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Theory of Nondegenerate Four-Wave Mixing
Between Pulses in a Semiconductor Waveguide

J. Mørk and A. Mecozzi

Abstract—We develop a perturbation theory for calculating the
effects of saturation on nondegenerate four-wave mixing between
short optical pulses in a semiconductor optical amplifier. Satura-
tion due to ultrafast intraband dynamics like carrier heating and
spectral hole burning is found to be important for pulses on the
order of 10–20 ps or less.

Index Terms—Optical mixing, optical pulses, semiconductor
waveguides.

I. INTRODUCTION

T HE phenomenon of nondegenerate four-wave mixing
(FWM) in semiconductor optical amplifiers has several

important applications in high-capacity optical communica-
tion systems. Dispersion compensation using midspan spectral
inversion [1], wavelength conversion [2], [3], and demulti-
plexing of high-bit-rate time-division multiplexed pulse trains
[4] are important examples of all-optical signal processing
techniques based on FWM, which have been experimentally
demonstrated to have a significant potential in future broad-
band optical networks. In addition, FWM has shown to be
a useful spectroscopic technique for investigating the physi-
cal origin of ultrafast nonlinearities in active semiconductor
waveguides [5]–[8].

Several papers [9]–[14] have already been devoted to the
theoretical analysis of FWM in semiconductor optical am-
plifiers. Good agreement between experiment and theory has
been demonstrated in the case of FWM among CW beams,
both in terms of the detuning dependence [7], [8] and the
saturation behavior [15]. In contrast, much less work has been
carried out for the case of FWM among short pulses [16],
which is the most important case for practical applications. An
important exception is the paper by Shtaif and Eisenstein [17],
calculating the FWM efficiency and saturation characteristics
for optical pulses. Those calculations are, however, limited to
pulsewidths of the order of 10–20 ps or longer, because they
neglect the contribution of the ultrafast dynamics on the gain
saturation. In this paper, we present analytical calculations of
the FWM efficiency based on a response function approach
[18]–[20] and demonstrate the important influence of the
ultrafast gain dynamic processes for the saturation behavior.

The calculations are based on a perturbative treatment
for the induced gain and index changes as well as for the
field propagation. Including only first-order terms yields
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results which do not include nonlinear saturation effects.
Such a theory is directly applicable to the analysis of
spectroscopic measurements, which are commonly carried
out in the linear regime.

To evaluate the influence of saturation effects, a second-
order perturbation theory should be used. The material dy-
namics are still treated as being linear, but the effect of
saturation on the propagation of the fields is then taken into
account. By this, the effects of carrier density changes, carrier
heating, and spectral hole burning (SHB) are treated on equal
footing. This is reasonable for a single pair of short pulses,
since gain saturation calculations [21] show these effects to be
comparable for pulses shorter than 10–20 ps. The effects of
coupling between the different saturation mechanisms for the
material susceptibility itself is not included. The coupling of
the carrier heating and SHB contributions with the saturation
of the carrier density was shown to be important in the
CW case, [15] but in the present short-pulse low-repetition
case, second-order effects in the carrier heating and SHB
mechanisms themselves are expected to be equally important.

Strictly speaking, this paper is limited to the analysis of a
single pair of optical pulses interacting in the semiconductor
medium. In many practical applications, however, the
situation will be that of a train of short optical (signal or
probe) pulses at a high repetition rate interacting with another
train of stronger (sampling or pump) pulses, at a relatively
low repetition rate. In this case, the saturation effect of the
signal beam may be treated on an average power basis to
provide an effective gain, while the analysis of the present
paper can be invoked to understand the saturation effects of
the sampling beam. Our conclusions, therefore, also pertain
to this important practical example.

The paper is organized as follows: in Section II, we present
the basic equations for treating pulse propagation and material
dynamics and make a general perturbation analysis. Specific
expressions for the FWM efficiency are derived in the linear
regime of first-order perturbation theory, Section II-A, and
in the saturation regime, Section II-B, where the analysis is
taken to second-order. The results are illustrated and discussed
in Section III, and finally our conclusions are summarized in
Section IV.

II. PROPAGATION EQUATIONS

Given the real electric field , the slowly varying
envelope is defined as

(1)

where is the reference optical frequency and
is the wavenumber determined by the background refractive
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index . In [19], the following propagation equation
is derived for the slowly varying envelope field :

(2)

with the linear operator defined by

(3)

where is the wavenumber change from the
reference value , and

(4)

is the net modal gain, with being the confinement factor,
the material gain, and the internal loss. The source term

is given by

(5)

where is the response function of the medium (see
Appendix A), calculated using the adiabatic approximation for
the dynamics of the medium polarization [18].

