 04 | 255 | 030 | 041 0.2 335 | 1.02 | 042

March 2 — April | 0.5 275 | 046 | 040 | 01 | 305 | 0.88 | 040

April — May 26 | 445 | 072 | 0.39 14 | 445 | 139 | 046
May — June -12 | 1.85 | 029 | 035 0.1 285 | 059 | 048
June — July -16 | 1951 054 | 0.2 -0.7 | 225 | 037 | 041

July — August 1.1 3.15 ] 051 | 0.36 0.1 315 | 089 | 044

(@)

C-Band L-Band

Image pair yldB]| 75 AT | Popsenea| HAB1 | T5 AT | Popservea

March 1 — April | 0.3 245 ) 025 | 0.58 1.0 285 | 006 | 053

March2 - April | 04 | 245 | 020 | 058 | -06 | 2.15 | 0.28 | 047

April — May 0.3 27510551047 | 02 245 | 0.12 | 0.53
May - June -05 | 195 | 013 | 057 | 02 235 | 002 | 053
June — July -0.1 | 215 ] 0.14 | 057 | -0.1 | 225 ) 0.08 | 0.52

July — August 1.0 315 1 057 {047 | 02 | 215 | 0.04 | 0.54

(b)

values of coherency, but as already mentioned above, manysfoo small to determine a statistically meaningful histogram.
the pixels belonging to object class “roads” include signatute order to find thresholds, histograms were evaluated using the
contributions of the vegetation adjacent to the roads. In adgixels of class “buildings” distributed over the entire incidence
tion, the signal-to-noise ratio is lower compared to the other obngle interval. These histograms do not compare to theoretical
ject classes. predictions based on (3). Considering the observation that air-

Another important item to be considered is related to tHmrne SAR measurements from urban areas cannot be explained
length scales of the inherent signature variations. By meadng models assuming constant scattering properties within the
of Monte-Carlo simulations, Joughgt al. [16] obtained his- resolution cell [21], it may be reasonable to assume that urban
tograms of the intensity ratio for the case that the backscattergignatures are in many cases also affected by inherent signature
coefficient varies within a multi-look cell. As a consequence, thariations with length scales smaller than the effective spatial
width of the distribution functions increases, as can be deduagdolution of the imagery.
from their results. The experimental observations presented herén Table lli(a) and (b), the observed correlation coefficients
indicate that natural signature variations of hedges and of roads..,..« = pp12 are listed as well. They indicate that texture
may occur on scales that are smaller than Ehi®ok resolu- between images, in contrast to speckle, is correlated to a certain
tion cell (about 8 m wide for the EMISAR covariance matrixdegree.
product).

. For buildings, the situation is even more complicated. B%. Temporal Signature Differences of the Selected Object

sides partly extremely large values of the VMR [Table II(a)]Classes
the mean intensity ratio is characterized by strong local vari-
ations [which is reflected in Fig. 3(c)]. The number of pixels Histograms of pixel-to-pixel and object mean ratios (for
within a potential area of a more or less constant intensity rafggvv andéggvv differences) were evaluated for image pairs
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TABLE IV

SIGNATURE THRESHOLDSBASED ON PIXEL-TO-PIXEL DIFFERENCES VALUES INDICATE MINIMUM AND MAXIMUM THRESHOLDS FOR AFALSE-ALARM RATE OF
5% OBTAINED FROM THE HISTOGRAMS OF THE7 ONE-MONTH IMAGE PAIRS FROM 1998. THE DATA FOR ALL OBJECTSWITHIN ONE OBJECT CLASS WERE
POOLED FOR THECALCULATION OF THE HISTOGRAMS THRESHOLDST'! AND 1'r FOR PHASE, ¢nnvv, AND CORRELATION COEFFICIENT, paavyv, WERE
DETERMINED FOR THELEFT- AND RIGHT-HAND SIDES OF THEHISTOGRAMS, SO THAT jf; P(X)dX =0.025 AND [ P(X)dX =0.025

