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Change Detection for Thematic Mapping by Means of
Airborne Multitemporal Polarimetric SAR Imagery

Wolfgang Dierking and Henning Skriver

Abstract—The paper addresses the detection of changes in mul-
titemporal polarimetric radar images, focusing on small objects
and narrow linear features. The images were acquired at C- and
L-band by the airborne EMISAR system. It is found that the radar
intensities are better suited for change detection than the correla-
tion coefficient and the phase difference between the co-polarized
channels. In the case of linear features, there is no obvious differ-
ence between C- and L-band, and slight variations of the flight
tracks are acceptable at look angles larger than 35 degrees. Theo-
retical detection thresholds are evaluated from the statistical distri-
bution of the intensity ratio due to speckle. For the linear features
and for urban environments, the observed thresholds are larger
than the theoretical predictions. This is interpreted as an effect of
radar intensity variations on length scales smaller than the spatial
image resolution. The signature of urban areas is very sensitive to
deviations between the flight tracks, and the sensitivity is larger at
C-band than at L-band. On the other hand, the intensity contrast
between buildings and the urban background is smaller at L-band
and larger at C-band. For change detection, thresholds may have
to be chosen separately for each object class because the intensity
ratios of different object classes vary differently as a function of
time.

Index Terms—Change detection, polarimetry, synthetic aper-
ture radar (SAR).

I. INTRODUCTION

DURING the last decade, the problem of change detection
by means of synthetic aperture radar (SAR) intensity im-

ages has been treated by several authors with focus on different
aspects. The reduction of speckle and the co-registration of the
multitemporal images were pointed out as major topics for the
development of a successful detection scheme [1]–[4]. Instead
of working with data representing the difference of two images
as it is usually done in optical remote sensing, the ratio between
two intensity images is preferable because of the statistical char-
acteristics of radar data [5], [6]. The utilization of SAR images
in change detection was assessed in the case of both spaceborne
[3]–[7] and airborne sensors [1], [2], focusing on different land
cover classes such as agricultural environments, forests, and
urban areas. Specifically Weydahl [7] dealt with the identifica-
tion of small objects (i.e., objects covering only a few pixels)
in ERS-1 scenes with the aid of SPOT and Landsat TM images,
and discussed examples where physical changes of these objects
were reflected in the SAR data.
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The optimal prerequisite for change detection by means of
SAR is that the images to be compared are measured with the
same sensor setup (same frequency, polarization, and illumina-
tion geometry) and generated with identical processing param-
eters. In practice, small differences between the flight tracks
cause slight changes of the illumination geometry and, hence,
variations in the signatures. Other technical problems, which
might contribute to the observed signature variability, are errors
in the image calibration, and inaccuracies of the image co-reg-
istration. Even if the technical effects are negligible, several
objects of interest reveal inherent temporal signature changes,
which are not subject of map updates. Intuitively this is to be ex-
pected, for example, for many types of natural vegetation (e.g.,
[2], [8]). The reason is that the dielectric properties and the scat-
tering characteristics of many natural objects change as a func-
tion of time.

The objective of this work is to assess the possibility of uti-
lizing multitemporal polarimetric images for change detection
of object classes which are relevant for updating thematic maps.
Small objects (such as buildings) and narrow linear features
(such as roads) are considered which usually are of great in-
terest to the mapping agencies. The paper deals specifically with
two items: Firstly, it is studied how useful different polarimetric
parameters and radar frequency bands are with regard to the de-
tection of changes. Secondly, the separation of signature varia-
tions due to man-made changes (in most cases the addition or
removal of an object to the scene), on the one hand, and due to
speckle and natural scattering variations (as observed for vege-
tation, for example), on the other hand, is addressed. Airborne
SAR data are used which have a better spatial resolution than
spaceborne data and hence are better suited for the utilization in
thematic mapping. For the project, high-resolution aerial pho-
tographs were available which made it easier to identify even
very small objects in the polarimetric images.

The data used in this work and their preparation for the anal-
ysis are described in Section II. The section also includes an
assessment of the relative calibration accuracy and comments
the choice of the object classes. In Section III, the average sig-
natures and the spatial signature variations of the different ob-
ject classes are evaluated. The signature averages are the starting
point for analyzing the image-to-image signature stability of
each of the object classes as well as their signature contrast rel-
ative to one another. The results presented in Section III reveal
also the contributions of natural variations of the radar signature
in comparison to the contribution of speckle. The usefulness of
the correlation coefficient and the phase difference between the
co-polarized SAR channels is discussed. Section IV deals with
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TABLE I
DATA CHARACTERISTICS OFCOVARIANCE MATRIX DATA

temporal signature changes of each object class. A theoretical
model of the statistical distribution of the intensity ratio is uti-
lized in order to understand and to predict the differences ob-
served between the individual SAR image pairs. Thresholds are
determined from the data so that only a certain amount of in-
herent temporal variations (due to speckle and natural signature
variations) are classified as real changes. These thresholds are
compared to the ones predicted theoretically. The outcome of
the study in a broader context is discussed in Section V, and fi-
nally, the summary and conclusions are presented in Section VI.

II. M ETHODOLOGY

A. Data Preparation

The images used in this project were acquired by the Danish
airborne EMISAR (a detailed description of the EMISAR can
be found in [9]). A summary of the image properties is given
in Table I. The test site is located in Jutland, Denmark, around
the Research Center Foulum. The imaged area is a typical
agricultural environment, consisting of agricultural fields,
farm buildings, and villages with detached houses and small
industrial complexes. The most prominent linear features in the
radar scenes are tree hedges which form obstacles for the wind
and reduce erosion (see Fig. 1).

The data were acquired simultaneously at C- and L-band.
The image sequence covers a time interval of five months from

March to August 1998. At L-band, an additional image from
June 1999 was available for this study. The nominal flight head-
ings were identical for all flights. The local incidence angles at
fixed ground range positions, however, were slightly different
due to variations of the flight tracks. The images from April,
May, July and August 1998, and June 1999 were measured with
the same illumination geometry and are used as references. Rel-
ative to the reference flight track, the two tracks flown in March
were shifted horizontally, and the track in June was flown at a
larger altitude. At reference incidence angles of 35 deg and 60
deg, the deviations for the June 98 scenes are about 1 deg, and
for the March scenes, the deviations are 5.8 deg at 35 deg and
2.2 deg at 60 deg.

The images are in the covariance matrix representation which
is an operationally provided EMISAR data product. The covari-
ance matrix elements are given in ground range projection with
a pixel spacing of 5 by 5 m. The data are low-pass filtered such
that the effective number of independent looks is constant over
ground range. Therefore, the correlation length between neigh-
boring pixels decreases, and the dimension of the effective spa-
tial resolution cell increases from the near- to the far-range side
of the image. From the variance-to-squared-mean ratio (VMR)
of large homogeneous areas within the images, the effective
numbers of looks were estimated. These are at C-band
and at L-band, the difference is due to different data ac-
quisition and processing parameters. The effective spatial res-
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Fig. 1. Radar image over a region within the test site which is a black-and-white representation of an RGB image showing the intensities at HV-, HH-, and
VV-polarization. The two smaller boxes show parts of an aerial photograph from the same area. Most of the prominent bright lines in the radar image are tree
hedges (shown in the lowermost twoin-situ photographs), whereas roads appear as dark lines. Radar images were geometrically corrected using a DEM. They
and the aerial photographs were registered to an internal radar mapping system. The test sites consists of agricultural fields and farm houses (in-situphotographs,
upper row, left), and small villages with detached houses (in-situ photographs, upper row, right).

olution is roughly 8 m at mid-range. The speckle noise is suf-
ficiently reduced for the identification of smaller objects in the
image.