We emphasize here that the local gain and index changes
induced by the field are approximated as being linear in the
local intensity, cf. (5). In reality, carrier density changes, e.g.,
induced by the field, saturates with increasing intensity due
to the “back-action” of the induced gain change and leads to
correction terms of order in the propagation equation
(2). The same holds true for the contributions from SHB and
carrier heating and even leads to a mutual interdependence
of the different contributions (see also [15]). We are treating
here the case of very short pulses, where the contributions
from the ultrafast processes and the carrier density changes
are comparable and therefore have to be treated within the
same approximation. The neglect of the higher order terms in
(2) means that onlysaturationeffects to second-order in the
field should be analyzed on the basis of that equation.

We shall treat the source term as a perturbation and
calculate the changes it induces to the electric field propagating
in the waveguide to second-order in the perturbation. Thus,
expanding the field as

(6)

we get the following hierarchy of equations:

(7)

(8)

with

(9)

(10)

The solution of (7) with initial condition
is

(11)

and the solution of (8) with initial conditions
, is

(12)

In [19], the first-order result was used to analyze frequency-
degenerate pump-probe measurements employing ultrashort
optical pulses. Here, we shall apply the formalism to the
case of nondegenerate four-wave mixing. The first-order result
already includes the generation of a conjugate signal, but by
taking the calculation to second-order we can also study the
effects of saturation on the generation of the conjugate signal.

We now decompose the total electric field into components
corresponding to the pump frequency, the probe frequency

, and the conjugate frequency :

(13)

with

(14)

With these definitions, the spectra of the envelope fieldsare
centered at DC. Applying the decomposition (13) also for the
different orders in the perturbation expansion, inserting into
(10)–(12), and separating terms at DC, and we
can then obtain expressions for the pump, probe and conjugate
fields. In this most general form, the theory can be used to
analyze the influence on the conjugate signal of dispersion,
leading to pulse broadening and phase mismatch, as well as
chirp.

Here, we shall limit ourselves to linear index dispersion. The
neglect of group velocity dispersion is a good approximation
for pulses longer than 100 fs [22] and frequency detunings

less than 10 THz [12]. We then have

(15)

where , with being the group velocity. The
last term of (15) can be removed by transforming to a frame
moving with the group velocity, i.e., we introduce local time

by . Henceforth, denotes local time.
Rather than utilizing the approximated directly in

(10)–(12), we shall take the approach of first formulating
propagation equations for the pump, probe, and conjugate
envelope fields. In the action of the operatoron the electrical
field, we shall assume the envelope to be slowly varying in
comparison with . This approximation is consistent
with the inherent assumption that the spectra of pump, probe,
and conjugate can be separated and leads to

(16)

with the constants defined as

(17)
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Inserting the decomposition (13) into (2) and (5), assuming the
pump to be much stronger than the probe and conjugate fields

(18)

and separating the field components, we get the following set
of propagation equations:

(19)

with the source terms defined as

(20)

(21)

(22)

In the integrals over , we made the transformation .
The condition for separating the frequency components is of
course that the spectral widths of the pump and probe pulses
are much smaller than the frequency separation, i.e.,

(23)

where and are the temporal widths of pump and
probe pulses. In (20)–(22), the terms containing reflect
saturation due to the pump. The terms containing (or

), , reflect mixing between the pump at and
the signal at , which leads to a temporal “grating” that
scatters the pump to the frequency (or ).

Applying the perturbation expansion

(24)

we get for the different orders

(25)

(26)

With initial conditions

(27)

the solutions are

(28)

(29)

The expressions for the source terms and follow
from (20) to (22) by collecting terms of zeroth- and first-order,
respectively, and will be given in the following two sections.

