

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Design and prototyping of real-time systems using CSP and CML

Rischel, Hans; Sun, Hong Yan

Published in:
Real-Time Systems, 1997. Proceedings., Ninth Euromicro Workshop on

Link to article, DOI:
10.1109/EMWRTS.1997.613772

Publication date:
1997

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Rischel, H., & Sun, H. Y. (1997). Design and prototyping of real-time systems using CSP and CML. In Real-Time
Systems, 1997. Proceedings., Ninth Euromicro Workshop on (pp. 121-127). IEEE. DOI:
10.1109/EMWRTS.1997.613772

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13727376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/EMWRTS.1997.613772
http://orbit.dtu.dk/en/publications/design-and-prototyping-of-realtime-systems-using-csp-and-cml(5209a964-e431-46ff-b85e-234301a250ed).html

Design and Prototyping of Real-Time Systems Using CSP and CML

Hans Rischel and Hongyan Sun

Department of Information Technology
Technical University of Denmark

Building 344, DTU, 2800 Lyngby, Denmark
E-mail: rischel@it.dtu.dk and hs@it.dtu.dk

Fax: (45) 45930074

Abstract 4. Program structuring: Define functionality of the pro-
gram modules.

A procedure for systematic design of event based systems
is introduced by means of the Production Cell case study.
The design is documented by CSP-style processes, which al-

5. Functionality check: Check for satisfaction of func-
tional requirements.

low both verijcation using formal techniques and also vali-
dation of a rapid prototype in the functional language CML. 6. Prototyping: Test aprototypeprogrm in areal or sim-

ulated environment.

1. Introduction

Notations like CSP [l] or CCS [2] provide concise no-
tations for documenting the design of reactive or real-time
systems. These notations further allow verification of prop-
erties through calculation, or model checking [3]. Yet there
is a sizable gap from such specifications to executable pro-
grams needed to validate or test the design [4, 5,6,7].

In this paper we demonstrate how this gap is closed by
CML [8], an extension of ML [9]. As shown in this paper,
it is easy to get from a CSP design to an executable CML
program, and the program can be interfaced to programs in
other programming languages. We illustrate this idea by ap-
plying the design method for real-time systems presented
in [IO, 111 to a well-known example, the Production Cell
[123, which has been developed by FZI in Karlsruhe [12]
as a benchmark example of real-time systems development.
Our CML program has been combined with the FZI simula-
tor [121 to a working prototype.

The design method as presented in this paper consists of
the following sequence of steps, each leading to a documen-
tation with a specific form and scope.

1. System partition: Define components or subsystems
for a system.

2. Interface definition: Define interface events.

3. Event structuring: Define sequencing of events.

In the next section, we give an overview of the Produc-
tion Cell and the safety requirements. Section 3 describes
the partition of the system into subsystems. Each subsystem
corresponds to aphysical component of the Production Cell.
Section 4 defines interfaces between interacting subsystems
by synchronization events. In section 5, the event structure
is defined as a sequence of synchronization events by means
of a CSP expression. We perform a functionality check in
section 6 by applying algebraic laws of CSP. Section 7 con-
tains some remarks about timing check (which is not formal-
ized in this paper). In section 8, the prototype CML pro-
gram is obtained from the CSP expressions. Finally, section
9 presents our conclusions.

2. The Production Cell

The production cell is an actual industrial unit in a metal
processing plant in Karlsruhe. It is composed of a feed belt,
an elevating rotary table, a two-armed robot, a press and a
deposit belt (cf. Figure 1). In the simulated system a crane
is added in order to recycle the metal blanks.

Safety requirements: Safety requirements of the pro-
duction cell are classified into four groups: machine mobil-
ity must be restricted to certain limits; machine collisions
must be avoided; metal blanks must not be dropped outside
the safe areas; and metal blanks must not be placed on top
of each other.

In the case of the elevating rotary table, for example,
safety requirements include:

121
0-8186-8034-2/97 $10.00 0 1997 IEEE

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 09,2010 at 09:21:54 EST from IEEE Xplore. Restrictions apply.

0 The elevating rotary table must not rotate clockwise if
it is in the positionrequired for delivering a blank to the
robot. It must not rotate anticlockwise if it is in the po-
sition required for receiving a blank from the feed belt.