From the covariance matrix elements, the backscattering co-
efficients , and the correlation coefficient be-
tween the co-polarized channels (magnitude and phase
difference ) are calculated (see, e.g., [8] for details) and

used in subsequent analyzes. The polarization is indicated by
the indices, where “V” denotes vertically, and “H” horizontally
polarized radar waves. Only the correlation between the co-po-
larized channels VV and HH is considered, since the correlation
between cross- and co-polarized channels (e.g., HH and HV or
VV and VH) is very low for many targets at L-band, and can be
neglected at C-Band [10, Figs. 11.1 and 11.2].
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Dealing with objects only a few pixels in size may require
adaptive speckle filters which preserve more or less the fine
structural details in the radar image, e.g., [10], [11]. A number
of sophisticated speckle reduction techniques is available which
have to be considered in devising a robust change detection
scheme for practical use. However, they may alter the signature
mean and statistics in different manners, and they require rela-
tive long execution times on the computer. In order to get results
not biased by a particular speckle reduction technique, the data
used in this study were not filtered further than the usually pro-
vided operational image products.

All radar images and aerial photographs were registered to
an internal radar mapping coordinate system [12] whereby the
registration procedure included the correction of geometric and
radiometric distortions using a digital elevation model (DEM).
The DEM was generated from interferometric EMISAR data ac-
quired in 1997. Although the registration to a DEM is not nec-
essary for change detection (since all radar data were acquired
at an almost identical imaging geometry), it was nevertheless
carried out in order to combine the polarimetric images directly
with aerial photographs, topographic maps, and thematic vector
layers representing different object classes. The radar images
were registered to one another with an r.m.s.-accuracy of better
than one pixel [12]. Nearest neighbor interpolation was used in
the process of resampling. Although, in general, strong aliasing
and blurring effects are associated with the nearest neighbor
method (e.g., [13]), it was regarded the optimal interpolation
scheme for the data available in this study. The reasons are that

• the spatial resolution in the DEM data and the polarimetric
images are identical,

• and the angles between the interferometric and polari-
metric flight tracks are very small.

Hence, only a small number of pixels present in the original
image was omitted or used twice in the resampled image. On
the other hand, the effective spatial resolution was not reduced
which was essential for the preservation of small details in the
resampled scenes.

B. Image Calibration

For a set of selected EMISAR scenes acquired at identical
illumination geometries, Christensenet al. [9] examined the
map-to-map calibration stability and found that it was0.1 dB
at C-band and 0.5 dB at L-band (standard deviation, averaged
over range). Unpublished tests by Dierking revealed that the
peak-to-peak variations at single calibration targets are on the
order of 1 dB at C-band and 1.5 dB at L-band for the mea-
sured intensities. The corresponding variations of the phase dif-
ference, , between the like-polarized channels is5 deg
at C-band and 10 deg at L-band. These tests were carried out
using several data sets which were acquired with different il-
lumination geometries so that the local incidence angles at the
positions of the calibration targets were different.

In order to assess the calibration stability of the images used
in this study, the average signature of forests obtained from the
different images were compared as a function of the local inci-
dence angle. For incidence angle intervals of 5 deg in width, all
pixels belonging to marked forest areas were pooled, and mean

and variance were calculated. The forests used for checking the
calibration stability consist predominantly of coniferous trees
which reveal only small signature changes in the period from
April to August.

The example shown in Fig. 2(a) is the backscattering co-
efficient at VV-polarization. It should be noted again that the
same areas were imaged with slightly different incidence angles
which is reflected in Fig. 2(a) and also in the following plots.
The deviations between the intensities at VV-polarization mea-
sured over forest in the different images are at maximum about
2 dB, that is, they are well within the calibration tests mentioned
above. A peculiarity at L-band is the large difference of the av-
erage intensities between the two data acquisitions in March.
The processing log of the data was carefully examined, in par-
ticular with regard to calibration, but an explanation for this dif-
ference could not be found.

The temporal variations of the average phase difference
between the HH- and VV-polarized channels are depicted in
Fig. 2(b). At C-band, the maximum observed deviation between
single images is slightly larger than 15 deg. At L-band, the
corresponding value is less than 10 deg, with the exception of
incidence angles 52 deg where the phase differences from
March differ more clearly from those of the other months. In
comparison to the calibration tests mentioned above, there is
again no significant difference.

C. Object Classes

In this work, three object classes are considered, namely
buildings, roads, and tree hedges which are examples of objects
regularly monitored by local authorities. These objects are
comparatively small or narrow in the radar images. Buildings
comprise only a few pixels, and roads and hedgerows are only
1–3 pixels wide. Hence, these objects are often difficult to
detect using radar images alone. Pixels in the radar images
belonging to certain objects were identified by comparison
with aerial photography. Straight line segments on roads and
hedgerows as well as pixels covering buildings were marked.
Usually, small or linear objects are surrounded by extended
targets such as vegetated surfaces. For detecting changes
of small and linear objects, the signature characteristics of
neighboring extended targets may have to be considered as
well. Investigations of temporal changes of extended targets
can be found, e.g., in [2], [5]–[8]. In this study, only forest areas
and the urban background (which is the area within a village
not covered by buildings) were included as additional object
classes, the former as sort of a reference. Information about
the signature characteristics of the urban background is (to the
authors’ knowledge) not or only sparsely available.

III. SIGNATURE CHARACTERISTICS OFDIFFERENTOBJECT

CLASSES

There are two major factors which contribute to the perfor-
mance of any change detection technique applied to SAR data:

• the inherent temporal signature variability of an object
class due to speckle and due to natural variations of the
physical characteristics of the imaged scene,
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(a) (b)

Fig. 2. (a) Backscattering coefficients of forest at C- and L-band, VV-polarization, evaluated for different ground range intervals from images acquired at different
times. Note that the radar signatures were determined for the same areas in all images. The number of averaged pixels for each area is larger than 28 000 (except
for the near-range area, where the number of pixels is 2560), so that the effect of speckle can be neglected. (b) Phase differences between HH- and VV-polarized
signals of forest at C- and L-band, evaluated in parallel to the backscattering coefficients shown in Fig. 2(a).

• the contrast of the average signature between an object and
its background or another object which replaces the first
one.

The signature contrast may determine whether or not the adding
or the removal of a smaller object can be recognized in the radar
image. A road, e.g., may be built through a vegetated area. The
road is recognized as a change in a radar image pair if its sig-
nature is different compared to the vegetation (the background).
On the other hand, if, e.g., a building is pulled down, the sur-
rounding vegetation will not necessarily spread out during the
time span between data acquisitions over the place where the
building was located.

