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Fabrication and Characterization of Truly 3-D
Diffuser/Nozzle Microstructures in Silicon

M. Heschel, M. Müllenborn, and S. Bouwstra

Abstract—We present microfabrication and characterization of
truly three-dimensional (3-D) diffuser/nozzle structures in silicon.
Chemical vapor deposition (CVD), reactive ion etching (RIE),
and laser-assisted etching are used to etch flow chambers and
diffuser/nozzle elements. The flow behavior of the fabricated
elements and the dependence of diffuser/nozzle efficiency on
structure geometry has been investigated. The large freedom of
3-D micromachining combined with rapid prototyping allows to
characterize and optimize diffuser/nozzle structures. [199]

Index Terms— Diffuser, laser micromachining, micropump,
nozzle, 3-D microstructures.

I. INTRODUCTION

SUBSTITUTING particle-sensitive check-valves in mi-
cropumps by diffuser/nozzle elements enables the

handling of particle-containing fluids. Medical applications,
such as handling of cell fluids like blood, become possible.

Diffuser/nozzle structures, applied as flow diodes in a minia-
turized pump, were first presented by Stemmeet al. [1]. A
micromachined pump in silicon, using this working princi-
ple, was made by Olssonet al. [2]. However, in order to
achieve reasonable volume flows and efficiencies for low-
power consumption, the diffuser/nozzle elements have to be
optimized. The design of diffuser/nozzle elements is a very
difficult task, since no general diffuser theory exists because
of their complicated flow behavior. A large set of variables is
involved, which makes an empirical identification of optimal
diffuser design costly in terms of time and labor. In general,
the volume flow for a given pressure drop is higher in diffuser
than in nozzle direction. The magnitude of this difference, and
the efficiency of the structure, depend on the ratio of diffuser
outlet to inlet cross-sectional area, the taper angle, and the
ratio of diffuser length to inlet diameter. If the opening angle
is too large, the opposite effect can be observed as reported by
Gerlachet al. [3]. Then, the volume flow is higher in nozzle
than in diffuser direction.

This paper presents a simple theory for the flow behavior
and experimental verification. Truly 3-D microstructures are
realized using laser micromachining.

II. THEORY

The pressure drop per length for Poiseuille flow can be
described by the Hagen–Poiseuille Law

(1)

Manuscript received February 26, 1996; revised October 8, 1996. Subject
Editor, N. de Rooji.

The authors are with Mikroelektronik Centret, DK-2800 Lyngby, Denmark.
Publisher Item Identifier S 1057-7157(97)02120-3.

where is the mean velocity, is the volume flow, or
is the radius or diameter (or hydraulic radius or diameter for

noncircular cross sections) andis the dynamic viscosity of
the fluid [4]. Note that the pressure drop changes proportional
to the mean velocity in the case of Poiseuille flow. For a
diffuser element with the length and the taper angle the
linear pressure drop due to Poiseuille flow can be written as

(2)

with and the throat diameter. Considering the
rounded inlet, the integral is much more complicated and gives
for the linear pressure drop due to Poiseuille flow for a diffuser
structure as shown in Fig. 1(a):

(3)

with and the radius of the rounded inlet. If
the flow or velocity in diffuser direction is increased beyond a
certain value, separation from the wall occurs (involving back
flow) as indicated in Fig. 1(a). Gradients in the flow profile
increase more than proportional with flow. An additional
pressure drop nonlinear with flow has to be added to the
friction pressure drop in order to obtain the total pressure drop

(4)

where means the fluid density, is a transition threshold
velocity, is the throat mean velocity, and is the loss
coefficient of the diffuser. The second term in (4) covers the
losses due to back flows [4].

In nozzle direction, the flow passes without separation from
the wall. The fluid leaves the nozzle always forming back
flows, which effectively reduces the effective smallest cross
section and extends the effective length. This also gives a
nonlinear contribution to the pressure drop, see Fig. 1(b). The
total pressure drop in nozzle direction can hence be written as

(5)

where is the loss coefficient of the nozzle.
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Fig. 1. Schematic drawing of a diffuser/nozzle element, indicating (a) flow
in diffuser direction and (b) flow in nozzle direction, radiusR(x), throat
radiusR0, taper angle2�, structure lengthL and velocity profilesV (R).

Fig. 2. Process sequence for inlet and outlet chamber fabrication.

III. FABRICATION

In order to test the diffuser/nozzle devices, the actual dif-
fuser/nozzle structure, inlet and outlet chambers and via holes
have been fabricated according to the process sequence shown
in Fig. 2. The diffuser/nozzle structures have been etched
by laser-assisted etching, avoiding the need for photo masks
and, hence, providing the possibility of rapid prototyping.
Moreover, real three-dimensional (3-D) micromachining is
possible, including tapered depth as well as rounded corners.

