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Abstract - A new 2.5-D inversion scheme is derived for fixed-offset ground 
penetrating radar (GPR) that takes into account the planar air-soil interface. The 
inversion scheme is based upon the first Born approximation and a far-field ap- 
proximation of the dyadic Green function for a two-layer medium. 

1. Introduction 
Linear inversion schemes based upon the concept of diffraction tomography have 
proven successful for ground penetrating radar (GPR) imaging [I, 21. As il- 
lustrated in [2] it is important to incorporate in the inversion the presence of 
the air-soil interface. The inversiongcheme in [2] was derived by inserting the 
plane-wave expansion of the two-layer dyadic Green function into the linearized 
Lippmann-Schwinger integral equation and performing an asymptotic expansion 
valid when the object is located deep in the soil and finally using the inverse 
Fourier transform. This procedure requires that the soil is lossless. It was shown 
in [2] that the procedure could be heuristically modified to include loss. How- 
ever, since this heuristic modification is not exact, it gives rise to artifacts in the 
image. 

In this paper another approach is presented to derive an inversion scheme for 
GPR that takes into account the planar air-soil interface. Here, the far-field ap- 
proximation of the dyadic Green function for the two-layer medium is used rather 
than applying the asymptotic procedure outlined in [2 ] .  Since the inverse Fourier 
transform is still applied to carry out the inversion, i t  must again be assumed in 
the derivation that the soil has no loss. Nevertheless, an heuristic modification is 
possible to include the loss and this modification does not give rise to artifacts 
in the image as was the case in [2]. A similar result was derived in [3] by using 
the generalized Radon transform. However, the inverse scheme to be presented 
below is more efficient than that in [3] since it can be implemented using fast 
Fourier transforms (FIT’S). 

For simplicity only the 2.5-D case is considered, that is, it is assumed that the 
scattered object in the soil is invariant in one direction, which for instance is the 
case for a pipe. Throughout the paper the time factor exp(-zwt) is assumed and 
suppressed. 

2. The 2.5-D Forward Model 
An example of the GPR configuration Involving the planar air-soil interface is 
shown in Figure 1. A Cartesian zyz coordinate system is introduced such that the 
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zy plane coincides with the interface and such that z > 0 is air. An object, which 
is assumed infinitely long in the x direction, is buried in the soil. The propaga- 
tion constant of air i s  ko = u r n  and that of soil is kl = d w 2 ~ i 0 t l  + iwpocs~.  
The position of the receiving antenna is described by r, = R, + zz, and that of 
the transmitting antenna is r, = r, + r,, with the fixed offset ra = RA + zz~. It 
is assumed that the contrast in conductivity &(r) = u(r) - u1 is much less than 
the contrast in permittivity, i.e., ilcr(r) << wAt(r )  over the frequency band of 
interest U,,, < w < U,,,. Then, by assuming ideal dipole antennas, the output 
so of an x-directed receiving antenna due to a transmitting antenna with dipole 
moment xI(w) can be related to i l e ( r )  as [2 ,  (1  I)] 

so(rr ,w)  = zu3Lii1(w) /x . c ( r r , r ‘ , w ) .  [ j c .  G(r,,r’,w)lne(r‘)@r’ (1) 

i, 

where the dyadic Green function for the interface can be written as 

G ( r , r ‘ , w )  = i 8T’ 7 F ( K ,  w )  exp(zyo(K)z) exp( iR@(K))  d’K (2) 
-m 

where z > 0, z’ < 0, K = x k z  + yk,, y,(K) = JkZ - E’ - k i ,  i = 0,1,  

@ ( K )  = kz% + k y q  + y L ( K ) q ,  and R = J(z - x’)~ + (Y - v’) ’+ zr2.  
The expression for the dyadic F ( K )  can be found in [2, (6)] .  We now focus 
on the 2.5-D case in which the buried object is invariant in the x-direction, i.e., 
&(r) = At(y ,  z ) .  To this end the far-field expression of G, that is, the asymp- 
totic expansion as R --f CO, is inserted into (1). For z, = 0 this yields 

where 

--m 

(4) 
exP(ikl[R, + RtI) dz,  

R A  
. ex~(i[yo(Kv)zr + yo(Kt)ztI) 

where R, = d m >  p7 = ,/(yr - Y’)‘ + zt2, K, = xk,,+yk,, = Xkl%+ 
y k 1 9 ,  and similarly for R, and K, .  Using the substitution U = p;lz’, F in 
(4 )  takes on the form l-“, Fu(u) e x p ( i k l p , [ m  + , / w ] ) p , d u .  A 
simple asymptotic calculation as pr --t 00 then gives F N F,,(O) exp(zkl[p, + 
p t ] ) e x p ( i % ) f i / ( k l ( l  + p7/p t ) ) .  Following the procedure of [l] p? and pt  
are next expanded around a fixed point o in the vicinity of the object and with 
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position vector p, as 
y(y? - go) - zz,, and similarly for p 1 .  This yields 

z p r o  - li,, (p’ - p,) =z pI,, with pTo = ~ ~ ~ p , ,  = 

s O ( y r , d )  = D ( V ~ , W )  exp(iklpo.  [ i j ro  + i j t o ~ ) G k l [ l i r o  + ijtO1) (5) 

where &?is the 2-D spatial Fourier transform of At  and 

3. Inversion 
Using the fact that AS is real, this function can be found from its Fourier trans- 
form through 

At(p,) = L R e  [ 7 7 G ( K )  exp(iK p,) d2K ] . 
To use the relation between the measured data so and A6 in ( 5 )  we must assume 
that ICl is real. Then, substituting in (7) K = kl( i jro + ijto), and using that 

(7) 
2 s 2  

--M -03 

- 

we obtain 

SincethedependenceofthefactorJ(y,,w)/D(y,,w) ony, isofthe formy,-y,, 
the integration over yr is a convolution and thus, it can be calculated efficiently 
using FIT’S. 

4. Numerical Example 
The inversion scheme of Section 3 is now tested on synthetic GPR data. Fig- 
ure 1 shows a dielectric pipe with outer diameter 16cm and inner diameter 8cm 
located Im below the interface. The conductivities of the soil and the two regions 
of the pipe are 0.005 Slm. The permittivities of the soil, the inner and outer re- 
gions of the pipe are 8c0, 8.1to, and 8 . 2 ~ ~ .  respectively. The synthetic GPR data 
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4 i Transmitter Receive, 

t Soil t i ,  pa, 01 

Figure 1: The configuration involving a two-region pipe 
is calculated from an eigenfunction expansion. It is assumed that the radar uses 
60 frequencies equally spaced in the range 20 MHz < f < 1.3 GHz. Figure 2 
shows the image of &(y, z) / tO obtained from (9), heuristically modified to in- 
clude loss by using k ,  = Jw2poel  + iw/iool  in the exponential function in the 
first line of (6). It is noted that there are no severe artifacts in the image below 
the pipe as was the case in [2]. 

-06 - 0 4  - 0 2  0 0 2  04 06 

Y (m) 
Figure 2: The image of At(y, z ) / c 0  
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