In this section, the average signatures and the spatial signa-
ture variance of the different object classes are evaluated for all
used SAR scenes. Inter-comparisons of the average values of
the different polarimetric parameters are helpful in order to as-

sess the temporal signature stability and object class contrasts.
Natural signature variations within one scene relative to speckle
are examined.

A. AverageSignatures

The mean signatures of the different object classes, plotted
for each acquired data set, are a useful indicator of general large
scale changes. Since a large number of pixels is averaged, the
influence of speckle is negligible or at least very small.

The average intensity variations of hedges as a function of the
incidence angle, shown in Fig. 3(a), are slightly larger than those
of forests. This can also be recognized by eye in the radar im-
ages where a number of hedges show temporal signature varia-
tions. Except for small incidence angles at C-band (March data),
there is no significant decrease of the backscattered intensity as
a function of incidence angle which indicates that volume scat-
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(a) (b)

Fig. 3. (a) Backscattering coefficients of hedges at C- and L-band, VV-polarization. The number of averaged pixels is larger than 900. (b) Backscattering
coefficients of roads at C- and L-band, VV-polarization. The number of averaged pixels is larger than 170 so that the effect of speckle is small.

tering is dominant at larger incidence angles. This is consistent
with a relatively large cross-polarization intensity which lies be-
tween 17.3 dB and 13.3 dB at C-band, and 14.3 dB and

18.1 dB at L-band in the incidence angle range between 35
and 60 deg. The temporal signature evolution shown in Fig. 3(a)
does not indicate any clear correlation with the season, i.e., with
the development of the leaves.

Roads reveal a significantly lower average intensity and a
slightly larger signature variation between the different images
than forests or hedges [Fig. 3(b)]. The general tendency of a de-
creasing intensity with increasing incidence angle is expected
for surface scattering. At C-band, however, the intensities mea-
sured in May and June increase at larger incidence angles. In
the interpretation of the signatures, it has to be considered that
the roads at the test site are relatively narrow. Several pixels
contain signature contributions of the vegetation adjacent to the
road. The physical characteristics of the vegetation change from

month to month which is reflected in the observed signature
variations of the class “roads.” This interpretation is supported
by the observation that the signature difference is small between
June 1998 and June 1999 [Fig. 3(b)].

The backscattering coefficient of buildings varies much more
[Fig. 3(c)], and it does not show any clear correlation with the
incidence angle, , which is not surprising. The backscattered
intensity observed at a certain radar incidence angle depends
on the occurrence of specular facets, dihedrals or other struc-
tural elements as part of the buildings and the urban background,
and on their relative orientation to the radar. Slight variations of
the radar imaging geometry, i.e., of the incidence and azimuth
angle, might cause considerable changes of the measured sig-
nature. That explains why the signature variation of buildings,
which are stable objects, can be larger than the signature varia-
tion of more changeable object such as hedges. At C-band, the
shape of the curves obtained for the different data ac-
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(c)

Fig. 3. (Continued.)(c) Backscattering coefficients of buildings at C- and
L-band, VV-polarization. The number of averaged pixels is larger than 525.

quisitions is highly variable. At L-band, all curves have a similar
shape, whereby the two March acquisitions are shifted by 3–5
deg toward smaller values of(because of a different illumina-
tion geometry, see Section II). Only at 55 deg (March: 52 deg),
there is a large deviation between the data from March and from
the other months. Since for given positions on the ground, the
local incidence angles differ between the March scenes and the
other images, the intensities backscattered from these positions
are also different. The difference of the intensity levels between
the two March data acquisitions which is almost constant over
the whole incidence angle interval [Fig. 3(c)] compares well to
the 2 dB difference observed for forests in Fig. 2(a).

The correlation coefficients, and the phase differ-
ences, , between the HH- and VV-polarized channel
are the parameters which are gained from a fully polarimetric
SAR. The averages of as a function of incidence
angle vary at maximum by 30 deg (for object class “roads” at

L-band) between the different images (not shown). The largest
difference of the average values of is observed for
object class “roads,” too, and is on the order of .

The backscattered intensities of the data sets from March and
June 1998, which were acquired with slightly different illumi-
nation geometries, do in most cases not deviate much from the
signatures observed in the reference images (1998: April, May,
July, August; 1999: June). The only significant exception is ob-
served for buildings at L-band at the incidence angle interval of
52.5–57.5 deg [Fig. 3(c)] as was already mentioned above. Since
volume scattering is dominant for hedges, the sensitivity of the
backscattered intensity to variations of the incidence angle is
only weak over the SAR swath (incidence angle interval from
35 deg to 60 deg) [Fig. 3(a)]. The observed sensitivity for roads
is also comparatively weak [Fig. 3(b)], since the pixels marked
as belonging to object class “roads” may include a contribution
from the vegetation adjacent to the roads. In general, the sensi-
tivity to the incidence angle is larger for surface scattering than
for volume scattering, and it is larger for smoother surfaces.
Hence, changes of the illumination geometry due to varying
flight tracks should be kept smaller for surface scatterers than
for volume scatterers. Urban environments, with their complex
reflections mechanisms, are in general very sensitive to changes
of the illumination geometry.

B. Signature Variations

The signature variations are due to speckle and texture. Tex-
ture is a measure of the intrinsic (orin-situ) variability of the
backscattering coefficient (which would also be observed in
the absence of speckle). It is hence related to spatial inhomo-
geneities of the scattering surface and/or volume, e.g., [10], [14].
The term “texture” as used here differs from its usual defini-
tion. Here, it denotes also spatial variations of the mean values
of and , and it refers both to the spatial varia-
tion of the backscattering coefficient within the area covered by
a certain object (such as a hedge) as well as between different
objects within one class. Texture is a function of frequency, in-
cidence angle, polarization and spatial resolution of the imaging
sensor. A useful parameter for the investigation of the inherent
intensity variability caused by speckle and texture is the vari-
ance-to-squared-mean ratio (VMR) , where is the
variance of the received power, and denotes the expected
value. In this paper, the power is modeled by [15]

(1)

where is the power backscattered from a distributed target,
is the texture random variable,is the speckle random variable,
and is the system noise power.

Using the image model defined by (1), one obtains the VMR
as a function of the effective number of independent looks,,
the power signal-to-noise ratio,SNR, and the variance of texture,

[15, eq. 3]:

(2)

For all images used, the VMR-values were evaluated as a func-
tion of the incidence angle by pooling all pixels belonging to
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TABLE II
(a) VMR RANGES OFDIFFERENTOBJECTCLASSES. OBSERVEDMINIMUM AND MAXIMUM VMRS OUT OF THE7 (8) IMAGES AT C-BAND (L-BAND), COMPRISING

ALL INCIDENCE ANGLE INTERVALS. (b) STANDARD DEVIATIONS OF THE CORRELATION COEFFICIENT AND THEPHASE DIFFERENCEBETWEEN THEHH- AND

VV-POLARIZED CHANNEL. MINIMUM AND MAXIMUM STANDARD DEVIATIONS OBSERVED IN THE7 (8) IMAGES AT C-BAND (L-BAND), COMPRISING ALL

INCIDENCE ANGLE INTERVALS. (NOTE THAT CORRELATION COEFFICIENT ANDPHASE DIFFERENCEWERE EVALUATED FOR EACH PIXEL IN THE RADAR IMAGES

BEFORE THESTANDARD DEVIATIONS WERE DETERMINED FOREACH OBJECTCLASS AS A FUNCTION OF INCIDENCE ANGLE)

(a)

(b)

the selected object class within an incidence angle interval of 5
deg width. The results are listed in Table II(a). For the EMISAR
covariance matrix product, the number of independent looks is

at C-band and at L-band. If the backscattering
coefficient of a distributed target in the EMISAR scene is con-
stant (that is, ), the VMR is 0.09 at C-band and 0.11 at
L-band. The lowest VMR observed in the analyzed data set is
0.15 at C-band, and 0.18 at L-band (forest areas, cross-polar-
ization, see Table II). Since the number of pixels from which
the VMR was evaluated is larger than 170 in all cases, the esti-
mation error of the VMR is negligible (see [15, appendix A]).
Hence, the contribution of texture has to be considered for all
object classes.