A 350- m-thick (100) double-side polished silicon wafer is
covered at the frontside by a 10-m-thick plasma enhanced
chemical vapor deposited (PECVD) SiO, followed by low
pressure chemical vapor deposition (LPCVD) of 2m of
polysilicon [Fig. 2(a)]. Openings corresponding to the desired
via holes are etched into the polysilicon applying laser-assisted
etching as described by M̈ullenbornet al. [5] [Fig. 2(b)]. The
exposed SiOis then etched 1/3 of the thickness using reactive
ion etching (RIE) in a CF/CHF plasma [Fig. 2(c)]. A second
laser-assisted etch step is applied to define the chamber size,
followed by a second SiO etch (RIE) [Fig. 2(d) and (e),
respectively]. The resulting stepped SiOstructure works as
a dynamic mask and is transferred into the bulk silicon via

TABLE I
DIMENSIONS OF THEFABRICATED DIFFUSER/NOZZLE STRUCTURES.THE VALUES

FOR STRUCTURE B ARE THE DEFAULT OR CENTER VALUES. ALL STRUCTURES

HAVE A LENGTH OF 1200�m. THE DEPTH IS EQUAL THE TOP WIDTH, THE

BOTTOM WIDTH IS HALF THE TOP WIDTH. ALL OUTLET RIMS ARE SHARP-EDGED

RIE in a SF/O plasma, as shown in Fig. 2(f). Finally, the
remaining SiO is removed in a buffered HF solution.

The chambers are approximately 2 2 mm in area and
200 m in depth. The via holes have a side length of 400

m. The first laser-assisted etch step takes approximately 3 s,
and the second one takes 80 s using a scan speed of 10 mm/s
and a scan width and spot diameter of 5m. The SiO etch
rate is 0.1 m/min and the silicon etch rate varied between
2.5 m/min and 1.9 m/min, depending on the area of the
exposed silicon. SEM photographs of the top view and cross
section of a chamber including a via hole are shown in Fig. 3.

Next, diffuser/nozzle structures were realized between each
pair of two chambers. The structures have been designed in
AutoCAD and directly etched into silicon by laser-assisted
etching [6]. Using this technique, truly 3-D micromachining
is achievable, resulting in different taper angles, including
a controlled taper in the depth direction, structure widths,
and inlet and outlet shapes. The etch time varies between 90
min and 150 min for one diffuser/nozzle element, depending
on structure dimensions. The scan speed is 5 mm/s and the
scan width and the spot diameter 1m. The diffuser/nozzle
structures have the same taper angle in horizontal and vertical
direction. Rounded diffuser inlet rims (when present) have
been made in side walls as well as in the bottom. The structures
all have a length of 1200 m and top widths equal to the
depths. Their dimensions are presented in Table I. A SEM
photograph of a diffuser/nozzle structure between inlet and
outlet chambers is shown in Fig. 4. The diffuser inlet is
rounded to reduce the entrance pressure loss [7]. The cross-
sectional shape is trapeziform, caused by reflection and shadow
effects during the laser-assisted etching process. The angle
between the silicon surface and the side walls is approximately
76 . Therefore, the bottom width is approximately equal to half
of the top width. The roughness of the diffuser/nozzle walls
is approximately 1 m, determined using an optical surface
profiler.

Finally, the samples are anodically bonded to 1-mm-thick
Pyrex glass to seal them. A plastic holder is glued to the
backside to ensure stable connections between inlet and outlet
chambers and brass tubes. A complete device containing two
diffuser/nozzle structures is shown in Fig. 5.

IV. CHARACTERIZATION

The volume flows are measured by determining weight
changes in a given period of time. The used measurement
setup is shown in Fig. 6. A pressure difference is applied
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(a)

(b)

Fig. 3. (a) Top view and (b) cross section of a chamber with a via hole etched using RIE.

to the diffuser/nozzle structure using a pressure controller
and calibration device and a pressure chamber filled with
water. The weight of the pumped water is measured using
a precision balance, with a maximum resolution of 10g,
which is in the case of water equivalent to 10 nl. The pressure
chamber can be moved in the z-direction to keep the pressure
chamber and the collecting chamber at the same height level,
which is necessary to avoid additional pressure differences.
The collecting chamber is covered to prevent evaporation of
the pumped water. Rubber tubes ensure a tight connection
between all devices. The weight is measured four times and
averaged for each pressure difference and converted into
the corresponding volume flow using the monitored elapsed
time. The sum of all the flow resistances in series with the
diffuser/nozzle structures are negligible.

The typical flow behavior of a diffuser/nozzle element is
shown in Fig. 7. The experimental values are fitted by applying
the following model. The total pressure drop of a diffuser

for low volume flows is only caused by friction effects and
increases linearly with an increasing volume flow. This
behavior can be expressed by

(6)

The constant can directly be used to characterize the flow
resistance caused by friction. For an increasing diffuser flow
a parabolic contribution to the pressure drop is apparent. A
threshold flow is observed. Passing this threshold flow, which
is different for the different structures, the additional parabolic
pressure drop has to be added to the proportional pressure
drop. The experimental values for total pressure drop have
been fitted using (4). For nozzle flow, no threshold flow is
observed. The total pressure drop shows parabolic behavior
over the whole pressure range and is fitted applying (5) with

. All resulting instead of calculated constants
are presented in Table II.
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(a)

(b) (c)

Fig. 4. (a) Scanning electron micrograph of a diffuser/nozzle structure with inlet and outlet chambers. (b) Photograph of the top view of the structure
and (c) close-up of the rounded diffuser inlet.

