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Abstract 4. Program structuring: Define functionality of the pro- 
gram modules. 

A procedure for systematic design of event based systems 
is introduced by means of the Production Cell case study. 
The design is documented by CSP-style processes, which al- 

5. Functionality check: Check for satisfaction of func- 
tional requirements. 

low both verijcation using formal techniques and also vali- 
dation of a rapid prototype in the functional language CML. 6. Prototyping: Test aprototypeprogrm in areal or sim- 

ulated environment. 

1. Introduction 

Notations like CSP [l] or CCS [2] provide concise no- 
tations for documenting the design of reactive or real-time 
systems. These notations further allow verification of prop- 
erties through calculation, or model checking [3]. Yet there 
is a sizable gap from such specifications to executable pro- 
grams needed to validate or test the design [4, 5,6,7]. 

In this paper we demonstrate how this gap is closed by 
CML [8], an extension of ML [9]. As shown in this paper, 
it is easy to get from a CSP design to an executable CML 
program, and the program can be interfaced to programs in 
other programming languages. We illustrate this idea by ap- 
plying the design method for real-time systems presented 
in [IO, 111 to a well-known example, the Production Cell 
[123, which has been developed by FZI in Karlsruhe [12] 
as a benchmark example of real-time systems development. 
Our CML program has been combined with the FZI simula- 
tor [ 121 to a working prototype. 

The design method as presented in this paper consists of 
the following sequence of steps, each leading to a documen- 
tation with a specific form and scope. 

1.  System partition: Define components or subsystems 
for a system. 

2. Interface definition: Define interface events. 

3. Event structuring: Define sequencing of events. 

In the next section, we give an overview of the Produc- 
tion Cell and the safety requirements. Section 3 describes 
the partition of the system into subsystems. Each subsystem 
corresponds to aphysical component of the Production Cell. 
Section 4 defines interfaces between interacting subsystems 
by synchronization events. In section 5, the event structure 
is defined as a sequence of synchronization events by means 
of a CSP expression. We perform a functionality check in 
section 6 by applying algebraic laws of CSP. Section 7 con- 
tains some remarks about timing check (which is not formal- 
ized in this paper). In section 8, the prototype CML pro- 
gram is obtained from the CSP expressions. Finally, section 
9 presents our conclusions. 

2. The Production Cell 

The production cell is an actual industrial unit in a metal 
processing plant in Karlsruhe. It is composed of a feed belt, 
an elevating rotary table, a two-armed robot, a press and a 
deposit belt (cf. Figure 1). In the simulated system a crane 
is added in order to recycle the metal blanks. 

Safety requirements: Safety requirements of the pro- 
duction cell are classified into four groups: machine mobil- 
ity must be restricted to certain limits; machine collisions 
must be avoided; metal blanks must not be dropped outside 
the safe areas; and metal blanks must not be placed on top 
of each other. 

In the case of the elevating rotary table, for example, 
safety requirements include: 
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0 The elevating rotary table must not rotate clockwise if 
it is in the positionrequired for delivering a blank to the 
robot. It must not rotate anticlockwise if it is in the po- 
sition required for receiving a blank from the feed belt. 

0 The elevating rotary table must not move down further 
if the table is in the position required for receiving a 
blank from the feed belt. It must not move up further 
if it is in the position required for delivering a blank to 
the robot. 

0 The elevating rotary table must be in the desired posi- 
tion when delivering a blank to the robot or when re- 
ceiving a blank from the feed belt. 

0 The elevating rotary table receives a blank only if there 
is no blank on the table. 

press 

The robot moves to the position where arm 1 points to 
the elevating rotary table and picks up the blank. It then ro- 
tates until arm 2 points to the press, extends the arm into the 
press, and then unloads the forged blank from the press. Af- 
terwards, the robot rotates until arm 2 points to the deposit 
belt, extends the arm to the belt and unloads the blank onto 
the belt. 