The values given in Table II(a) indicate that the signatures of
the selected object classes are not homogenous, that is, natural
variations of the backscattering coefficient (within one image)
have to be considered. For change detection, it is hence impor-
tant whether or not the natural spatial signature variation of an
object remains temporally stable. By means of (2), it is pos-
sible to calculate the texture variance. In particular for roads,
the signal-to-noise ratio in the EMISAR images can be as low
as 10 dB at C-band which means that its influence on the VMR
cannot be neglected. The VMR can be extremely large in the
case of buildings and urban background due to the mixture of

very different scattering mechanisms such as slightly rough sur-
face scattering, on the one hand, and mirror and double bounce
reflections, on the other hand. Note that (2) is strictly valid only
for distributed targets, that is, for SAR resolution cells con-
taining a larger number of randomly distributed scatterers, none
of which is dominant. Urban areas are a mixture of pixels rep-
resenting distributed targets and point targets (the latter are tar-
gets dominating the return in a resolution cell). The radar re-
sponse from sufficiently large point targets (which appear often
very bright in SAR images) does not exhibit speckle. In the an-
alyzed scenes, pixels representing point targets make up only a
very small fraction of the total area covered by villages but they
have a very strong effect on the value obtained for the VMR be-
cause of the very large backscattered intensities relative to the
distributed target responses.

The correlation coefficient, , and the phase difference,
, are not affected by texture provided that the length

scales of the signature variations are larger than the multi-look
resolution cell [16]. Hence, if theoretically predicted and ob-
served variations of and are different, this indi-
cates the influence of short-scale changes of the scattering char-
acteristics. The standard deviation of depends on the
correlation coefficient [10, p. 344], [16]. The estimate
of the correlation coefficient is strongly biased for small “true”
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(a) (b)

Fig. 4. Backscattering coefficients at VV- and HV-polarization and variance-to-squared-mean ratio (VMR) of different objects, obtained from 7 different EMISAR
images. Open circles are used for hedges, open triangles for forest. The incidence angle range in the reference images is 52.5–57.5 deg. All pixels belonging to
an object class within the incidence angle interval were pooled before calculating average backscattering coefficients and VMR’s. Number of pixelsare 2016
(hedges), 539 (roads), 31 359 (forest), 1885 (buildings), and 13 400 (urban background). (a) C-band. (b) L-band.

values of and a small number of looks [10, p. 345]; the
estimated value is too large in this case. For example, if the
number of looks is , and the true correlation coefficient is

, one obtains for the estimate. The
correlation coefficients observed for the selected object classes
vary between 0.3 and 0.7, whereby the largest values were found
for roads. From the probability distribution function given in
[10, p. 345], the standard deviation of the correlation coefficient
is calculated. Using at C-band, it lies between 0.11 and
0.13, and with at L-band, between 0.12 and 0.15. Here, a
possible bias at low values of was considered by taking

as the lowest true value. Most of the minimum
standard deviations of listed in Table II(b) are smaller
for C-band than for L-band, as is expected from theory. On the
other hand, some of the maxima of the measured standard de-
viations of are significantly larger than the theoretical
values, in particular for buildings at C-band. The standard devi-
ation of due to speckle alone was evaluated numerically
from the probability distribution function given in [10, p. 344].
It is 104 deg for a “true” correlation coefficient of ,

and 13.6 deg for . The standard deviations eval-
uated for the used images are within this range, a significant
texture component cannot be identified. With regard to change
detection, it is important to note that averages over single in-
cidence angle intervals revealed estimates of as low as
0.4 (0.5 for roads) at C-band and between 0.3 and 0.4 at L-band
for all object classes. This means that the phase difference varia-
tions due to speckle alone can be considerable. If two images are
acquired at different times, the statistical uncertainty of
in each of the two images will in many cases be very large com-
pared to the differences of average phases between dif-
ferent object classes.

C. Comparison of Signatures of Different Object Classes

The average signatures of different objects together with their
VMR’s are shown in Figs. 4 and 5, focusing on a particular in-
cidence angle interval in the reference scenes (it is considered
that the same area lies in different angle intervals in March and
June). It is worth to note that the average intensities of build-
ings and the urban background do not differ much at L-band.
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(a) (b)

Fig. 5. Correlation coefficient and phase difference between HH- and VV-polarized channels, shown for different objects. The results were obtainedin the same
way as described in the caption of Fig. 4 after correlation coefficient and phase difference had been evaluated for each pixel. (a) C-band. (b) L-band.

At C-band, on the other hand, there is a difference of about 5
dB at VV-polarization [Fig. 4(a)]. This has to be considered for
detecting the adding or removal of a building in an urban envi-
ronment.

For change detection, the signature variations (due to speckle
and temporal changes of backscattering characteristics) of both
the object (which is added to or removed from the scene) and
the “background” (which is covered by the added object or ex-
posed after removal of the object) are of importance. A com-
prehensive analysis of the radar intensity contrast between all
object classes relevant for change detection related to thematic
mapping is beyond the scope of this paper. In an agricultural
environment as it is typical for most parts of Denmark (and for
large parts of Europe), object classes of interest for thematic
mapping are often embedded in a background of agricultural
crops. The polarimetric signatures of the latter (intensities at co-
and cross-polarization, correlation coefficient and phase
difference ) are discussed in detail in [8]. The backscat-
tered signatures of agricultural crops are highly variable over the
period of one year. This requires that the image pair to be uti-
lized for change detection is chosen such that the signatures of

a certain agricultural crop are similar in both images. Moreover,
since signatures vary considerably dependent on crop type, the
intensity contrast between agricultural crops, on the one hand,
and hedges, roads, and buildings, on the other hand, can only be
maximized locally but not over the whole image.

Fig. 5 is an example where the phase difference and the cor-
relation coefficient hardly contribute to the detection of changes
because the observed differences between the object classes are
statistically not significant, considering the magnitude of the
standard deviation. If the objects of interest are embedded in a
background of agricultural crops, the phase and correlation con-
trast between target and background may be large enough only
at a few occasions dependent on crop type and season as can be
deduced from the signatures presented by Skriveret al. [8].

The presented examples demonstrate that, all in all, the di-
rect use of the correlation coefficient and the phase difference
between the like-polarized channels is not “first choice” in a
change detection algorithm for the object classes considered
here but has a clearly lower priority. Therefore, the focus in the
next section will be mainly on the measured intensities at the
different polarizations.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 17,2010 at 06:11:30 EDT from IEEE Xplore.  Restrictions apply. 