C-Band L-Band
Hedges Roads Buildings Hedges Roads Buildings
o°yv [dB] 27,65 22,57 6.3,>10 3.5,65 29,69 39,84
6’un [dB] 24,67 24,75 55,>10 3.1,7.1 2.9,6.6 42,73
6’nv [dB] 24,67 24,75 55,10 37,68 29,69 41,87
Gunvv [deg] 99, -81 -81,-51 -135,-99 | -147,-141 | -111,-75 | -147,-123
75,99 51, 81 93,135 141, 153 93, 111 123, 147
P HEVY -0.42,-0.30 | -0.38,-0.26 | -0.50, -0.38 -0.38 0.42,-0.30 | -0.38,-0.34
034,046 | 030,042 | 038,05 | 038,042 | 034,042 | 034,046
TABLE V

SIGNATURE THRESHOLDSBASED ON INHERENT SIGNATURE VARIABILITY —OBJECTMEAN VALUES. MINUMUM AND MAXIMUM THRESHOLDS FOR AFALSE
ALARM RATE OF 5%. NOTE THAT THE NUMBER OF AVERAGED PIXELS VARIES FROM OBJECT TOOBJECT. SEE ALSO COMMENTS TABLE IV

C-Band L-Band
Hedges Roads Buildings Hedges Roads Buildings
o’y [dB] 0.6,4.2 02,45 4.7,>10 0.6,3.5 06,54 22,63
6’ [dB] 0.6, 4.1 -0.2,4.5 4.1,>10 02,39 02,42 22,52
’uy [dB] 0.6,4.1 0.6,6.9 3.5,>10 0.6,3.1 1.0,4.7 19,60
Ourvv [deg] -27,-15 21,3 -81, -45 -39, -21 -33,-15 -81, -63
15,27 15,21 63, 69 21,45 21,33 57,99
P HHVV -0.14,-0.02 | -0.18,-0.02 | -0.34,-0.18 | -0.10,-0.06 | -0.22, -0.02 | -0.22, -0.14
0.06,0.18 | 0.06,0.22 | 0.18,0.34 | 0.06,0.14 | 0.06,0.30 | 0.14,0.26

separated by one month by pooling the data over the enti@se of buildings. In order to detect a real change, the threshold
image range. Ranges of the measured pixel-to-pixel threshotdghe backscattering coefficient at VV-polarizatiar{,,, for
obtained for the intensity ratios and the differenceg@fivy  buildings at C-band, for example, should lie between 6.3 dB and
and¢ppyy are listed in Table IV for object classes “hedges,larger than 10 dB to make sure that only a few detected events
“roads,” and “buildings.” The object mean ratio or differencare due to inherent signal variations with the object itself being
was determined by averaging over the pixels of each object amtthanged. If object averages are used, the corresponding min-
subsequently computing the ratio or difference between theum threshold decreases to 4.7 dB, whereas the maximum re-
object mean in the one and in the other image. Since the objetisgins at a level larger than 10 dB. This can be explained by the
are different in size, the mean values differ with regard to thdaict that some of the buildings comprise less than 5 pixels which
statistical error because of the different number of sampleseans that averaging does only slightly reduce the inherent sig-
The obtained thresholds can be found in Table V. Examples foaiture variability.
the histograms are shown in Fig. 10. The vertical lines indicateBesides the number of looks, the thresholl§, for forests,
the minimum and maximum threshold for a change detectitiedges, and roads depend on the average intensity-yratial
error less than 5 per cent, based on the histograms. the correlation coefficienp. For the two latter object classes,

In order to keep the rate of false alarms low, the threshallde sensitivity ofl’5 to the ratioy is plotted in Fig. 11 (whereby
for a pixel-to-pixel change detection has to be quite large in tlaecording to the results presented above it can be assumed that
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Fig. 10. Histograms of pixel-to-pixel intensity ratios at VV-polarization for19- 11'. Thresholds"_l_'S as a function of the average Intensity ratio at

buildings. Vertical lines indicate the threshold @f-, if changes have to be VV-polarization fOF object classes_hedges, roads, ar_]d bmldlngs. Dashed lines

detected with an accuracy95 percent. The depicted histograms are for th@'€ least-square fits. The theoretical results of a pixel-to-pixel approach are

minimum and maximum thresholds (if the same value is obtained from t Spresented by th_e SOl'd. Ilnes_. Thresho_lds were determined for the_ obs_erved

histograms, both are shown). |llstogramls of the intensity rati@. Intensity ratio and threshold are given in
inear scale.

