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Theory of Nondegenerate Four-Wave Mixing
Between Pulses in a Semiconductor Waveguide

J. Magrk and A. Mecozzi

Abstract—We develop a perturbation theory for calculating the results which do not include nonlinear saturation effects.
effects of saturation on nondegenerate four-wave mixing between Sych a theory is directly applicable to the analysis of

short optical pulses in a semiconductor optical amplifier. Satura- - ghactroscopic measurements, which are commonly carried
tion due to ultrafast intraband dynamics like carrier heating and . . .
out in the linear regime.

spectral hole burning is found to be important for pulses on the : i
order of 10-20 ps or less. To evaluate the influence of saturation effects, a second-

order perturbation theory should be used. The material dy-
namics are still treated as being linear, but the effect of
saturation on the propagation of the fields is then taken into
account. By this, the effects of carrier density changes, carrier
|. INTRODUCTION heating, and spectral hole burning (SHB) are treated on equal
fﬁaoting. This is reasonable for a single pair of short pulses,

HE phenomenon of nondegenerate four-wave mixin . . )
(FWM) in semiconductor optical amplifiers has sever nce gain saturation calculations [21] show these effects to be
aComparable for pulses shorter than 10-20 ps. The effects of

|mportant applgpatlons In h|gh-cang|ty optlcal'cti:ommunlcac-o pling between the different saturation mechanisms for the
tion systems. Dispersion compensation using midspan specifale ia| susceptibility itself is not included. The coupling of

inversion [1], wavelength conversion [2], [3], and demultizhe carrier heating and SHB contributions with the saturation
plexing of high-bit-rate time-division multiplexed pulse traing the carrier density was shown to be important in the
[4] are important examples of all-optical signal processingyy case, [15] but in the present short-pulse low-repetition
techniques based on FWM, which have been experimentallyse, second-order effects in the carrier heating and SHB
demonstrated to have a significant potential in future broagrechanisms themselves are expected to be equally important.
band optical networks. In addition, FWM has shown to be Strictly speaking, this paper is limited to the analysis of a
a useful spectroscopic technique for investigating the physingle pair of optical pulses interacting in the semiconductor
cal origin of ultrafast nonlinearities in active semiconductahedium. In many practical applications, however, the
waveguides [5]-[8]. situation will be that of a train of short optical (signal or
Several papers [9]-[14] have already been devoted to thgyhe) pulses at a high repetition rate interacting with another
thg_oretical analysis of FWM in semicor)ductor optical amyain of stronger (sampling or pump) pulses, at a relatively
plifiers. Good agreement between experiment and theory g repetition rate. In this case, the saturation effect of the
been demonstrated in the case of FWM among CW beangna| heam may be treated on an average power basis to
. . hpﬁovide an effective gain, while the analysis of the present
saturation behavior [15]. In contrast, much less work has be Qper can be invoked to understand the saturation effects of

car_rled_ out for th_e case of FWM among short puls_es [1 e sampling beam. Our conclusions, therefore, also pertain
which is the most important case for practical applications. An " . :
this important practical example.

important exception is the paper by Shtaif and Eisenstein [1 "Th . ed as foll - in Section II i
calculating the FWM efficiency and saturation characteristics € paper s organized as Toflows. In Section 1i, we presen
for optical pulses. Those calculations are, however, limited t3€ Pasic equations for treating pulse propagation and material

pulsewidths of the order of 10-20 ps or longer, because thdynamics and make a general perturbation analysis. Specific
neglect the contribution of the ultrafast dynamics on the gafikPressions for the FWM efficiency are derived in the linear
saturation. In this paper, we present analytical calculations'§@ime of first-order perturbation theory, Section II-A, and

the FWM efﬁciency based on a response function approaléhthe saturation I’egime, Section ”'B, where the analySiS is
[18]-[20] and demonstrate the important influence of th@ken to second-order. The results are illustrated and discussed

ultrafast gain dynamic processes for the saturation behaviof Section llI, and finally our conclusions are summarized in
The calculations are based on a perturbative treatmérgction IV.

for the induced gain and index changes as well as for the

field propagation. Including only first-order terms vyields

Index Terms—Optical mixing, optical pulses, semiconductor
waveguides.