628 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 40, NO. 3, MARCH 2002

IV. TEMPORAL SIGNATURE VARIATION

This section deals with the temporal changes of object class
signatures as it is observed in a sequence of multi-date SAR
images. Besides “relevant” changes of the radar signature
at a given position due to adding, removing or changing
an object, the signature might vary because of the inherent
natural variations of scattering characteristics and dielectric
properties. These variations are modeled as texture and speckle.
Technical factors to be considered are slightly varying imaging
geometries, misregistration, and calibration errors which can
be minimized by adequate measurement and data processing
techniques. For the used data set, the magnitude of possible cal-
ibration variations is small but not negligible as is indicated by
Fig. 2(a) and (b). The effect of misregistration is more difficult
to assess because of the random signature variations between
different images. A thorough inspection of the positions of the
marked objects in the registered polarimetric images did not
reveal any recognizable deviations. Hence, it can be assumed
that “pseudo”-temporal signature variations of individual pixels
due to inaccuracies in the registration are minimized as much
as technically possible. The change of the local incidence angle
at a given position is explicitly considered in the following
subsections.

A. Image Ratio and Correlation

When dealing with speckled data, the ratio of two intensity
images is better suited for change detection than the difference
[5], [10, pp. 385–388]. For a speckled, but otherwise homoge-
neous region (texture ), the estimated intensity ratio

is distributed according to [16], [10, p. 346]:

(3)

where is the probability density function (PDF),is the true
intensity ratio, is the number of looks, is the gamma func-
tion, and is the complex correlation coefficient between the
two images which is estimated using [5]:

(4)

where and are the SAR complex amplitudes measured in
image 1 and image 2, and indicates averaging over a window
comprising an appropriate number of pixels. Equations (3) and
(4) are still valid in the presence of texture, provided that the
backscattering coefficient within one-look pixel is constant
[16], [17].

The correlation as defined by (4) is influenced by thermal
noise, the antenna baseline separation, and temporal changes of
the scattering characteristics (due to variations of the physical
properties and/or positions of the scattering elements). The PDF
given by (3) is useful for quantifying theoretically how often the
ratio exceeds a selected threshold [10, ch. 12.4]. For objects
where the average intensity does not change between the two
images, the probability of classifying inherent intensity varia-
tions as a real change is obtained for a given threshold ifis

Fig. 6. The observed power correlation coefficient� as a function of the
texture variance� for different combinations of� and� . The curves
were evaluated using (5) assuming that the number of looks isL = 11; � =

� , and the SNR is large.

set to one (“false alarm rate”). This requires that the calibration
error is negligible.

Since the used data are in the covariance matrix format, only
the correlation between the received power levels,, can be
calculated which in the absence of texture is [5], [18].
In its most general form, the correlation coefficient obtained
from the intensity data is, using (1) as a model for the received
power:

(5)

where is the number of looks, is the corre-
lation between the textures in images 1 and 2,is the texture
variance andSNR is the signal-to-noise ratio in image. If the
signal-to-noise ratio is very large, and , (5) is iden-
tical to (20) presented by Rignot and van Zyl [5]. It is noted that
the correlation coefficient is independent of the number of
looks [18]. Results for as a function of texture variance are
shown in Fig. 6. From the figure and from (5) it is clear that the
texture component has a strong influence on the magnitude of

, in particular, if is very large. In this case, cannot be
directly used in (3). For the presented data set, the VMRs found
for the different object classes [Table II(a)] reveal that the tex-
ture component is significant in most cases.

The coherenceneeded in (3) can be evaluated from the com-
plex amplitude (magnitude and phase) image even if the signa-
ture variations include a texture contribution, provided that the
length scales of the signature variations are larger than the SAR
resolution cell [17]. However, complex amplitude data could
not be utilized within the time frame of the project. The com-
plex amplitude may be, in general, of interest for a pixel-to-pixel
change detection approach. If the power magnitude within a res-
olution cell does not vary with time, but the effective phase (for
example, as the result of a relative motion of the scatterers), the
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complex correlation between image 1 and image 2 reflects this
change, but not the power correlation coefficient . Since, on
the other hand, such phase variations are rarely of importance
in the type of change detection discussed here, the utilization
of the intensity image is sufficient as long as the knowledge of
coherence is not required explicitly in the change detection
algorithm.

If the scatterer configuration within a resolution cell does not
change as a function of time, the correlation is determined
only by the system noise contribution and the antenna baseline
(antenna separation). If a large signal-to-noise ratio is assumed,
the difference between the flight tracks (which determines the
baseline) is the dominant factor. The spatial baseline decorrela-
tion coefficient is [15], [19]

(6)

where it is assumed that the baseline,, is horizontal, is the
spatial resolution in ground range,is the range distance to the
target, is the incidence angle, andis the radar wavelength. If
the target lies on the plane to which the flight altitudeis ref-
erenced, the range is . The baseline decorrelation
depends strongly on the range position within the illuminated
swath, and on the radar frequency. It is larger at near range and
at shorter radar wavelengths.

The EMISAR navigational system permits to hold the air-
plane within a few meters [9]. Even if one takes variations in
the aircraft attitude (pitch, yaw) into account, it can be assumed
that the image pairs acquired with nominally identical illumi-
nation geometries (April–May, July–August) reveal correlation
coefficients significantly larger than zero (in particular at
far range). The reference images (April, May, July, August, and
June 1999) were acquired at an altitude of m. The
single-look slant range resolution for the used EMISAR data is
2 m. The ground range resolution is obtained from [m].
The critical baseline ( ) is 113 m at deg and
753 m at deg at C-band ( m). The corre-
sponding numbers at L-band ( m) are 496 m and 3304
m, respectively. The horizontal flight track shift of the March
scenes relative to the reference images is about 1080 m. Hence,
the correlation between image pairs March–April is zero
over the whole swath at C-band and over a stripe on the near
range side of the swath at L-band. If the baseline is vertical, the
term ( ) has to be replaced by ( ). In this case, the
minimum for the critical baseline is at deg. It is 162
m at C-band and 681 m at L-band. The vertical offset for the
June 1998 flight track is 277 m, which means that for image
pairs May–June and June–July, the speckle patterns at C-band
are completely decorrelated in the near range part of the image.

From the images, an estimate of the correlation coefficient
of the different object classes was evaluated using the re-

lationship [10, p. 386]

(7)

Fig. 7. Range of observed correlation coefficients� for different object
classes, evaluated using (6). The range intervals shown to the left of the dashed
lines are for C-band, the ones to the right for L-band. The order of the depicted
ranges is VV-, HH-, and HV-polarization.

where is the variance, and denotes the magnitudes
of power of a group of adjacent pixels belonging to a certain
object class in image. If the variance of the difference –
is identical to the sum of the variances of and , the in-
tensities in image 1 and image 2 at a given position are uncor-
related ( ). The estimate of the correlation coefficient

was first computed as a function of incidence angleby
pooling all pixels of an object class within a 5 deg wide inci-
dence angle interval. However, a clear and systematic sensitivity
of to was not found. Hence, all pixels in the image be-
longing to the object class were used to calculate the variances in
(7). The results are shown in Fig. 7. For the distributed targets
(hedges, roads, and forests), the correlation can be as large as
0.6. The very low correlation coefficients for classes “buildings”
and “urban background” at C-band are obtained for the image
pairs March–April, since the shorter radar wavelength is more
sensitive to changes in the illumination geometry. At L-band, on
the other hand, the largest values of are found for buildings
and urban background which indicates that, at the longer wave-
length, urban environments may reveal a more stable signature
as a function of time than the distributed targets.