A. Linear Regime—First-Order Perturbation Theory

We shall limit ourselves to the usual case where, at the input
of the waveguide, signals are injected only at the pump and
the probe frequency, i.e.,

(30)

Using (28), we then get

(31)

(32)

(33)

The wave mixing terms in (31)–(33) are governed by expres-
sions of the form

(34)

Defining the Fourier transform pair

(35)

(36)

we have

(37)

with

(38)

so that

(39)
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This expression shows that the spectrum is centered
around and has a width given by the width of the
convolved spectra of and . Now, the wave mixing
terms in (31)–(33) are governed by . Let us
assume that in addition to the relation (23) the spectrum of the
response function, , varies slowly over an interval around

, given by the spectral width of . Then

(40)

This approximation can also be inferred by noting, from
the definition of , that for frequencies for which the
separation is possible, the exponential factor varies
quickly compared to the field amplitudes, which can be taken
outside of the integral with , since the response function
peaks here.

The terms in (31)–(33) expressing saturation by the pump
are governed by . The appropriate approximation
for this quantity depends on the relaxation time constants of

. Let us write on the form

(41)

where are the components ofwhose exponential decay
time is slow compared with the width of the pump pulse and

are the components which are fast. Then

(42)

which is approximately valid over the duration of the pump
pulse. The pulse energy is

(43)

with the constant defined as

(44)

where is the refractive index, is the velocity of light in
vacuum, is the vacuum permittivity, and and are the
width and heigth of the active region. For the field changes,
we find

(45)

(46)

(47)

with the definition

(48)

The energy of the conjugate pulse at the output becomes

(49)

where (17) has been used. Notice that the expression for
actually is of second-order in the perturbation; this is,

however, the lowest order contribution to the intensity of the
conjugate signal. With heterodyne detection, the corresponding
beat signal with a strong local oscillator would be of first-order
in the perturbation. The integral overin (49) depends on the
pump-probe delay time, since can be assumed to
peak at , and at .

The FWM efficiency is defined as the ratio between the
output energy of the conjugate pulse and the input energy of
the probe pulse

(50)

We see that scales with the square of the incident pump
intensity [17]. Often one measures the ratioof the conjugate
output to the probe output

(51)

where the approximation comes from neglecting terms in the
expression for the probe output which are of first- and second-
order in the pump power ; this is correct to second-order
in the pump intensity.

Let us consider the special case of pump and probe having
the same temporal dependence:

(52)

with being a constant. Then

(53)

which shows that the intensity of the conjugate scales with
the third power of the pump output intensity in the low-power
regime where saturation effects are negligible [15].
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Let us consider also the probe output pulse energy

(54)

We utilized the exact expression for and defined
the cross-correlation function

(55)

which depends implicitly on the pump–probe delay time.
denotes the real part of. The expression for

shows that the probe output contains the usual (incoherent)
pump–probe signal as well as a wave mixing signal when
the pump and probe overlap in time. The incoherent signal
does not show any dependence on due to the adiabatic
approximation employed in the derivation of (5).

We can also calculate the output energy of the pump pulse:

(56)

(57)

where the approximation (42) was used. In Appendix A, it is
shown how integrals over powers of the pulse intensity can be

treated. Using these results, we find

(58)

where is a constant depending on the pulse shape and
is the FWHM of the pump pulse intensity .

Equation (58) shows the relative influence of the slowly
recovering carrier density saturation, through , and
the ultrafast saturation effects of carrier heating and SHB,
through . Defining the critical pulsewidth as
the pulsewidth below which the ultrafast saturation effects
dominate, we find from the expressions given in Appendix A

(59)

Here, is the total nonlinear gain suppression
parameter and is the differential gain. We considered the
typical case of and neglected the small
influence of two-photon absorption. The critical pulsewidth
can be related to the factor which characterizes the mod-
ulation bandwidth of semiconductor lasers,

, where is the cavity loss rate. For large
cavity loss rates, , and we have the simple
relation

(60)

A typical value of for InGaAsP semiconductor lasers is in
the range of 300 to 400 ps, although it may be as large as 900
ps. [23], [24]. For 400 ps, we thus get a typical critical
pulsewidth of 10 ps.

The 3-dB input pulse saturation energy is the
value of for which the pulse gain attains half its
small signal value, , i.e.,

(61)

Notice that the calculation of the 3-dB saturation energy is just
at the edge of the validity of the first-order perturbative ap-
proach. However, had the characteristic saturation energy been
defined at the 1-dB point, the result would have been the same
as in (61) with just a different prefactor, i.e., the pulsewidth
dependence is the same. In [25], we have developed an
iterative technique for calculating the amplifier input-output
pulse relation, which can be employed for simple and accurate
numerical computation of the saturation characteristics in the
case of single-pulse amplification.