Il. PROPAGATION EQUATIONS

Given the real electric field(z,t), the slowly varying
Manuscript received June 10, 1996; revised December 9, 1996. envelopeE(z,t) is defined as
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indexng = n(wp). In [19], the following propagation equation The solution of (7) with initial condition(?)(0,¢) = E(0,t)

is derived for the slowly varying envelope fiekl(z, t): is
0 —
~ . B . . g (n) o
with the linear operator defined by an_trlle;oilsunon of (8) with initial condition&'™)(0,¢) = 0,
1 ) , ) o 3
L(t) = 55(&10 + L8_t> + i <w0 + L8_t> (3) E(")(z,t) _ / ds exp{(z — Z/)E(t)}R(n_l)(Z/,t). (12)
0

wherer = k(w) — k(wp) is the wavenumber change from the

reference values, and In [19], the first-order result was used to analyze frequency-

degenerate pump-probe measurements employing ultrashort
§=Tg— aint (4) optical pulses. Here, we shall apply the formalism to the
is the net modal gain, witl" being the confinement factog case of nondegenerate four-wave mixing. The first-order result
the material gain anék ¢ the internal loss. The source te'rmalready includes the generation of a conjugate signal, but by
R(z,1) is given t;y " taking the calculation to second-order we can also study the
7 - effects of saturation on the generation of the conjugate signal.
R(z,t) = / h(t — )| E(z,t)|2dt' E(z, t) (5) We now decompose the total electric field into components
—o0 corresponding to the pump frequengy, the probe frequency

where h(t) is the response function of the medium (see1 @and the conjugate frequenay = wo — (w1 — wo):
ﬁ]ppgndlx A caflctlrj]lated g_smg th(le qd|at_t>at|c[1asgp]>prOX|matlon fOrE(2,¢) = Eo(2,t) + Ev(2,1) + Ez(2,1)

e dynamics of the medium polarization . _ —iCnt it

We emphasize here that the local gain and index changes = Ao(2,t) + A1(z,t)e + Aa(z, t)e (13)
induced by the field are approximated as being linear in tidth
local intensity, cf. (5). In reality, carrier density changes, e.g., Q1 =w; —wp; Q2 =ws —wo = —8. (14)

induced by the field, saturates with increasing intensity d

e _— )

to the “back-action” of the induced gain change and Ieads‘W'th these definitions, fche spectra of the (_a_nvelope fielglare

correction terms of ordefE|*E in the propagation equation centered at DC. Applying the decomposition (13) also for the
o nchferent orders in the perturbation expansion, inserting into

(1Q)—(12), and separating terms at DC/t and et we

n then obtain expressions for the pump, probe and conjugate
ds. In this most general form, the theory can be used to

lyze the influence on the conjugate signal of dispersion,

ding to pulse broadening and phase mismatch, as well as

carrier heating and even leads to a mutual interdepende
of the different contributions (see also [15]). We are treati
here the case of very short pulses, where the contributio
from the ultrafast processes and the carrier density chan
are comparable and therefore have to be treated within ﬁq@
same approximation. The neglect of the higher order terms§
(2) means that onlpaturation effects to second-order in the
field should be analyzed on the basis of that equation.

Here, we shall limit ourselves to linear index dispersion. The
neglect of group velocity dispersion is a good approximation

We shall treat the source terRx z, ¢) as a perturbation and for pulses longer than 100 fs [22] and frequency detunings

calculate the changes it induces to the electric field propaga’[i|r%1|/27r less than 10 THz [12]. We then have
in the waveguide to second-order in the perturbation. Thus, 1
expanding the field as

E(z,t) = EO(z,1) + ED (2, 1) + E®(2,1) (6) where s’ = 1/v,, with v, being the group velocity. The
we get the following hierarchy of equations: . fcerm 9f (15) can be rempveq by trapsforming toa ffame
moving with the group velocity, i.e., we introduce local time
3E(0)(757t) _ L(t)E(O)(7 £) 7) t by t — ¢t + ’z. Hencefortht denotes local time.
Oz v Rather than utilizing the approximated directly in
OE™ (2,1) _ ,C(t)E(")(z,t) +R("_1)(z,t), n=12 (10)—(12)_, we sha_ll take the approach of first formulgting
Oz propagation equations for the pump, probe, and conjugate
(8) envelope fields. In the action of the operafoon the electrical
field, we shall assume the envelope to be slowly varying in
0o comparison withe=#%.2¢, This approximation is consistent
RO(z,t) = / Rt — Y EQ (z,t)2dt’ E©(z,¢) (9) with the inherent assumption that the spectra of pump, probe,
—o0 and conjugate can be separated and leads to

wo—l—i—) —Iﬁ;lg (15)

with

RW(z,) :/ h(t — Y EO (2, ) [2dt ED (2,1) L()E;(2,t) ~ LiE;(2,t) (16)
. /oo bt — Y[EO (2, ) ED* (2. 1 with the constantd.; defined as
oo ’ ’ 1 1 ,
Lj=S&wj) =5, 7=012 (17

I E(O)*(z,t/)E(l)(z,t/)]E(O)(zvt)' (20) 2 2
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Inserting the decomposition (13) into (2) and (5), assuming thiee solutions are
pump to be much stronger than the probe and conjugate fields AEO)(th) — explzL,] A;(0, 1), 28)