B. Theoretical Prediction of Thresholds

Having dealt with the theoretical fundamentals which have
to be considered in the analysis of intensity changes in SAR
images, one can now turn to the practical applicability of the
mathematical models. In Fig. 8, theoretical histograms of the in-
tensity ratio of forest areas which were evaluated using (3) are
compared to the histograms measured for the six image pairs at
C- and L-band separated by one month in time. The “measured”
histograms were obtained by using all pixels belonging to the
object class “forest” hence neglecting any sensitivity to the in-
cidence angle which is justified in view of Fig. 2(a). The forest
areas were selected as object class because they comprised a
very large number of pixels. The agreement between theoretical
and observed histograms is satisfactory at C-band and good at
L-band, considering a slight uncertainty in the magnitude of the
equivalent number of looks, and the presence of natural signa-
ture variations with unknown length scales.
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Fig. 8. Comparison of measured (dashed lines) and theoretical (solid lines)
histograms of the intensity ratio at C- and L-band, VV-polarization, for forest
areas. The measured histograms are for six image pairs with a temporal
separation of one month, including all pixels belonging to object class “forest”
over the whole swath width. The theoretical curves were evaluated using the
minimum and the maximum of the observed average intensity ratios from
Figs. 2 and 3.

The probability of classifying noise as a “real” signal is de-
noted the probability of false alarms, . This probability is
given by [10, p. 387]

(8)

In this study, a probability of is used, and the cor-
responding threshold is denoted as. For this threshold, 5 per
cent of the observed changes would be misinterpreted as real
changes although they only reflect the variations due to speckle.
In Fig. 9, thresholds are shown as a function of the correla-
tion coefficient and the true intensity ratio, using (3). The
threshold decreases with a decreasing intensity ratio and an in-
creasing correlation coefficient.

How do the results compare to the thresholds which can be
found from the intensity ratio histograms evaluated for the data
set? The observed thresholds, , were determined from
the measured histograms for all image pairs separated by one

Fig. 9. Threshold above which 5% of all pixels would be classified as real
changes although the magnitude of their ratio is due to speckle.

month. The theoretical thresholds, , were obtained by
evaluating using (3) with a value of . Object classes
“hedges” and “forest” were chosen for a more detailed analysis
since their VMR-values were smallest. First, the investigation
was carried out focusing on a particular incidence angle interval
of 5 deg in width in which a large number of pixels for each
object class was available. As estimates of the true intensity
ratio, , the observed average intensity ratios were taken. Then,
average intensity ratios and histograms were evaluated from the
data pooled over the entire swath width. It was found that the
results did not differ significantly, and the conclusions which
can be drawn from both cases are identical. The results obtained
over the whole swath width are listed in Table III(a) and (b).

The values of the thresholds determined from the measured
histograms reveal the tendency predicted by the curves shown
in Fig. 9, namely that the magnitude of the threshold increases
with the intensity ratio. All observed thresholds are larger than
the predicted ones, whereby the differences between observed
and theoretical values are smallest for forest areas at L-band (on
average 0.1) and C-band (on average 0.3). The average differ-
ences for hedges are 0.47 at C-band and 0.85 at L-band. For
roads, values of 0.86 at C-band and 1.1 at L-band were obtained.
These differences increase if larger values for the correlation
coefficient are chosen (which can not directly be determined
from the intensity data, see above). The difference values were
found for image pairs with a one-month period between data ac-
quisitions as mentioned above. For the one-year pair at L-band,
the corresponding values are 0.1 for forests, 0.7 for hedges, and
1.0 for roads.

The baseline decorrelation coefficient for most of the image
pairs listed in Table III is significantly larger than zero. A small
difference between observed and theoretical thresholds is ob-
tained only if the theoretical thresholds are calculated assuming

. This means that the temporal decorrelation coefficient
must be small in order to justify the assumption of .
For vegetated areas, this is plausible. For forests, for example,
Askneet al. [20] observed coherencies,, between 0.26 and
0.47 at C-band (the given values include both baseline and tem-
poral effects) which means that lies in a range between
0.07 and 0.22. Roads, on the other hand, should reveal larger
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TABLE III
(a) HEDGES. (b) FOREST. THRESHOLDS FOR AFALSE ALARM RATE OF 5%,T5, OBSERVED FOR THEBACKSCATTERINGCOEFFICIENT AT VV-POLARIZATION. THE

“TRUE” I NTENSITY RATIO, 
, WAS ESTIMATED USING THE DATA DEPICTED IN FIGS. 2(a) (FOREST) AND 3(a) (HEDGES). FOR THE OBJECTCLASSESSELECTED

HERE, THE INTENSITY RATIO DOESNOT REVEAL LARGERVARIATIONS AS A FUNCTION OF INCIDENCE ANGLE. THE THRESHOLDS, T5, WEREOBTAINED FROM

THE OBSERVEDHISTOGRAMS OF THEINTENSITY RATIO. THE DIFFERENCEBETWEEN OBSERVED AND THEORETICAL THRESHOLD IS�T = T5–T5 .
THE THEORETICAL THRESHOLD WAS OBTAINED FOR A CORRELATION OF � = 0. THE OBSERVED CORRELATION COEFFICIENTS,

� (WHICH INCLUDE THE TEXTURE COMPONENT) ARE ALSO SHOWN

(a)

(b)

values of coherency, but as already mentioned above, many of
the pixels belonging to object class “roads” include signature
contributions of the vegetation adjacent to the roads. In addi-
tion, the signal-to-noise ratio is lower compared to the other ob-
ject classes.

Another important item to be considered is related to the
length scales of the inherent signature variations. By means
of Monte-Carlo simulations, Joughinet al. [16] obtained his-
tograms of the intensity ratio for the case that the backscattering
coefficient varies within a multi-look cell. As a consequence, the
width of the distribution functions increases, as can be deduced
from their results. The experimental observations presented here
indicate that natural signature variations of hedges and of roads
may occur on scales that are smaller than the-look resolu-
tion cell (about 8 m wide for the EMISAR covariance matrix
product).

For buildings, the situation is even more complicated. Be-
sides partly extremely large values of the VMR [Table II(a)],
the mean intensity ratio is characterized by strong local vari-
ations [which is reflected in Fig. 3(c)]. The number of pixels
within a potential area of a more or less constant intensity ratio

is too small to determine a statistically meaningful histogram.
In order to find thresholds, histograms were evaluated using the
pixels of class “buildings” distributed over the entire incidence
angle interval. These histograms do not compare to theoretical
predictions based on (3). Considering the observation that air-
borne SAR measurements from urban areas cannot be explained
by models assuming constant scattering properties within the
resolution cell [21], it may be reasonable to assume that urban
signatures are in many cases also affected by inherent signature
variations with length scales smaller than the effective spatial
resolution of the imagery.