0 The elevating rotary table must not move down further
if the table is in the position required for receiving a
blank from the feed belt. It must not move up further
if it is in the position required for delivering a blank to
the robot.

0 The elevating rotary table must be in the desired posi-
tion when delivering a blank to the robot or when re-
ceiving a blank from the feed belt.

0 The elevating rotary table receives a blank only if there
is no blank on the table.

press

The robot moves to the position where arm 1 points to
the elevating rotary table and picks up the blank. It then ro-
tates until arm 2 points to the press, extends the arm into the
press, and then unloads the forged blank from the press. Af-
terwards, the robot rotates until arm 2 points to the deposit
belt, extends the arm to the belt and unloads the blank onto
the belt.

The deposit belt conveys the blank delivered by arm 2 of
the robot to the position where the travelling crane can pick
up the blank.

The crane picks up the blank from the deposit belt, and
transfers it to the feed belt for a new cycle of the system.

Each subsystem comprises sensors and actuators for the
physical component in the subsystem plus a program for
controlling these sensors and actuators.

Examining the requirements we find that the processing
of a metal blank comprises two kinds of action:

A local processing inside one subsystem, e.g. the blank
is moved by the feed belt or the table, or the blank is
forged in the press.

0 A transfer from one subsystem to the other, e.g. the
blank is conveyed from the feed belt to the table.

The first lund of action is performed completely within
one subsystem while the second requires cooperation be-
tween two subsystems.

4. Interface Definition

Interfaces between interacting subsystems are defined by
synchronization events. For example, the table subsystem
with synchronization events is shown in Figure 2. Figure 1. The production cell

3. System Partition

It seems reasonable to partition the system into subsys-
tems corresponding to the physical components illustrated
in Figure 1. Each subsystem fulfils a specific task during the
metal blank processing:

The feed belt conveys a metal blank to the elevating ro-
tary table when the table is in the position for receiving a
metal blank from the feed belt.

The table (elevating rotary table) performs an upward
movement and a anticlockwise rotation in order to transfer
the blank to the desired position where the robot can pick it
UP.

The press moves its lower plate upwards to the position
where arm 1 can load the blank. After the robot loads the
blank onto the press, the press forges the blank and then
moves the lower plate downwards to the position where the
blank can be unloaded by arm 2 of the robot.

feed belt Table robot

iable sensors and actuators EIII
Figure 2. The table subsystem with synchro-
nization events

The table subsystem interfaces with the feed belt sub-
system by the beg inad and end-jBd events, and with the
robot subsystem by the begindal and endda l events. The
events are shown in Table 1'.

'The events b e g i n b 3 and e n d b f b are used to get extra blanks onto
the feed belt from outside. The real system in the factory has no crane,

122

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 09,2010 at 09:21:54 EST from IEEE Xplore. Restrictions apply.

Events
b e g i n b - .

endd-jb

begin3-t

Legend
The feed belt is ready to receive
a blank
A blank has been put on the feed belt

The table is empty and in the receiving

I via the feed belt

beginfi-t j

e n d 9 - t i

i begin-t-a1

: end-t-a1
TableMain

end- .d
position
A blank has been conveyed to the table

Table 1. Synchronization events between sub-
systems

e n d 4 1 9

The table subsystem is further subdivided into Table-
Main, Tum and Updown programs (cf. Figure 3). The Up-
down and Tum programs control the vertical and horizontal
movements of the table through the updown and tum con-
trollers. The main program for the table subsystem, Table-
Main, synchronizes with these controllers in order to obtain
the proper movement of the table. The table subsystem with
local synchronization events is illustrated in Figure 3.

Arm 1 has been retracted after loading
a blank onto the press

so the events begindbr , e n d d b r , beginrJb, and e n d r J b will not
be present in this system. Instead there will be events begindba and
e n d d b a to synchronize the transfer of processed blanks out of the sys-
tem, and blanks are transferred into the system via the events b e g i n h a
and endb-jb.

begina2db

e n d a 2 d b

begindb-c

The deposit belt is ready to receive a blank
from arm 2
Arm 2 has delivered a blank on
the deposit belt

Both the crane and the deposit belt
are readv

beni

Data
integer

I I

Legend
The table is requested to move
to a horizontal uosition

I I
I .. Table i
I I

enddb-c

begin-c-Jb

sensors & actuators sensors & a m a t o n

The crane has taken a blank from
the deposit belt

The feed belt is ready to receive a blank
from the crane

Figure 3. The table subsystem with local syn-
chronization events

end-c-fl

Local interfaces within the table subsystem are defined
by four synchronization events: begindum, end-tum, be-
gin-updown, and end-updown, which are shown in Table 2.