Agl? > A%, |42 18 z
| 0| | 1| | 2| ( ) Agn)(z’t):/o dz' eXp[(Z—Z/)Lj(t)]R](»n_l)(Z/,t),

and separating the field components, we get the following set 19 29
of propagation equations: n=5La (29)
DA;(2,1) The expressions for the source ternﬁg)) and REI) follow
0. LjA;(z,t) + R;(2,t) (19)  from (20) to (22) by collecting terms of zeroth- and first-order,
. i respectively, and will be given in the following two sections.
with the source terms defined as
Ro(z,t) = / ()| Aoz, t — )[2dt Ao(z,£)  (20) A. Linear Regime—First-Order Perturbation Theory

We shall limit ourselves to the usual case where, at the input

Ri(z,t) = /°° ()| Aoz, t — ') 2dt' A1 (2, 1) of the waveguide, signals are injected only at the pump and
oo the probe frequency, i.e.,
+/ h(t) AL (2t — ')Ay (2,t — 1) A3(0,¢) = 0. (30)
y ei;”'dt’Ao(z 9 Using (28), we then get
oo R(O) Yt
+ / h(t) Ao(z,t — ) Ab(z,t — 1) o (50
Ao oy =[O0t G
X et ol2, —oo
o0 (0)
Ra(evt) = [ () Azt = ¢ A1) aien
—so = (2oitlaz / h(#)[ A0(0, £ — )2t 41(0, )
[ Bt = ) At = ¥) -~
Aot et [ a0, - )0 - )
X e ol2, —00
00 iQt’ 341
/ N / x et dt AO(Ov t) (32)
+/_Ooh(t YAo(z,t — )AL (z,t — t') K
int, / > . 22 i i o0
X e e Ao(z, 1) (22) = 62L04+L14/ h(t) Ao(0,£ — ') AL(0,t — t)
In the integrals ovet’, we made the transformatigh— ¢—¢'. ot e
The condition for separating the frequency components is of x €28 dt' Ao (0, ). (33)

course that the spectral widths of the pump and probe puli-‘ﬁ.?e wave mixing terms in (31)~(33) are governed by expres-
are much smaller than the frequency separation, i.e., sions of the form

11 = -
—, — < |Aly] (23)  F(,t) = / h(t)AL(0,t — ) A;(0,t — )™ dt’. (34)
Tpo Tpl —00

where 7,0 and 7,; are the temporal widths of pump andDefining the Fourier transform pair
probe pulses. In (20)—(22), the terms containjdg|? reflect oo ‘
saturation due to the pump. The terms containigd} (or y() :/ y(t)e Hdt (35)
A3A ), 7 = 1,2, reflect mixing between the pump ap and g
the signal atw;, which leads to a temporal “grating” that y(t) :/ y(Q)e—im@ (36)
scatters the pump to the frequengy_; (or w;). —oco 27

Applying the perturbation expansion we have

A ) = AV 1)+ AV 1) + A1) (29) @t = [ ne-ren g
R S T 2w
we get for the different orders — Q) ® L;; (2, 1) 37)
= (9,

A (2.t -
—%¥J=M4Wm> (25) Wit
aAWiy 9 Lt t) = A7 (0,t — t)A;(0,t — t') (38)

J ) n n—1
T = LAY @)+ R0, n=1,2 (26) o that
With initial conditions L(,8) = / A0, — £)A5(0, — #)'2

© — . () — _ oo ‘
Aj (0, t) = Aj(O,t), Aj (O,t) = 0, n = 1, 2 (27) — AZ(()’ Q)* ® Aj(O, —Q)GZQt. (39)

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 09,2010 at 09:08:21 EST from IEEE Xplore. Restrictions apply.



548 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 33, NO. 4, APRIL 1997

This expression shows that the spectrig{(2,¢) is centered with the definition

around§? = 0 and has a width given by the width of the 1

convolved spectra of4; and A;. Now, the wave mixing E=¢+ (& - &). (48)
terms in (31)—(33) are governed Wy, (2 = Q; 2,¢). Let us 2

assume that in addition to the relation (23) the spectrum of tifee energy of the conjugate pulse at the output becomes
response functiori(£2), varies slowly over an interval around

Q = Q; 0, given by the spectral width of;;(£2,¢). Then UD(L, 00) = ﬁ/ |A§1)(L,t)|2dt

Je o} dQ/ —C_)O
Fij(Q,1) ~ h(Q)/ Lij (¥ 1) - = 5—2[651‘ — 1L h (=) R
= MDA ©0.04;(0,0), =10, 9. (40) x /OO 1410, )2 A40(0, 1) *dt  (49)