The deposit belt conveys the blank delivered by arm 2 of 
the robot to the position where the travelling crane can pick 
up the blank. 

The crane picks up the blank from the deposit belt, and 
transfers it to the feed belt for a new cycle of the system. 

Each subsystem comprises sensors and actuators for the 
physical component in the subsystem plus a program for 
controlling these sensors and actuators. 

Examining the requirements we find that the processing 
of a metal blank comprises two kinds of action: 

A local processing inside one subsystem, e.g. the blank 
is moved by the feed belt or the table, or the blank is 
forged in the press. 

0 A transfer from one subsystem to the other, e.g. the 
blank is conveyed from the feed belt to the table. 

The first lund of action is performed completely within 
one subsystem while the second requires cooperation be- 
tween two subsystems. 

4. Interface Definition 

Interfaces between interacting subsystems are defined by 
synchronization events. For example, the table subsystem 
with synchronization events is shown in Figure 2. Figure 1. The production cell 

3. System Partition 

It seems reasonable to partition the system into subsys- 
tems corresponding to the physical components illustrated 
in Figure 1. Each subsystem fulfils a specific task during the 
metal blank processing: 

The feed belt conveys a metal blank to the elevating ro- 
tary table when the table is in the position for receiving a 
metal blank from the feed belt. 

The table (elevating rotary table) performs an upward 
movement and a anticlockwise rotation in order to transfer 
the blank to the desired position where the robot can pick it 
UP. 

The press moves its lower plate upwards to the position 
where arm 1 can load the blank. After the robot loads the 
blank onto the press, the press forges the blank and then 
moves the lower plate downwards to the position where the 
blank can be unloaded by arm 2 of the robot. 

feed belt Table robot 

iable sensors and actuators EIII 
Figure 2. The table subsystem with synchro- 
nization events 

The table subsystem interfaces with the feed belt sub- 
system by the beg inad  and end-jBd events, and with the 
robot subsystem by the begindal and endda l  events. The 
events are shown in Table 1'. 

'The events b e g i n b 3  and e n d b f b  are used to get extra blanks onto 
the feed belt from outside. The real system in the factory has no crane, 
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Events 
b e g i n b - .  

endd-jb 

begin3-t  

Legend 
The feed belt is ready to receive 
a blank 
A blank has been put on the feed belt 

The table is empty and in the receiving 

I via the feed belt 

beginfi-t j 

e n d 9 - t  i 

i begin-t-a1 

: end-t-a1 
TableMain 

end- .d  
position 
A blank has been conveyed to the table 

Table 1. Synchronization events between sub- 
systems 

e n d 4 1 9  

The table subsystem is further subdivided into Table- 
Main, Tum and Updown programs (cf. Figure 3). The Up- 
down and Tum programs control the vertical and horizontal 
movements of the table through the updown and tum con- 
trollers. The main program for the table subsystem, Table- 
Main, synchronizes with these controllers in order to obtain 
the proper movement of the table. The table subsystem with 
local synchronization events is illustrated in Figure 3. 

Arm 1 has been retracted after loading 
a blank onto the press 

so the events begindbr ,  e n d d b r ,  beginrJb, and e n d r J b  will not 
be present in this system. Instead there will be events begindba and 
e n d d b a  to synchronize the transfer of processed blanks out of the sys- 
tem, and blanks are transferred into the system via the events b e g i n h a  
and endb-jb. 

begina2db 

e n d a 2 d b  

begindb-c 

The deposit belt is ready to receive a blank 
from arm 2 
Arm 2 has delivered a blank on 
the deposit belt 

Both the crane and the deposit belt 
are readv 

beni 

Data 
integer 

I I 

Legend 
The table is requested to move 
to a horizontal uosition 

I I 
I ........................................................ Table i 
I I 

enddb-c 

begin-c-Jb 

sensors & actuators sensors & a m a t o n  

The crane has taken a blank from 
the deposit belt 

The feed belt is ready to receive a blank 
from the crane 

Figure 3. The table subsystem with local syn- 
chronization events 

end-c-fl 

Local interfaces within the table subsystem are defined 
by four synchronization events: begindum, end-tum, be- 
gin-updown, and end-updown, which are shown in Table 2. 