The crane has transported a blank onto
the feed belt

Events
begindum

end-tum

begin-updown

end-updown

The table has rotated to

the desired uosition

Table 2. Synchronization events within the ta-
ble subsystem

The begindurn and begin-updown events contain corre-
sponding data values indicating the desired horizontal and
vertical end position for the table.

5. Event Structuring

The behaviour of each subsystem is controlled by a group
of synchronization events. The subsystem restricts the oc-
currence of these events in order to meet both functional and
safety requirements of the system. For example, synchro-
nization events in the main program of the table subsystem
are structured in a CSP expression as follows:

123

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 09,2010 at 09:21:54 EST from IEEE Xplore. Restrictions apply.

TableMain =

end-turn -+ end-updown -+
begin- f b-t -+ end-f b-t -+
begin-turn(45) -+ begin-updown(up) -+
end-turn -+ end-updown -+
begin-tal -+ end-t-al -+ TableMain).

. (beginhwn(0) -+ begin-updown(down) -+

The first two lines in this expression describe the move-
ment of the table to the receiving position by commands to
the tum and the updown controllers. The third line describes
the interfaces with the feed belt to agree on conveying a
metal blank from the feed belt to the table. The fourth and
fifth lines describe the movement of the table to the deliver-
ing position by commands to the turn and the updown con-
trollers. The last line describes the interfaces with the robot
to allow the blank to be picked up by arm 1. Whereupon this
the whole sequence is repeated.

Apparently, TableMain has a simple sequential structure
as events happen in a pre-specified order. But the event
structure for the robot subsystem will show branching cor-
responding to a choice between events. For example, when
arm 2 unloads a blank from the press and arm 1 is empty,
the robot can either rotate so that arm 1 can first pick up
a blank, then deliver it onto the deposit belt, or vice versa,
which depends on which synchronization event, begin-tal
or begina2db, is first satisfied. This kind of choice be-
tween events is expressed in CSP by the operator “I”.

Events
safe-t
unsafe2
sa fe f i

6. Functionality Check

Legend
The table is in the receiving position
The table may be outside the receiving position
The feed belt mav droD a blank onto the table

The event expressions are processes in the sense of CSP
(cf. [l]), so the algebraic laws of CSP can be applied to
prove properties of the programs.

For example, one of the safety requirements for the ele-
vating rotary table is R: the elevating rotary table must be
in the receiving position when a blank is conveyed from the
feed belt.

To check this safety requirement, we add an observer pro-
cess O B S to the system. Once the safety requirement W is
violated, O B S should indicate a failure by allowing the fail-
ure event t. We also include the events in Table 3 in the ta-
ble and the feed belt subsystems for the synchronization be-
tween OBS and the subsystem in question.

I unsafe3 I The feed belt will not drop a blank onto the table I

Table 3. Events for OBS observation

Thus, the main process for the table subsystem, TA-
BLE, is extended by including the safe2 and unsafe-t events:

T A B L E =
(begin-turn(0) -+ begin-updown(down) -+
end-turn -+ end-updown -+
sa f e-t + begin-f b-t -+ end-f b-t -+
begin-turn(45) -+ unsa f e f -+
begin-updown(up) -+ end-turn -+
end-updown -+ begin-t-a1 -+
end-t-al -+ T A B L E) .

The table is in the safe position when it has been turned to
angle 0 and moved down to the position for receiving a blank
from the feed belt, so the event safe-t is inserted after the
end_tum and end-updown events. The table becomes unsafe
as soon as any movement has bcen initiated, so the event un-
safe3 is inserted just after the begin-tum event. The events
safe@ and unsafe-$3 are similarly inserted in the program
of the feed belt subsystem.

a O B S = (safe+,unsafe-t,safe-fb,unsafe-fb,t}
is given by the following expressions:

An observer process O B S with the alphabet

OBS = (safe-t -+ O B S I safe- fb -+ O B S
1 unsafe-t -+ A 1 unsafe-fb -+ B) .