In Table III(a) and (b), the observed correlation coefficients
are listed as well. They indicate that texture

between images, in contrast to speckle, is correlated to a certain
degree.

C. Temporal Signature Differences of the Selected Object
Classes

Histograms of pixel-to-pixel and object mean ratios (for
and differences) were evaluated for image pairs
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TABLE IV
SIGNATURE THRESHOLDSBASED ONPIXEL-TO-PIXEL DIFFERENCES. VALUES INDICATE MINIMUM AND MAXIMUM THRESHOLDS FOR AFALSE-ALARM RATE OF

5% OBTAINED FROM THE HISTOGRAMS OF THE7 ONE-MONTH IMAGE PAIRS FROM 1998. THE DATA FOR ALL OBJECTSWITHIN ONE OBJECTCLASS WERE

POOLED FOR THECALCULATION OF THE HISTOGRAMS. THRESHOLDSTl AND Tr FOR PHASE, � , AND CORRELATION COEFFICIENT, � , WERE

DETERMINED FOR THELEFT- AND RIGHT-HAND SIDES OF THEHISTOGRAMS, SO THAT P (X) dX = 0:025 AND P (X) dX = 0:025

TABLE V
SIGNATURE THRESHOLDSBASED ON INHERENT SIGNATURE VARIABILITY —OBJECTMEAN VALUES. MINUMUM AND MAXIMUM THRESHOLDS FOR AFALSE

ALARM RATE OF 5%. NOTE THAT THE NUMBER OF AVERAGED PIXELS VARIES FROM OBJECT TOOBJECT. SEE ALSO COMMENTS TABLE IV

separated by one month by pooling the data over the entire
image range. Ranges of the measured pixel-to-pixel thresholds
obtained for the intensity ratios and the differences of
and are listed in Table IV for object classes “hedges,”
“roads,” and “buildings.” The object mean ratio or difference
was determined by averaging over the pixels of each object and
subsequently computing the ratio or difference between the
object mean in the one and in the other image. Since the objects
are different in size, the mean values differ with regard to their
statistical error because of the different number of samples.
The obtained thresholds can be found in Table V. Examples for
the histograms are shown in Fig. 10. The vertical lines indicate
the minimum and maximum threshold for a change detection
error less than 5 per cent, based on the histograms.

In order to keep the rate of false alarms low, the threshold
for a pixel-to-pixel change detection has to be quite large in the

case of buildings. In order to detect a real change, the threshold
of the backscattering coefficient at VV-polarization, , for
buildings at C-band, for example, should lie between 6.3 dB and
larger than 10 dB to make sure that only a few detected events
are due to inherent signal variations with the object itself being
unchanged. If object averages are used, the corresponding min-
imum threshold decreases to 4.7 dB, whereas the maximum re-
mains at a level larger than 10 dB. This can be explained by the
fact that some of the buildings comprise less than 5 pixels which
means that averaging does only slightly reduce the inherent sig-
nature variability.

Besides the number of looks, the thresholds,, for forests,
hedges, and roads depend on the average intensity ratioand
the correlation coefficient . For the two latter object classes,
the sensitivity of to the ratio is plotted in Fig. 11 (whereby
according to the results presented above it can be assumed that

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 17,2010 at 06:11:30 EDT from IEEE Xplore.  Restrictions apply. 



DIERKING AND SKRIVER: CHANGE DETECTION BY MEANS OF AIRBORNE MULTITEMPORAL POLARIMETRIC SAR IMAGERY 633

Fig. 10. Histograms of pixel-to-pixel intensity ratios at VV-polarization for
buildings. Vertical lines indicate the threshold of� if changes have to be
detected with an accuracy�95 percent. The depicted histograms are for the
minimum and maximum thresholds (if the same value is obtained from two
histograms, both are shown).

is close to zero). The increase of the thresholds as a function
of the average intensity ratio can be approximated by a linear
function. The linear increase is in agreement with theoretical
predictions represented by the solid lines in Fig. 11. The the-
oretical curve was calculated using (8) and (3), assuming that
the correlation is , and with a number of effective looks
of at L-band, and of at C-band. The observed
thresholds for the pixel-to-pixel approach are larger than the the-
oretical thresholds. The dashed lines reveal that the thresholds
for roads are larger than for hedges (except for the pixel-to-pixel
approach at L-band). It should be noted, however, that these dif-
ferences between thresholds of different object classes are de-
pendent on certain radar parameters (frequency and spatial res-
olution) which means that they should be determined for each
new radar configuration. For practical applications it is worth to

Fig. 11. ThresholdsT5 as a function of the average intensity ratio at
VV-polarization for object classes hedges, roads, and buildings. Dashed lines
are least-square fits. The theoretical results of a pixel-to-pixel approach are
represented by the solid lines. Thresholds were determined for the observed
histograms of the intensity ratioQ. Intensity ratio and threshold are given in
linear scale.

note that the average intensity ratios for a given image pair differ
between roads and hedges (Fig. 12) which means that thresholds
may have to be determined separately for each object class. The
thresholds of buildings decrease with an increase in the corre-
lation coefficient as is shown in Fig. 13. The correlation
coefficients are low for the image pairs March–April for which
the deviation of the tracks flown during the measurements is
largest.

V. DISCUSSION

The use of radar images in thematic mapping is attractive be-
cause radar imaging is not affected by cloud covers and light
conditions. However, the interpretation of what is seen in the
radar images is not always straightforward. For example, the
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Fig. 12. Average intensity ratios
 at VV-polarization at C- and L-band,
compared for hedges and roads. Each point corresponds to the ratio obtained
for one image pair. In order to use the same threshold for both hedges and
roads, the point should lie on the solid line.

Fig. 13. Thresholds,T5, at C- and L-band at VV-polarization as a function of
the observed correlation coefficient� for object class “buildings.”

tree hedges stand out clearly in the radar image (Fig. 1), some
roads, on the other hand, are more difficult to identify. Urban
areas and also single buildings reveal often rather complicated
signature patterns. Another disadvantage of applying radar im-
ages in thematic mapping is that the spatial resolution typically
is much worse than for optical systems. For example, the aerial
photography provided by KMS had a resolution of about 0.6
m, whereas the single-look EMISAR images (scattering matrix
format) have a resolution of 2 m (whereby one-look images are
difficult to use because of speckle so that further averaging is
needed). Hence, radar might be a useful complementary tool
in thematic mapping, but, at least with present technology, it
cannot replace optical systems.

In principle, the preprocessing required for change detection
can be carried out without any source of information obtained by

other sensors. This includes speckle reduction, edge detection,
and segmentation whereby image processing techniques are uti-
lized which are developed specifically for radar data. Speckle re-
duction techniques which do not blur the signatures of small or
narrow objects require comparatively long run times on a com-
puter [10], [11]. This is also valid for sophisticated segmenta-
tion techniques. In addition, some of these techniques require
still further research and development. In the current work, the
approach is to use the standard EMISAR images without any
further processing in order to focus specifically on the influ-
ence of target signature variations. The images are directly com-
pared to aerial photography. Note that also thematic maps of a
sufficient scale could be used to this end. The Danish Survey
and Cadastre, for example, provides GIS-data showing the po-
sition and shape of different objects. These vector layers can be
directly combined with the registered EMISAR images. In the
radar images, the pixels belonging to a certain object are iden-
tified and marked (this step would also be necessary in case of
pre-segmented imagery). Any further processing steps may then
be optimized for the different object classes of interest, e.g., by
using class dependent thresholds for change detection.