In the next section, second-order perturbation theory is used
to calculate the effects of pump-induced saturation on the
conjugate signal.
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B. Saturation Regime—Second-Order Perturbation Theory

Including the next order in the expression for the output
energy of the conjugate pulse, we have

(62)

The expression for is given by (29) with
found from (22) by insertion of the perturbation expansions
for :

(63)

We utilized to avoid writing down all the terms.
Inserting the expressions for and , we get

(64)

with

(65)

(66)

We utilized an approximation similar to (40) to calculate the
integrals containing . The expression (64) can be used to
calculate the shape of the conjugated pulse, which in general
will be different from that of the pump and probe pulses. Here,

however, we shall focus on the conversion efficiency, i.e., the
energy contained in the conjugated pulse.

By use of the approximation (42), the second-order contri-
bution to the energy of the conjugate pulse becomes

(67)

with

(68)

(69)

These expressions can be used to investigate pulse saturation
characteristics, including the effect of dispersion of the gain,
for various pulse shapes and pulse overlap, as a function of
detuning.

Neglecting gain dispersion , the expression
for the conjugate pulse energy simplifies to (including both
first- and second-order contributions)

(70)

where

(71)

(72)

(73)

Assume that and are Gaussian pulses of
the same pulsewidth, and the probe is delayed bywith
respect to the pump:

(74)

(75)

(76)

and can be evaluated exactly

(77)

(78)

with the functions and defined by

(79)

(80)
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For , one can find the approximate expression (exact for
):

(81)

has a maximum for . The corresponding to
the maximum calculated by the approximate expression is
different from the exact value by about 1%. Substituting into
the expression for , one gets

(82)

where

(83)

We find that there is a value of that corresponds
to a maximum for . The efficiency is maximum if
the pump is delayed by an optimum value with respect to the
probe, since in this case the gain is saturated less compared
to the case of perfect pulse overlap. This result has been
already found by Shtaif and Eisenstein in [17] for the special
case of , i.e., neglecting the saturation due to the
intraband effects. To give an order of magnitude estimation
of the conditions under which the results of [17] are modified
by the intraband dynamics, let us neglect and in
the definition of :

(84)

Hence

(85)

As before, the term related to the fast saturation is of the same
order or larger than the term related to the slow saturation if
the pulsewidth is below a critical value corresponding to

(86)

Let us consider now the special case where there is no time
delay between the pulses, , but allow for pulse shapes
other than Gaussian:

(87)

Using the results of Appendix B, we then find

(88)

where the quantity is related to the pump input energy
:

(89)

Here, and are constants which depend on the pulse shape
(see Appendix B).

III. RESULTS AND DISCUSSION

In the numerical examples to be presented, we have used
the following set of parameter values, which are typical for
an InGaAsP laser amplifier operating at wavelengths around
1.5 m.

Basic material parameters: Effective electron mass
( is the free-electron mass), effective hole mass

, bandgap 0.77 eV, refractive index
3.40, group refractive index 3.56, cross section

for free-carrier absorption 1.0 10 m , two-photon
absorption coefficient 35 cm/GW, “Kerr” coefficient

3.5 10 cm /W, spin-orbit splitting (entering into
the expression for the dipole moment) 0.33 eV. Time
constants for relaxation processes: carrier–carrier scattering
time 50 fs, dephasing time 30 fs, temperature relax-
ation time (conduction band) 700 fs. Alpha-parameters:
linewidth enhancement factor (associated with carrier density
changes) , temperature “alpha” , and SHB
“alpha” . Amplifier: cross-sectional area
0.4 m , confinement factor 0.3, and “higher order”
confinement factors 0.5. Operating point: carrier
density 1.7510 m , 0.80 eV (corresponding to
a pump wavelength at the gain peak for this particular carrier
density). These values are similar to those used in [7], [18],
and [19].

From the microscopic parameter values, we calculate the
following values for the differential gain and the nonlinear
gain suppression parameters: 4.1 10 m ,
3.3 10 m , and 8.5 10 m . The saturation power
becomes 14 mW.

Let us note that the values used for the intraband scattering
times and are in the low end, reported values range up
to 100–200 fs, and the calculated total value of the nonlinear
gain suppression factor, 1.2 10 m , as
well as the factor, 136 ps, are therefore also in the
low end. This makes our estimate of the influence of nonlinear
gain saturation on pulse amplification and four-wave mixing a
conservative one, i.e., in practical cases, the role of the ultrafast
dynamical processes may be even larger than in the numerical
exmples presented in the next section.