TABLE II
THE CONSTANTSRD;N DESCRIBE THELINEAR FLOW RESISTANCE FOR

LAMINAR FLOW, THE LOSSCOEFFICIENTSKD AND KN COVER LOSSESDUE TO

BACK FLOWS, AND Vth IS THE THRESHOLD VELOCITY FOR TRANSITIONAL FLOW

IN DIFFUSER DIRECTION. THE PREDICTED VALUES FORRD ARE CALCULATED

ACCORDING TO (3), APPLYING THE GEOMETRY FROM FIG. 1(a). THE THRESHOLD

VELOCITY IN NOZZLE DIRECTION DOESNOT DEVIATE SIGNIFICANTLY FROM ZERO

V. DISCUSSION

The predicted flow resistances calculated according to (3)
are confirmed by the experimentally obtained values, except
for Structures A, D, and F. The experimental values for
nozzle flow are slightly lower than for diffuser flow. The flow
resistances strongly depend on structure dimensions,
such as smallest cross-sectional area and taper angle (see
Table II). The flow resistances increase with a decreasing
cross-sectional area and a decreasing taper angle. The diffuser

TABLE III
MAXIMUM DIFFUSER/NOZZLE EFFICIENCY IN DEPENDENCE

OF NET VOLUME FLOW AND PRESSUREDIFFERENCE

threshold flow velocity is a weak function of geometry and
increases with a decreasing cross-sectional area. For different
values of taper angle, a maximum threshold flow is observed
for .

The loss coefficients and are weak functions of
dimensions, although it does not turn out from structures A
and D. The nozzle loss coefficients are slightly higher than
the diffuser loss coefficients. Combined with the presence of
a threshold velocity in diffuser direction, the pressure drop in
nozzle direction is always higher.

The volume flow difference between diffuser and nozzle
direction, divided by the average volume flow at equal differ-
ential pressure, can be taken as an efficiency.
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Fig. 5. Photograph of a complete device, containing two diffuser/nozzle structures.

Fig. 6. Setup for volume flow measurements.

For different taper angles the efficiency is shown in Fig. 8.
The curves are drawn using the best fits from the previous
section. The efficiency is zero at zero volume flow, increasing,
reaching a maximum, and dropping slowly. The maximum
increases slightly with a decreasing taper angle. Note that this
increase in efficiency takes place with an increase in volume
flow at which it occurs.

Fig. 9 shows the efficiency versus flow for different throat
diameters. The efficiency appears to be a weak function of
this parameter. The maxima are almost equal, but occur at
different volume flows.

The influence of different diffuser inlet shapes on the
efficiency is shown in Fig. 10. A diffuser/nozzle element with
a rounded inlet yields higher efficiencies than a sharp-edged
one. This difference in efficiency can not be observed for the
lower volume flow range: for low flows the flow does not
separate from the wall.

The maxima efficiencies have been chosen to character-
ize the flow behavior in dependence on the structure ge-
ometry. Table III shows these efficiencies combined with
average volume flow and pressure difference at which they
occur.
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Fig. 7. Diffuser and nozzle volume flow versus applied differential pressure
for structure A.

Fig. 8. Difference in volume flow divided by and versus average volume
flow at equal differential pressure for different taper angles (structures B, D,
and E). The throat cross section and the length are the same for all three
structures.

Fig. 9. Difference in volume flow divided by and versus average volume
flow at equal differential pressure for different smallest cross-sectional areas
(structures A, B, and C). The taper angle and the length are the same for
all structures.

VI. CONCLUSIONS

A process sequence to realize deep inlet and outlet chambers
with via holes has been designed, using CVD processes, RIE,

Fig. 10. Difference in volume flow divided by and versus average volume
flow at equal differential pressure for different throat shapes (structures B and
F), everything else being equal.

and laser-assisted etching. Chambers with 90vertical walls
and smooth bottoms have been achieved.

Prototypes of diffuser/nozzle elements have been designed
and etched into silicon by laser-assisted etching.

The flow behavior of these structures has been investigated
and discussed with respect to structure geometries. A model for
Poiseuille flow resistance has been developed. The calculated
values have been confirmed in most cases by the experi-
mentally obtained values. The loss coefficients for nonlinear
behavior have been extracted from volume flow measurements.
They show a weak dependence on structure geometry and are
slightly higher in nozzle direction than in diffuser direction.

The shape of the structure throat should be rounded in order
to improve the flow behavior.
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