Since for certain object classes, the length scales of inherent
signature variations may be smaller than the SAR resolution
cells, a theoretical prediction of the threshold for separating in-
herent variations from “real” changes is not always possible.
Then, a better approach is to determine the threshold for a cer-
tain object class directly from the two images used for change
detection. To this end, masks showing the position of different
members of an object class can be used as explained above. A
supervised method, for example, can be applied in which a com-
paratively small number of objects is used and regions of real
changes are excluded. Alternatively, an unsupervised method is
also possible in which the threshold is determined from a large
number of objects. Compared to the total number of pixels be-
longing to one object class, the number of pixels affected by real
changes will be very small and, hence, their influence on the es-
timated threshold is not critical.

If the intensity ratio of object means is chosen in order to find
changes between two images acquired at different times, lower
magnitudes can be used for the thresholds. However, this ap-
proach is meaningful only for objects which cover a larger area
so that a sufficient number of pixels can be averaged. Objects be-
longing to one class may be different in size and, hence, the ef-
fective number of looks after averaging is different, too. Object
mean values can be optimally utilized only in order to detect the
removal of already existing objects. If new objects are added to a
scene, their position has first to be identified in a ratio image ob-
tained on a pixel-to-pixel basis or by moving windows. Changes
of the “background” (usually natural or agricultural vegetation
covers over most of the area) would also be visible, but could in
many cases be easily identified and separated from the signals
of smaller objects and linear features.

In general, an even better spatial resolution of the radar image
product than the one achieved by EMISAR would be of advan-
tage for the use in change detection. Technically, this is easier
to realize at higher frequencies (C- and X-band). Single narrow
objects of class “road,” for example, could be located more pre-
cisely. Moreover, the signal-to-noise ratio of roads increases at
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shorter radar wavelengths. On the other hand, the inherent sig-
nature variations of urban areas would be more severe at higher
radar frequencies, if the flight tracks of repeated data acquisi-
tions deviate from one another. Also, because of the decreased
size of a resolution cell, the number of scatterers inside the cell
is reduced so that the speckle statistics might change.

A complete evaluation of the potential of SAR images for
change detection for the objects considered in this paper, i.e.,
hedges, roads, and buildings, includes the assessment of the de-
tection probability and the false alarm rate. The detection prob-
ability must be assessed both for objects which are added or
removed during the period between two data acquisitions. The
false alarm rate originates from two contributions which are the
detection of changes when the objects are present in both acqui-
sitions and when the objects are missing in both acquisitions,
i.e., with only the background present. Such a complete eval-
uation was outside the scope of this paper. The assessment of
the latter contribution to the false alarm rate, e.g., would require
evaluation of a large number of different objects, such as the var-
ious crop types or different types of natural vegetation covers.
Therefore, the only the contribution of the selected objects was
considered.

VI. SUMMARY AND CONCLUSIONS

If multi-channel imagery acquired by means of remote
sensing is available for change detection, an interesting ques-
tion is which combinations of the available channels are most
useful. Another problem is to separate “real” changes from
“inherent” variations of the image characteristics. Real changes
are usually man-made (for example, the addition or removal of
a building) and relevant for thematic mapping whereas inherent
changes are not of interest for mapping agencies.

For this study, polarimetric signatures at C- and L-band ac-
quired by an airborne SAR-system were available. The useful-
ness of different polarimetric parameters for change detection
was analyzed. Inherent temporal variations in the polarimetric
images were investigated in order to assess their influence on
the change detection performance.

Inherent variations are caused by different factors:

• The physical properties of the imaged objects may change
over time in a “natural” manner. The backscattering char-
acteristics can vary significantly for certain object classes
such as vegetation. Another effect is that a redistribution
of scatterers within a resolution cell reduces or even erases
the correlation of the speckle pattern between the two im-
ages.

• Technical effects such as errors in “operational” calibra-
tion and inaccuracies in the spatial registration of the
multi-date images have to be considered.

• In practice, small deviations between the tracks flown
when acquiring the image data are possible. These de-
viations cause speckle decorrelation, and they change
the radar look angle at a given position on the ground.
For example, an area viewed with different incidence
angles might reveal differences in the backscattered
intensities (since the backscattering coefficient of many

surface types is a function of) or might even change the
scattering characteristics (e.g., if, at a given position, a
specular reflection occurs only in one of the images).

In this study, specifically linear features (roads, tree hedges)
and small objects (buildings) were considered which are of
large interest for most mapping agencies. For comparison,
object classes “urban background” and “forest” were included
in the analysis. From the results of the study, the following
conclusions can be drawn:

• The utilization of the phase difference improves
the detection of changes only in very few cases (e.g.,
double bounce reflection for which deg
versus surface scattering for which deg). The
reason is that the statistical uncertainties of within
one object class are usually large compared to differences
of the mean values of between different object
classes. Also the correlation coefficient does not
reveal usable systematic differences between the object
classes. For the investigated classes, the utilization of
the measured intensities has clearly a higher priority in
practical applications compared to the other polarimetric
parameters.

• For the linear features (roads and hedges), the intensity
thresholds which have to be set in order to separate
inherent signature variations from real changes do not
differ significantly between C- and L-band. For buildings,
the magnitudes of the thresholds are smaller at L-band
than at C-band. A significant signature contrast between
buildings and urban background, however, exists only at
C-band at co-polarization.

• At larger incidence angles (35 deg), the measured in-
tensities of the linear features are only weakly sensitive
to variations of the incidence angle at a certain position.
This means that images from different flight tracks can be
combined provided that the distances between the tracks
are within a given limit which depends on the scattering
characteristics (volume scattering, smooth or rough sur-
face scattering). For urban areas, the range of acceptable
deviations is much smaller, in particular at shorter radar
wavelengths.

• The magnitude of thresholds depends on the average
intensity ratio and on the number of looks of the radar
image. Because of inherent temporal variations of the
average intensity ratio which are different for different
object classes, change detection can be improved by
fixing the thresholds separately for each class.

• Only for object class “forest,” values of the thresholds
can be evaluated theoretically independent of the observed
texture (which indicates that scattering properties are lo-
cally constant). For object classes “hedges,” “roads,” and
“buildings,” the values of the thresholds have to be in-
creased compared to the theoretical predictions. The in-
terpretation is that inherent signature variations occur on
scales smaller than a multi-look resolution cell. Urban
areas reveal strong local variations of the average intensity
ratio so that theoretical models which are based on the as-
sumption of stationary signal variations cannot be used.
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This study has shown that radar images are useful complements
for updating thematic maps. Furthermore, the study has pro-
vided hints for practical implementations of change detection
techniques. Future research should address whether radar im-
ages of higher spatial resolution improve change detection, as
well as focus on the simultaneous utilization of radar interfer-
ometry. Another interesting topic is to study the change detec-
tion performance for combinations of different polarimetric pa-
rameters.
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