The crane has transported a blank onto 
the feed belt 

Events 
begindum 

end-tum 

begin-updown 

end-updown 

The table has rotated to 

the desired uosition 

Table 2. Synchronization events within the ta- 
ble subsystem 

The begindurn and begin-updown events contain corre- 
sponding data values indicating the desired horizontal and 
vertical end position for the table. 

5. Event Structuring 

The behaviour of each subsystem is controlled by a group 
of synchronization events. The subsystem restricts the oc- 
currence of these events in order to meet both functional and 
safety requirements of the system. For example, synchro- 
nization events in  the main program of the table subsystem 
are structured in a CSP expression as follows: 
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TableMain = 

end-turn -+ end-updown -+ 
begin- f b-t -+ end-f b-t -+ 
begin-turn(45) -+ begin-updown(up) -+ 
end-turn -+ end-updown -+ 
begin-tal -+ end-t-al -+ TableMain). 

. (beginhwn(0)  -+ begin-updown(down) -+ 

The first two lines in this expression describe the move- 
ment of the table to the receiving position by commands to 
the tum and the updown controllers. The third line describes 
the interfaces with the feed belt to agree on conveying a 
metal blank from the feed belt to the table. The fourth and 
fifth lines describe the movement of the table to the deliver- 
ing position by commands to the turn and the updown con- 
trollers. The last line describes the interfaces with the robot 
to allow the blank to be picked up by arm 1. Whereupon this 
the whole sequence is repeated. 

Apparently, TableMain has a simple sequential structure 
as events happen in a pre-specified order. But the event 
structure for the robot subsystem will show branching cor- 
responding to a choice between events. For example, when 
arm 2 unloads a blank from the press and arm 1 is empty, 
the robot can either rotate so that arm 1 can first pick up 
a blank, then deliver it onto the deposit belt, or vice versa, 
which depends on which synchronization event, begin-tal 
or begina2db, is first satisfied. This kind of choice be- 
tween events is expressed in CSP by the operator “I”. 

Events 
safe-t 
unsafe2 
sa fe f i  

6. Functionality Check 

Legend 
The table is in the receiving position 
The table may be outside the receiving position 
The feed belt mav droD a blank onto the table 

The event expressions are processes in the sense of CSP 
(cf. [l]), so the algebraic laws of CSP can be applied to 
prove properties of the programs. 

For example, one of the safety requirements for the ele- 
vating rotary table is R: the elevating rotary table must be 
in the receiving position when a blank is conveyed from the 
feed belt. 

To check this safety requirement, we add an observer pro- 
cess O B S  to the system. Once the safety requirement W is 
violated, O B S  should indicate a failure by allowing the fail- 
ure event t. We also include the events in Table 3 in the ta- 
ble and the feed belt subsystems for the synchronization be- 
tween OBS and the subsystem in question. 

I unsafe3 I The feed belt will not drop a blank onto the table I 

Table 3. Events for OBS observation 

Thus, the main process for the table subsystem, TA- 
BLE, is extended by including the safe2 and unsafe-t events: 

T A B L E  = 
(begin-turn(0) -+ begin-updown(down) -+ 
end-turn -+ end-updown -+ 
sa f e-t + begin-f b-t -+ end-f b-t -+ 
begin-turn(45) -+ unsa f e f  -+ 
begin-updown(up) -+ end-turn -+ 
end-updown -+ begin-t-a1 -+ 
end-t-al -+ T A B L E ) .  