A. Short-Pulse Saturation

In this section, the saturation effects under single-pulse
amplification are illustrated. Based on (61), we obtain the
result displayed in Fig. 1 for the pulsewidth dependence of
the 3-dB input saturation energy. The regimes I–III correspond
to different separations of the total response function into
slow and fast components, respectively. The appropriate
choice of course depends on the actual pulsewidth; the valid
pulsewidth range of each regime is indicated by solid curves
in Fig. 1. Notice that there are pulsewidth ranges around each
of the characteristic scattering times in which this separation
cannot be made and where one has to resort to numerical
calculations [21].

The dotted curve in Fig. 1 shows the constant saturation
energy obtained when nonlinear gain effects (i.e., CH, SHB,
and TPA) are neglected and only the influence of the carrier
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Fig. 1. Variation of 3-dB input saturation energyUsat

0
with pulsewidth�p.

Dashed parts indicate the regions where the separation of the response function
into slow and fast components compared with the relaxation times�h and�1
are not valid. The conditions for the validity of the different regimes are: I:
�h < �p < �s; II: �1 < �p < �h; III: �p < �1.

Fig. 2. Small-signal four-wave mixing efficiency� versus frequency detun-
ing (j
j=2� = j
1;2j=2�) for different pulsewidths. Solid (dashed) lines are
for 
2 = !2 � !0 > 0 (< 0). The input pulse energy is fixed at 100 fJ
and saturation effects are neglected.

density saturation is considered. For pulses shorter than 20
ps, the error commited in neglecting nonlinear gain is 25% or
larger, and for pulses shorter than 5 ps the contribution from
nonlinear gain is the largest one.

B. Saturation of FWM Efficiency

Fig. 2 shows the detuning dependence of the FWM effi-
ciency for different widths of the pump and probe pulses.
Perfect pulse-overlap has been assumed and saturation effects
are neglected [i.e., in (88)]. Solid curves
correspond to , i.e., the conjugate
is blue-shifted with respect to the pump, and dashed lines
are for . The pump pulse energy at the input is
kept fixed at 100 fJ and the efficiency is only
calculated for detunings significantly larger than the pulse
spectral width, . The detuning dependence of
the FWM efficiencies correspond with earlier calculations and
measurements for CW beams [6]–[8].

From Fig. 2, it is clear that the FWM efficiency increases
significantly as the pulses get shorter; (88) shows thatscales

Fig. 3. FWM efficiency versus input pump pulse energy at a fixed detuning
of 
2=2� = �2 THz. Dotted lines: small-signal result—no saturation.
Dashed lines: including only the saturation of the carrier density. Solid lines:
including also saturation due to the nonlinear effects.

as for fixed pump energy in the small-signal regime,
corresponding to scaling with the peak pump intensity squared
[17].

In Fig. 3, we investigate the saturation behavior of the FWM
efficiency by plotting versus input pump pulse energy for
different pulsewidths. The FWM efficiencies were calculated
at a detuning of 2 THz (where the absolute
efficiency is less than at 2 THz, cf. Fig. 2),
but since the detuning only influences the saturation behavior
through the parameter which varies little with detuning
(cf. (71); ), the result is representative
for all values of the detuning.

The dotted lines in Fig. 3 are the small-signal results ne-
glecting saturation; the dashed curves arise when only the
effect of carrier density saturation (linear gain) is included,
and finally the solid lines are the full result including nonlinear
gain. Notice that the perturbative approach limits the validity
of the results to small relative departures from the unsaturated
efficiencies. Even so, it is clear that the influence of nonlinear
gain becomes very large for pulses with energies in excess of
only 100 fJ, when the pulsewidth is on the order of 10 ps or
less. For shorter pulses, the “penalty” due to nonlinear gain
rapidly increases due to the increase of peak power.