|p|? is close to zero). The increase of the thresholds as a functio

of the average intensity ratio can be approximated by a Iinegaér}e that the average intensity ratios for a given image pair differ

function. The linear increase is in agreement with theoretica‘ftWeen roads and hedges (Fig. 12) which means that thresholds

predictions represented by the solid lines in Fig. 11. The they have to be dgtgrmmed separatgly for_each ObJe.Ct class. The
. . . thresholds of buildings decrease with an increase in the corre-
oretical curve was calculated using (8) and (3), assuming th . . N )
L : . lation coefficientpp12 a@s is shown in Fig. 13. The correlation
the correlation i = 0, and with a number of effective looks

of L — 9 at L-band, and of, = 11 at C-band. The observedcoemc'ents are low for the image pairs March—April for which

thresholds for the pixel-to-pixel approach are larger than the t tg_e deviation of the tracks flown during the measurements is

oretical thresholds. The dashed lines reveal that the thresho Jgest.
for roads are larger than for hedges (except for the pixel-to-pixel
approach at L-band). It should be noted, however, that these dif-
ferences between thresholds of different object classes are déFhe use of radar images in thematic mapping is attractive be-
pendent on certain radar parameters (frequency and spatial oestse radar imaging is not affected by cloud covers and light
olution) which means that they should be determined for eacbnditions. However, the interpretation of what is seen in the

new radar configuration. For practical applications it is worth tadar images is not always straightforward. For example, the

V. DISCUSSION
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other sensors. This includes speckle reduction, edge detection,
] and segmentation whereby image processing techniques are uti-
2 U — lized which are developed specifically for radar data. Speckle re-
- ", . duction techniques which do not blur the signatures of small or
1+ " - narrow objects require comparatively long run times on a com-
L ] . puter [10], [11]. This is also valid for sophisticated segmenta-
tion techniques. In addition, some of these techniques require
still further research and development. In the current work, the
. approach is to use the standard EMISAR images without any
further processing in order to focus specifically on the influ-
ence of target signature variations. The images are directly com-
pared to aerial photography. Note that also thematic maps of a
. ] sufficient scale could be used to this end. The Danish Survey
S _' B E— and Cadastre, for example, provides GIS-data showing the po-

’ sition and shape of different objects. These vector layers can be

v[dB], Hedges directly combined with the registered EMISAR images. In the
o 12 A _ _ _ Weoolarizati c. and Lband radar images, the pixels belonging to a certain object are iden-
cé)?ﬁparéd fX$rr?eg(?gg;teannsc;t)lfoggls?sng:h po?nci igffgls(:)rl)r?és to ?r?e ratioagbt’aﬁkfégd and marke_d (this step would also be neFessary in case of
for one image pair. In order to use the same threshold for both hedges &f€-segmented imagery). Any further processing steps may then
roads, the point should lie on the solid line. be optimized for the different object classes of interest, e.g., by
using class dependent thresholds for change detection.

Since for certain object classes, the length scales of inherent
signature variations may be smaller than the SAR resolution
o LI 7 i T ' 7 ' cells, a theoretical prediction of the threshold for separating in-

4\> 10 4\> 10 herent variations from “real” changes is not always possible.

: Then, a better approach is to determine the threshold for a cer-
tain object class directly from the two images used for change
detection. To this end, masks showing the position of different
members of an object class can be used as explained above. A
supervised method, for example, can be applied in which a com-
paratively small number of objects is used and regions of real
changes are excluded. Alternatively, an unsupervised method is
also possible in which the threshold is determined from a large
number of objects. Compared to the total number of pixels be-
longing to one object class, the number of pixels affected by real
changes will be very small and, hence, their influence on the es-
0 —_ timated threshold is not critical.