The table is in the safe position when it has been turned to 
angle 0 and moved down to the position for receiving a blank 
from the feed belt, so the event safe-t is inserted after the 
end_tum and end-updown events. The table becomes unsafe 
as soon as any movement has bcen initiated, so the event un- 
safe3 is inserted just after the begin-tum event. The events 
safe@ and unsafe-$3 are similarly inserted in the program 
of the feed belt subsystem. 

a O B S  = (safe+,unsafe-t,safe-fb,unsafe-fb,t} 
is given by the following expressions: 

An observer process O B S  with the alphabet 

OBS = (safe-t  -+ O B S  I safe- fb  -+ O B S  
1 unsafe-t -+ A 1 unsafe-fb -+ B ) .  

A = ( s a f t f  -+ OBS 1 safe- fb  + A 
I unsafe-t -+ A I unsafe-fb -+ t). 

B = (safe- t  -+ B I sa fe - fb  -+ O B S  
I unsafe-t -+ t I unsa fe - fb  -+ B).  

The observer process is always ready to participate in any 
safe or unsafe event, and it becomes ready for the f event if 
a dangerous situation should occur. Hence, if we can prove 
that t T r { t }  = () for all t r  E traces(TABLEJIFBIIOBS),  
then the satisfaction of W is proved. Here F B  denotes the 
main process of the feed belt subsystem. 

The proof is given in the appendix. It is done by using the 
laws of CSP only. The proof could probably be automatized 
by using the FDR tool (cf. [3]). 

7. Timing 

Timing requirements of an individual component arise in 

0 when distributing a global timing requirement over 

two ways: 

components 

0 when implementing a functional requirement by a tim- 
ing condition 

For example, the requirement “TableMain should send 
the begin-tun command at most lOOms after the end-._t 
command has been received” can be part of implementing 
the global timing requirement: “the production cell should 
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produce 500 plates per hour”. And the requirement “Tum 
should send the tablestopJurn command at most lOms af- 
ter the final table angle value has been received” can be part 
of implementing the functional requirement “inaccuracy in 
the table angle in the position for receiving a blank from the 
feed belt must not exceed 5 degrees”. 

The notation in this paper does not include the formal- 
ization and verification of timing requirements, but it seems 
possible to extend the notation by using suitable concept 
from the recent book [4, 51 on mathematical methods for 
real-time systems. 

Operation 
channel 

8. Prototyping 

Type Legend 
unit + ’ l a  chan Create a new channel 

The concurrent ML language (CML) is an extension of 
the standard ML (SML) programming language [9, 131, 
which is a functional programming language with a flexible 
type system and a powerful expression language where ex- 
pressions may denote composite values of an arbitrary type. 
It provides synchronous communication over typed chan- 
nels as the basic communication and synchronization mech- 
anism. Basic channel operations in CML are listed in Table 
4. 

accept 
+ unit 
’a chan + ’a 

message to a channel 
Read a synchronous 
message from a channel 

I I 

send I ’a chan * ’a I Send a synchronous 

Table 4. Basic channel operations in CML 

The functions send and accept are used in pairs, i.e. if one 
process uses send, the other process must use accept to syn- 
chronize the communication over the channel. If one pro- 
cess has a parameter to pass to the other, it should use send. 
Both processes will wait until the communication has taken 
place. The language allows a process to make a choice, syn- 
chronizing on the first arriving communication over a set of 
channels. It also allows a process to test whether a commu- 
nication is pending on a channel. 

The communication between subsystems (cf. Table 1) 
is implemented by means of channels. The same is the 
case for the local synchronizations inside a subsystem (cf. 
Figure 4). It is then straightforward to derive the CML 
programs for the CSP processes2, as the recursive definition 

zIn the Production Cell example, the values to be transmitted over the 
channels are simple constants. Other systems may include extensive com- 
putations and local state variables, but that can also be handled by the 
method. 

of CSP process expressions can be preserved in the CML 
program. For the table subsystem we hence get the Table 
program as shown in Figure 4. It contains a main program 
TableMain, and programs Updown and Tum for the updown 
and turn controllers. 