Due to the limitations of the perturbative approach, the
present theory cannot be used to make any conclusions about
the existence of a an optimum value of the FWM efficiency for
a particular pump pulse energy. This is an important question
for the practical applications of FWM and has already been
discussed to some extent in the litterature. In [13], it was
shown analytically that for CW beams there exists an optimum,
provided that the FWM mechanisms saturate like the gain
itself. In [17], the analysis was extended from the CW case and
numerical calculations predicted an optimum even for pulses.
However, that analysis did not inlude the saturation effects due
to intraband dynamics, and from Fig. 3 we therefore conclude
that the result is limited to pulses on the order of tens of
picoseconds or longer. In addition, as pointed out in [13],
FWM due to carrier heating by free-carrier absorption does
not approach zero as the amplifier is saturated to the level
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Fig. 4. Pulsewidth dependence of the characteristic energyUcr at which
the FWM efficiency is down by 3 dB from its unsaturated value. The result
is—to a good approximation—independent of the detuning frequency. Curve
signatures are as in Fig. 1.

of transparency, and the FWM efficiency does not exhibit a
maximum in this case.

Fig. 4 depicts the pulsewidth dependence of the input pump
pulse energy at which the FWM efficiency is down by
3 dB from its unsaturated value. From (88):

(90)

In Fig. 4, the small detuning dependence of has been
neglected and the result is therefore independent of detuning.
The different regimes and curve signatures correspond with
Fig. 1, and since the saturation of the FWM efficiency is in-
duced by the pump pulse saturation, the qualitative pulsewidth
dependence is the same.

IV. CONCLUSION

Using a perturbation approach, we have derived analyti-
cal expressions for nondegenerate four-wave mixing between
short optical pulses. These results should be useful for the
analysis of spectroscopic measurements carried out in the
linear regime with the purpose of extracting material charac-
teristics. More importantly, the results can be used to analyze
the saturation behavior of the conjugate signal, which is
of practical importance, e.g., for frequency converters and
demultiplexers based on FWM. As an important result, we find
that ultrafast carrier dynamical processes like carrier heating
and SHB have an important impact on the saturation behavior
for pulses shorter than 10–20 ps. For such pulses, the ultrafast
dynamics also strongly influence the optimum pump-probe
overlap for the generation of the conjugate signal.

An interesting and important future application of the theory
will be the analysis of the chirp characteristics of the FWM
process.

APPENDIX A
THE MATERIAL RESPONSEFUNCTION

The total material response function is

(A1)

reflecting the effects of carrier depletion, carrier heating, SHB,
and two-photon absorption, respectively. The real parts of
are proportional to the corresponding gain changes and the
imaginary parts are proportional to the index changes. The
expressions for the various terms are

(A2)

(A3)

(A4)

(A5)

The expressions for the three first terms have been derived
from semiclassical density matrix equations [19], while the
last term is included phenonomenologically to account for
instantaneous virtual transitions. Thus, the two-photon absorp-
tion coefficient and the “Kerr” coefficient encompass
two-photon, electronic Raman and optical Stark effects [26].

In the frequency domain, we have

(A6)

(A7)

(A8)

(A9)

Other parameters appearing in (A2)–(A9) are vacuum per-
mittivity , speed of light in vacuum , refractive index

, group refractive index , gain , wavelength ,
photon energy , carrier density , differential gain

, gain suppression factors and due to
carrier heating and SHB (expressions for these may be found
in [19]), linewidth enhancement factors , , and
due to the respective effects (see [19]), carrier lifetime,
carrier–carrier scattering time , temperature relaxation time

, Heaviside step function , and Dirac delta function .
Finally, and are confinement factors associated with
the transverse mode distribution of the waveguide, cf. [20]. For
simplicity, we have neglected the transverse spatial variation
of the carrier density profile in the active region, which leads
to the introduction of the “higher order” confinement factor
in the response functions , and for time scales
faster than the transverse diffusion time [20].
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APPENDIX B
INTEGRALS OVER POWERS OF THEPULSE INTENSITY

Let us consider the integrals

(B1)

where is the pulse intensity. is proportional to the
pulse energy and we are interested in expressing the various
integrals over the pulse in terms of the pulse energy and the
pulsewidth. We shall take the pulse on the form

(B2)

where the shape function is symmetric around , with
maximum , and is a parameter related to the
FWHM through

(B3)

Typical pulse shapes are , .
We find

(B4)

with the definition

(B5)

Also

(B6)

with the constants depending on pulse shape

(B7)

We also need

(B8)

where

(B9)

and
Finally,

(B10)
with

(B11)

For square pulses, and . For Gaussian pulses,
:

(B12)

(B13)

The numerical values are 1, 0.6643,
0.5095, 0.4145, and 0.2548.

For secant hyperbolic pulses, :
0.5876,

0.4143, 0.3130, and
0.2072.
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