’ ’ ’ ' If the intensity ratio of object means is chosen in order to find
Correlation Coefficient o, changes between two images acquired at different times, lower
magnitudes can be used for the thresholds. However, this ap-
Fig. 13. Thresholds/'5, at C- and L-band at VV-polarization as a function ofproach is meaningful only for objects which cover a larger area
the observed correlation coefficient,» for object class “buildings. L . . .
so that a sufficient number of pixels can be averaged. Objects be-
longing to one class may be different in size and, hence, the ef-
tree hedges stand out clearly in the radar image (Fig. 1), sofeetive number of looks after averaging is different, too. Object
roads, on the other hand, are more difficult to identify. Urbamean values can be optimally utilized only in order to detect the
areas and also single buildings reveal often rather complicatednoval of already existing objects. If new objects are added to a
signature patterns. Another disadvantage of applying radar iszene, their position has first to be identified in a ratio image ob-
ages in thematic mapping is that the spatial resolution typicaligined on a pixel-to-pixel basis or by moving windows. Changes
is much worse than for optical systems. For example, the aeridithe “background” (usually natural or agricultural vegetation
photography provided by KMS had a resolution of about O&bvers over most of the area) would also be visible, but could in
m, whereas the single-look EMISAR images (scattering matnmany cases be easily identified and separated from the signals
format) have a resolution of 2 m (whereby one-look images ané smaller objects and linear features.
difficult to use because of speckle so that further averaging isin general, an even better spatial resolution of the radar image
needed). Hence, radar might be a useful complementary tpebduct than the one achieved by EMISAR would be of advan-
in thematic mapping, but, at least with present technology,tége for the use in change detection. Technically, this is easier
cannot replace optical systems. to realize at higher frequencies (C- and X-band). Single narrow

In principle, the preprocessing required for change detectiobjects of class “road,” for example, could be located more pre-

can be carried out without any source of information obtained lojsely. Moreover, the signal-to-noise ratio of roads increases at
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shorter radar wavelengths. On the other hand, the inherent sig- surface types is a function 6} or might even change the
nature variations of urban areas would be more severe at higher scattering characteristics (e.g., if, at a given position, a
radar frequencies, if the flight tracks of repeated data acquisi-

tions deviate from one another. Also, because of the decreafed
size of a resolution cell, the number of scatterers inside the ¢
is reduced so that the speckle statistics might change.

A complete evaluation of the potential of SAR images fo
change detection for the objects considered in this paper, i.€%;
hedges, roads, and buildings, includes the assessment of th
tection probability and the false alarm rate. The detection pro

specular reflection occurs only in one of the images).

é‘"this study, specifically linear features (roads, tree hedges)
and small objects (buildings) were considered which are of
Ilarge interest for most mapping agencies. For comparison,
ject classes “urban background” and “forest” were included
érbéhe analysis. From the results of the study, the following
gonclusions can be drawn:

ability must be assessed both for objects which are added ore The utilization of the phase differenggvy improves
removed during the period between two data acquisitions. The
false alarm rate originates from two contributions which are the
detection of changes when the objects are present in both acqui-
sitions and when the objects are missing in both acquisitions,
i.e., with only the background present. Such a complete eval-
uation was outside the scope of this paper. The assessment of
the latter contribution to the false alarm rate, e.g., would require
evaluation of alarge number of different objects, such as the var-
ious crop types or different types of natural vegetation covers.
Therefore, the only the contribution of the selected objects was
considered.

VI. SUMMARY AND CONCLUSIONS

If multi-channel imagery acquired by means of remote
sensing is available for change detection, an interesting ques-
tion is which combinations of the available channels are most
useful. Another problem is to separate “real” changes from
“inherent” variations of the image characteristics. Real changes
are usually man-made (for example, the addition or removal of ,
a building) and relevant for thematic mapping whereas inherent
changes are not of interest for mapping agencies.

For this study, polarimetric signatures at C- and L-band ac-
quired by an airborne SAR-system were available. The useful-
ness of different polarimetric parameters for change detection
was analyzed. Inherent temporal variations in the polarimetric
images were investigated in order to assess their influence on
the change detection performance.