A = (s a f t f -+ OBS 1 safe- fb + A
I unsafe-t -+ A I unsafe-fb -+ t).

B = (safe- t -+ B I sa fe - fb -+ O B S
I unsafe-t -+ t I unsa fe - fb -+ B).

The observer process is always ready to participate in any
safe or unsafe event, and it becomes ready for the f event if
a dangerous situation should occur. Hence, if we can prove
that t T r { t } = () for all t r E traces(TABLEJIFBIIOBS),
then the satisfaction of W is proved. Here F B denotes the
main process of the feed belt subsystem.

The proof is given in the appendix. It is done by using the
laws of CSP only. The proof could probably be automatized
by using the FDR tool (cf. [3]).

7. Timing

Timing requirements of an individual component arise in

0 when distributing a global timing requirement over

two ways:

components

0 when implementing a functional requirement by a tim-
ing condition

For example, the requirement “TableMain should send
the begin-tun command at most lOOms after the end-._t
command has been received” can be part of implementing
the global timing requirement: “the production cell should

124

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 09,2010 at 09:21:54 EST from IEEE Xplore. Restrictions apply.

produce 500 plates per hour”. And the requirement “Tum
should send the tablestopJurn command at most lOms af-
ter the final table angle value has been received” can be part
of implementing the functional requirement “inaccuracy in
the table angle in the position for receiving a blank from the
feed belt must not exceed 5 degrees”.

The notation in this paper does not include the formal-
ization and verification of timing requirements, but it seems
possible to extend the notation by using suitable concept
from the recent book [4, 51 on mathematical methods for
real-time systems.

Operation
channel

8. Prototyping

Type Legend
unit + ’ l a chan Create a new channel

The concurrent ML language (CML) is an extension of
the standard ML (SML) programming language [9, 131,
which is a functional programming language with a flexible
type system and a powerful expression language where ex-
pressions may denote composite values of an arbitrary type.
It provides synchronous communication over typed chan-
nels as the basic communication and synchronization mech-
anism. Basic channel operations in CML are listed in Table
4.

accept
+ unit
’a chan + ’a

message to a channel
Read a synchronous
message from a channel

I I

send I ’a chan * ’a I Send a synchronous

Table 4. Basic channel operations in CML

The functions send and accept are used in pairs, i.e. if one
process uses send, the other process must use accept to syn-
chronize the communication over the channel. If one pro-
cess has a parameter to pass to the other, it should use send.
Both processes will wait until the communication has taken
place. The language allows a process to make a choice, syn-
chronizing on the first arriving communication over a set of
channels. It also allows a process to test whether a commu-
nication is pending on a channel.

The communication between subsystems (cf. Table 1)
is implemented by means of channels. The same is the
case for the local synchronizations inside a subsystem (cf.
Figure 4). It is then straightforward to derive the CML
programs for the CSP processes2, as the recursive definition

zIn the Production Cell example, the values to be transmitted over the
channels are simple constants. Other systems may include extensive com-
putations and local state variables, but that can also be handled by the
method.

of CSP process expressions can be preserved in the CML
program. For the table subsystem we hence get the Table
program as shown in Figure 4. It contains a main program
TableMain, and programs Updown and Tum for the updown
and turn controllers.

Table

begin>-t j f 1 I begin-t-a1

I end-t-a1 TableMain e m i 9 - t I
(to feed belt); i (torobot)

nd-updown nd-tum j

begin-updow begin-rum

j Updown

I I
’. l.... I ’

I I
t I mm sensors & actuators sensors & actuutors

fun Table0 =

let dotatype updown = up I down;
Val begin-updown = updown chnn;
vu1 end-updown = unit chan;
Val begin-Mm = int chan;
vu1 end-Mm = unit chan;

fun TableMain () =

(send (begin-tum. 0)
;send (begin-updown, down)
:accept (end-turn)
;accept (end-updown);
;send (begin>-t)
;accept (endjb-t)
;send (begin-updown, up)

;send (begin-rum, 45)

;accept (end-updown)
;accept (end-tum)
;send (begin-t-al)
;accept (end-t-al)
;TubleMuin 0;);

fun Updown 0 = ... ;
fun Tum 0 = ... ;
...

end;

Figure 4. A sketch of the program structure of
the table subsystem

For the event structure with branching, e.g. the robot sub-
system, the choice between two events is implemented in
CML by the select operation.