Table 

begin>-t j f 1 I begin-t-a1 

I end-t-a1 TableMain e m i 9 - t  I 
(to feed belt); i (torobot) 

nd-updown nd-tum j 

begin-updow begin-rum 

j Updown 

I I 
’. ............ l.... ................. I . . . . . . . . . . . . . ’  

I I 
t I mm sensors & actuators sensors & actuutors 

fun Table0 = 

let dotatype updown = up I down; 
Val begin-updown = updown chnn; 
vu1 end-updown = unit chan; 
Val begin-Mm = int chan; 
vu1 end-Mm = unit chan; 

fun TableMain () = 

(send (begin-tum. 0)  
;send (begin-updown, down) 
:accept (end-turn) 
;accept (end-updown); 
;send (begin>-t) 
;accept (endjb-t) 
;send (begin-updown, up) 

;send (begin-rum, 45) 

;accept (end-updown) 
;accept (end-tum) 
;send (begin-t-al) 
;accept (end-t-al) 
;TubleMuin 0;); 

fun Updown 0 = ... ; 
fun Tum 0 = ... ; 
... 

end; 

Figure 4. A sketch of the program structure of 
the table subsystem 

For the event structure with branching, e.g. the robot sub- 
system, the choice between two events is implemented in 
CML by the select operation. 
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The main program Productioncell is composed of seven 
subprograms, FeedBelt, Table, Robot, Press, DepositBelt, 
Crane and Blank. The subprogram Blank is used to put ex- 
tra blanks onto the feed belt in order to start the system dur- 
ing the simulation. The remaining six subprograms imple- 
ment the subsystems. These main components are executed 
as parallel programs. 

The local control programs, e.g. Updown and Turn of the 
Table program, are designed with a unified interface con- 
sisting of a pair of synchronizations (beginx, end-x) with 
the higher-level program, e.g. TableMain. Actually, these 
controllers have different interfaces to the physical environ- 
ment, but these differences are local to the individual pro- 
gram for each controller and not visible from the outside. 

The CML program for the Production cell has been exer- 
cised with the FZI simulator. The simulator has two signif- 
icant functions. One is to simulate physical components in- 
cluding internal controllers of each component. The other is 
to visualize the simulated movements of each physical com- 
ponent during the CML program execution. This requires 
some extension of the simulator such that the interfaces are 
expressed in terms of CML channels. The running system 
including the simulator is composed of two UNIX processes 
connected by UNIX pipes as shown in Figure 5. 

Figure 6. Working window of the FZI simulator 

The program for each subsystem can also be tested sep- 
arately with the simulator. Testing e.g. the table subsystem 
requires a small CML program to simulate the interfaces to 
the other components on the channels beginfi-t, end-jb-t, 
begin-tal and endda l ,  and the test can be executed by let- 
ting this program interact with the operator via the terminal. 

9. Conclusion 
CML Program 

I I 
6 

Interface to 2 
FZI Simulator Y 

, Control Program FZI Simulator 

4 I I UNIX I I 

pipes 
CML Channels 

Figure 5. FZI simulator and CML control pro- 
gram 

The communication over the UNIX pipes uses an ASCII 
protocol which is part of the FZI system. The interface 
program (programmed in CML) performs the multiplex- 
ing/demultiplexing into a set of CML channels3. The con- 
trol program could in principle be used for controlling a real, 
physical plant by connecting the CML channels directly to 
U 0  driver programs for peripherals connected to the physi- 
cal units in the plant. 

Figure 6 is a screen dump of the working window of the 
FZI simulator controlled by the CML program. 

3Each implementation of a control program for the FZI production 
cell has its individual interface program for transforming between the FZI 
ASCII protocol and the communication primitives in the programming lan- 
guage used for the control program. 