Inherent variations are caused by different factors:

The physical properties of the imaged objects may change
over time in a “natural” manner. The backscattering char-
acteristics can vary significantly for certain object classes
such as vegetation. Another effect is that a redistribution
of scatterers within a resolution cell reduces or even erases
the correlation of the speckle pattern between the two im-
ages.

Technical effects such as errors in “operational” calibra-
tion and inaccuracies in the spatial registration of the
multi-date images have to be considered.

In practice, small deviations between the tracks flown
when acquiring the image data are possible. These de-
viations cause speckle decorrelation, and they change
the radar look angle at a given position on the ground.
For example, an area viewed with different incidence
anglesfd might reveal differences in the backscattered
intensities (since the backscattering coefficient of many

the detection of changes only in very few cases (e.g.,
double bounce reflection for whichyyyy =~ 180 deg
versus surface scattering for whighyvv = 0 deg). The
reason is that the statistical uncertaintieggfr+ within

one object class are usually large compared to differences
of the mean values obgpvy between different object
classes. Also the correlation coefficiesigyvy does not
reveal usable systematic differences between the object
classes. For the investigated classes, the utilization of
the measured intensities has clearly a higher priority in
practical applications compared to the other polarimetric
parameters.

For the linear features (roads and hedges), the intensity
thresholds which have to be set in order to separate
inherent signature variations from real changes do not
differ significantly between C- and L-band. For buildings,
the magnitudes of the thresholds are smaller at L-band
than at C-band. A significant signature contrast between
buildings and urban background, however, exists only at
C-band at co-polarization.

At larger incidence angles>@35 deg), the measured in-
tensities of the linear features are only weakly sensitive
to variations of the incidence angle at a certain position.
This means that images from different flight tracks can be
combined provided that the distances between the tracks
are within a given limit which depends on the scattering
characteristics (volume scattering, smooth or rough sur-
face scattering). For urban areas, the range of acceptable
deviations is much smaller, in particular at shorter radar
wavelengths.

The magnitude of thresholds depends on the average
intensity ratio and on the number of looks of the radar
image. Because of inherent temporal variations of the
average intensity ratio which are different for different
object classes, change detection can be improved by
fixing the thresholds separately for each class.

Only for object class “forest,” values of the thresholds
can be evaluated theoretically independent of the observed
texture (which indicates that scattering properties are lo-
cally constant). For object classes “hedges,” “roads,” and
“buildings,” the values of the thresholds have to be in-
creased compared to the theoretical predictions. The in-
terpretation is that inherent signature variations occur on
scales smaller than a multi-look resolution cell. Urban
areas reveal strong local variations of the average intensity
ratio so that theoretical models which are based on the as-
sumption of stationary signal variations cannot be used.
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This study has shown that radar images are useful complemerjig] w. Dierking, A. Carlstrém, and L. M. H. Ulander, “The effect of inho-
for updating thematic maps. Furthermore, the study has pro- mogeneous roughness on radar backscattering from slightly deformed

sea ice,"IEEE Trans. Geosci. Remote Sensiugl. 35, pp. 147-159,

vided hints for practical implementations of change detection 3., 1997,
techniques. Future research should address whether radar ifps] E. Rignot and R. Kwok, “Characterization of spatial statistics of dis-
ages of higher spatial resolution improve change detection, as ibuted targets in SAR datalt. J. Remote Sensingol. 14, no. 2, pp.

345-363, 1993.

well as focus on _the 5|m_ultane(_)u_s utilization of radar |nterfer-[16] 1. R. Joughin, D. P. Winebrenner, and D. B. Percival, “Probability density
ometry. Another interesting topic is to study the change detec-  functions for multilook polarimetric signaturesiEEE Trans. Geosci.
tion performance for combinations of different polarimetric pa-__ Remote Sensingol. 32, pp. 562-574, Mar. 1994.

rameters.

[17] R.Touzi, A. Lopes, J. Bruniquel, and P. W. Vachon, “Coherence estima-
tion for SAR imagery,”IEEE Trans. Geosci. Remote Sensingl. 37,
pp. 562-574, Jan. 1999.

[18] J. S. Lee, K. W. Hoppel, S. A. Mango, and A. R. Miller, “Intensity and
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