125

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 09,2010 at 09:21:54 EST from IEEE Xplore. Restrictions apply.

The main program Productioncell is composed of seven
subprograms, FeedBelt, Table, Robot, Press, DepositBelt,
Crane and Blank. The subprogram Blank is used to put ex-
tra blanks onto the feed belt in order to start the system dur-
ing the simulation. The remaining six subprograms imple-
ment the subsystems. These main components are executed
as parallel programs.

The local control programs, e.g. Updown and Turn of the
Table program, are designed with a unified interface con-
sisting of a pair of synchronizations (beginx, end-x) with
the higher-level program, e.g. TableMain. Actually, these
controllers have different interfaces to the physical environ-
ment, but these differences are local to the individual pro-
gram for each controller and not visible from the outside.

The CML program for the Production cell has been exer-
cised with the FZI simulator. The simulator has two signif-
icant functions. One is to simulate physical components in-
cluding internal controllers of each component. The other is
to visualize the simulated movements of each physical com-
ponent during the CML program execution. This requires
some extension of the simulator such that the interfaces are
expressed in terms of CML channels. The running system
including the simulator is composed of two UNIX processes
connected by UNIX pipes as shown in Figure 5.

Figure 6. Working window of the FZI simulator

The program for each subsystem can also be tested sep-
arately with the simulator. Testing e.g. the table subsystem
requires a small CML program to simulate the interfaces to
the other components on the channels beginfi-t, end-jb-t,
begin-tal and endda l , and the test can be executed by let-
ting this program interact with the operator via the terminal.

9. Conclusion
CML Program

I I
6

Interface to 2
FZI Simulator Y

, Control Program FZI Simulator

4 I I UNIX I I

pipes
CML Channels

Figure 5. FZI simulator and CML control pro-
gram

The communication over the UNIX pipes uses an ASCII
protocol which is part of the FZI system. The interface
program (programmed in CML) performs the multiplex-
ing/demultiplexing into a set of CML channels3. The con-
trol program could in principle be used for controlling a real,
physical plant by connecting the CML channels directly to
U 0 driver programs for peripherals connected to the physi-
cal units in the plant.

Figure 6 is a screen dump of the working window of the
FZI simulator controlled by the CML program.

3Each implementation of a control program for the FZI production
cell has its individual interface program for transforming between the FZI
ASCII protocol and the communication primitives in the programming lan-
guage used for the control program.

We have shown, in this paper, how to apply a design
method with a particular case study Production cell. The
method itself is engineering oriented, and it is based on a
sound theoretical foundation. The use of CML for program-
ming concurrent systems in practice has shown a satisfac-
tory result as we have obtained a running prototype by com-
bining our program with the FZI simulator. Each synchro-
nization event, which is the key element in our method, can
be directly transferred into a CML channel, and the event
expressions are easily converted to CML functions. The re-
sulting program satisfies the functional and safety require-
ments of the system as shown by proofs and by simulation
results.

Acknowledgment

We would like to thank Professor Anders P. Ravn for
many helpful discussions and valuable suggestions.

References

[11 C. A. R. Hoare. Communicating Sequential Processes,
Computer Science Series, Prentice Hall, 1985.

[2] Robin Milner. Communication and Concurrency,
Computer Science Series, Prentice Hall, 1989.

126

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 09,2010 at 09:21:54 EST from IEEE Xplore. Restrictions apply.

Formal Systems Ltd. Failures Divergence Refinement
- User Manual and Tutorial, Version 1.4, Formal Sys-
tems (Europe) Ltd., 1994.

M. Joseph (Ed). Real-Time Systems: SpeciJication,
Verijcation and Analysis, Computer Science Series,
Prentice Hall, 1996.

C . Heitmeyer and D. Mandrioli (Eds). Formal Tech-
niques In Real-Time Systems, Trends in Software-
Engineering Series, Wiley, 1996.

J. Hooman and J. Vain. An Integrated Technique for
Developing Real-Time Systems, Proceedings of the
Seventh Euromicro Workshop on Real-Time Systems,
Odense, Denmark, June 14-16,1995, pp236-243.