We have shown, in this paper, how to apply a design 
method with a particular case study Production cell. The 
method itself is engineering oriented, and it is based on a 
sound theoretical foundation. The use of CML for program- 
ming concurrent systems in practice has shown a satisfac- 
tory result as we have obtained a running prototype by com- 
bining our program with the FZI simulator. Each synchro- 
nization event, which is the key element in our method, can 
be directly transferred into a CML channel, and the event 
expressions are easily converted to CML functions. The re- 
sulting program satisfies the functional and safety require- 
ments of the system as shown by proofs and by simulation 
results. 
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Appendix 

Proof. 
We have to prove that trf(t} = () 
for all tr E traces((TABLE((FB(I0BS) \ S). 

According to law L1 in [l] (3.5.3) it will suffice to find a set 
S of events such that {t} 
for all tr E traces((TABLEJIFBJJ0BS) \ S). 

S and such that trNi} = () 

We first select 
S' = aTABLE U a F B  - aOBS 

- (aTABLE n a F B ) .  

So we can use law L6 in [l J (3.5.1), thus, 
(TABLEIIFBJIOBS) \ S' = 
((TABLEIIFB) \ S')ll(OBS \ S') 

(TABLEIIFB) \ S' = (TABLE \ S')II(FB \ S') 

(TABLE \ S')IJ(FB \ S') = 
(safe-t -+ begin-fb-t -+ unsafe-fb -+ 
sa f e-f b -+ end-fb-t -+ unsa f e-t 3 
(TABLE \ S' ) ) ( ( (FB \ 5'') 

and 

while 

By law L12 in [I] (3.5.1), OBS \ S' = OBS. 

We then select S = S' U (aTABLE n a F B ) ,  
thus 

(TABLEIIFBIJOBS) \ S = 
(TABLEIIFB) \ SllOBS \ S 

(TABLEIIFB) \ S = 
(safe-t  -+ unsafe-fb 4 safe-fb 4 

unsafe-t -+ (TABLE((FB) \ S) 

and 

again, OBS \ S = OBS.  

Let T F B  = (TABLEIIFB) \ S ,  
then 

TFBllOBS = 
( s a f e 3  -+ unsafe-fb -+ safe-fb -+ 
(unsafef  -+ TFB))IIOBS 

(unsafef ;TFB)I(OBS = 
(unsa f e f  -+ sa f e f  -+ unsa f e-f b -+ 
sclfe-fb -+ (unsafe3  -+ T F B ) ) ( ( O B S  

and 

that is 
(unsa f e d ;  TFB)IIOBS = 
iX.(unsafe-t  4 ia fe- t  -+ 
unsafe-fb -+ safe-fb -+ X ) .  

Process T F B ( ( 0 B S  can hence be reformulated as two se- 
quential processes: TFBllOBS = P ;  Q ,  
where 

P = (sa f e f  -+ unsa f e-f b -+ sa f e-fb -+ SKIP). 
Q = ,uX.(unsafe-t -+ safe-t + 

unsafe-fb -+ safe- fb  -+ X ) .  

By law L1 in [ 1 J (5.3.1), 
traces(P; Q )  = {s; t l s  E traces(P) A t E traces(Q)). 

According to law L5 in [l] (1.8.1) and by analogy with X2 
in [l] (1,8.1), 

traces(P) = {s(s _< (safef,unsafe-fb,safe-fb,J)}. 
traces(Q) = 
Unlo{tls 5 (unsafe-t,safe_t,unsafe_fb, safe-fb)"}. 

Apparently, tr 1 {t) = () for all tr E traces(P;Q), i.e. 

for all tr E traces((TABLEIIFB((OBS) \ S ) .  
trrti} = 0 

We, therefore, conclude that 
trf(t} = () for all tr E traces(TdBLEl(FB((OBS) 

as it} # s. 

Thus the satisfaction of SE is proved. 0 
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