N. Nissanke. Towards Refinement in Realtime Pro-
gramming, Proceedings of the Seventh Euromicro
Workshop on Real-Time Systems, Odense, Denmark,
June 14- 16, 1995, pp244-25 1.

John H. Reppy. Concurrent Programming with Events
- The Concurrent ML Manual, Version 0.9.8, AT&T
Bell Lab., February 1, 1993.

L. C. Paulson. ML for the Working Programmer, Cam-
bridge University Press, 1991.

Anders P. Ravn, Hans Rischel and Hans Henrik
Lovengreen. A Design Method for Embedded Soft-
ware Systems, BIT28, 1988, pp427-438.

Hans Henrik Lovengreen, Anders P. Ravn and Hans
Rischel. Design of Embedded, Real-time Systems:
Developing a Method for Practical Software Engineer-
ing, COMPEURO 90, Tel-Aviv, Israel May 7-9, 1990.

Claus Lewerentz and Thomas Lindner (Eds). Formal
Development of Reactive Systems: Case Study Pm-
duction Cell, LNCS 891, Springer-Verlag, 1995.

R. Milner, M. Tofte and R. Harper. The DeJinition of
StundardML, The MIT Press, 1990.

Appendix

Proof.
We have to prove that trf(t} = ()
for all tr E traces((TABLE((FB(I0BS) \ S).

According to law L1 in [l] (3.5.3) it will suffice to find a set
S of events such that {t}
for all tr E traces((TABLEJIFBJJ0BS) \ S).

S and such that trNi} = ()

We first select
S' = aTABLE U a F B - aOBS

- (aTABLE n a F B) .

So we can use law L6 in [l J (3.5.1), thus,
(TABLEIIFBJIOBS) \ S' =
((TABLEIIFB) \ S')ll(OBS \ S')

(TABLEIIFB) \ S' = (TABLE \ S')II(FB \ S')

(TABLE \ S')IJ(FB \ S') =
(safe-t -+ begin-fb-t -+ unsafe-fb -+
sa f e-f b -+ end-fb-t -+ unsa f e-t 3
(TABLE \ S')) (((FB \ 5'')

and

while

By law L12 in [I] (3.5.1), OBS \ S' = OBS.

We then select S = S' U (aTABLE n a F B) ,
thus

(TABLEIIFBIJOBS) \ S =
(TABLEIIFB) \ SllOBS \ S

(TABLEIIFB) \ S =
(safe-t -+ unsafe-fb 4 safe-fb 4

unsafe-t -+ (TABLE((FB) \ S)

and

again, OBS \ S = OBS.

Let T F B = (TABLEIIFB) \ S ,
then

TFBllOBS =
(s a f e 3 -+ unsafe-fb -+ safe-fb -+
(unsafef -+ TFB))IIOBS

(unsafef ;TFB)I(OBS =
(unsa f e f -+ sa f e f -+ unsa f e-f b -+
sclfe-fb -+ (unsafe3 -+ T F B)) ((O B S

and

that is
(unsa f e d ; TFB)IIOBS =
iX.(unsafe-t 4 ia fe- t -+
unsafe-fb -+ safe-fb -+ X) .

Process T F B ((0 B S can hence be reformulated as two se-
quential processes: TFBllOBS = P ; Q ,
where

P = (sa f e f -+ unsa f e-f b -+ sa f e-fb -+ SKIP).
Q = ,uX.(unsafe-t -+ safe-t +

unsafe-fb -+ safe- fb -+ X) .

By law L1 in [1 J (5.3.1),
traces(P; Q) = {s; t l s E traces(P) A t E traces(Q)).

According to law L5 in [l] (1.8.1) and by analogy with X2
in [l] (1,8.1),

traces(P) = {s(s _< (safef,unsafe-fb,safe-fb,J)}.
traces(Q) =
Unlo{tls 5 (unsafe-t,safe_t,unsafe_fb, safe-fb)"}.

Apparently, tr 1 {t) = () for all tr E traces(P;Q), i.e.

for all tr E traces((TABLEIIFB((OBS) \ S) .
trrti} = 0

We, therefore, conclude that
trf(t} = () for all tr E traces(TdBLEl(FB((OBS)

as it} # s.

Thus the satisfaction of SE is proved. 0

127

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 09,2010 at 09:21:54 EST from IEEE Xplore. Restrictions apply.