This approximation can also be inferred by noting, from
the definition of £;;, that for frequencie<) for which the where (17) has been used. Notice that the expression for
separation is possible, the exponential facté?! varies UQ(I) actually is of second-order in the perturbation; this is,
quickly compared to the field amplitudes, which can be takdérowever, the lowest order contribution to the intensity of the
outside of the integral with/ = 0, since the response functionconjugate signal. With heterodyne detection, the corresponding
peaks here. beat signal with a strong local oscillator would be of first-order
The terms in (31)—(33) expressing saturation by the punipthe perturbation. The integral ovein (49) depends on the
are governed by (2 = 0,t). The appropriate approximationpump-probe delay time, since A4;(0,¢) can be assumed to

for this quantity depends on the relaxation time constants pg#ak att = 0, and Ag(0,¢) att = —r.
h(t). Let us writeh on the form The FWM efficiencyr is defined as the ratio between the
output energy of the conjugate pulse and the input energy of
h(t) = hs(t) + hy(t) (41) the probe pulse
UQ(L, OO) 1. 5
whereh(t) are the components afwhose exponential decay n= T1(0, 50) 2?[6@ — 1P F [h(— )

time is slow compared with the width of the pump pulse and oo
P pump p 22 1A1(0,8)[2] Ao (0, 1)| *dt

h are the components which are fast. Then — (50)
J2o 1AL(0 )] 2de
Foo(Q =0,1) =/ [hs(t) 4 b (]| A0(0, t — ') |2dt We see that; scales with the square of the incident pump
0 . y intensity [17]. Often one measures the ragiof the conjugate
~ hs(t = 0)x™"Uo(0,2) + h (2= 0)|40(0,)]"  output to the probe output
(42) Uy(L,o) 1

= [efL — 1]2e& 0L p(—y) |2

PTU(Lw) "8
which is approximately valid over the duration of the pump 1 - ) .
pulse. The pulse energy;(z,t) is y S 141(0,)7 | Ao (0, £) |t

51
Lmeops O
t
Uj(z,t) = 'f/ |4, (2, t)|dt’ (43) where the approximation comes from neglecting terms in the
e expression for the probe output which are of first- and second-
with the constants defined as order in the pump powdt,|?; this is correct to second-order
in the pump intensity.
o — 250ncw_d (44) Let us consider the special ca§e of pump and probe having
r the same temporal dependence:
wheren is the refractive index¢ is the velocity of light in |A1(0,8)|* = 70| A0(0,£ — 7)|? (52)

vacuum,eq is the vacuum permittivity, aney andd are the )
width and heigth of the active region. For the field change@!th 7o <1 being a constant. Then

we find UQ(L, OO)
1 - - JE—— 1 172 —so0 2 2761
AP ) = E U Phn@ = 0,0400,0) (45) =gl ey
AP (z,8) = Sio[efoz — 1]eS*/ 2 { Fyo(2 = 0,1) A1 (0, 1) X /_ [ Ao(L,t = 7)?| Ao (L, )| dt (53)
+ For (Q = €1,8) A0(0,£)} (46)  which shows that the intensity of the conjugate scales with

[ef_z _ 1]652z/2F10(Q =Qy,1)A40(0,¢) (47) the third power of the pump output intensity in the low-power

A3 (z,1) = | . ity
regime where saturation effects are negligible [15].

eyl =
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Let us consider also the probe output pulse energy

Ui(L, %) = ﬁ/ | AL, 1) + AL, 1) dt

:,«v/ | AL, 1) dt

+ If/
= L7 (0, 00) + gi6<eso+esl>L/2[GesoL i
0

(A9 (L, ) AL, 1) + c.c] dt

></ { Foo(@ = 0,8)| 410, 1) 2
+ Fo1 (Q = Ql,t)Ao(O, t)AT (O,t)dt} + c.c.
= efflLUl(O7 OO) + §G(£0+51)L/2[650L _ 1]/4;
0
y {/ B ()G ()t + h'(Ql)Ggl(o)}.
(54)

We utilized the exact expression fbj, (2 = 0,¢) and defined
the cross-correlation function

cit)= [

which depends implicitly on the pump—probe delay time
h' denotes the real part df. The expression fof/ (L, oo)

|4:(0,£ = )2 4;(0, 1)t (55)

shows that the probe output contains the usual (incoherent)
pump—probe signal as well as a wave mixing signal when

549

treated. Using these results, we find

UO(L7 OO) :C£OLUO(07 OO)

foL_]_
x{1+6

22 -, _
. 2025100 = 0))

Tpo

<h;(t =0)+

X Iﬁ;_on(0,00)} (58)

wheren; is a constant depending on the pulse shapergnd
is the FWHM of the pump pulse intensitylo(0, £)|2.

Equation (58) shows the relative influence of the slowly
recovering carrier density saturation, throulgl{(t = 0), and
the ultrafast saturation effects of carrier heating and SHB,
through h’f(Q = 0). Defining the critical pulsewidthr., as
the pulsewidth below which the ultrafast saturation effects
dominate, we find from the expressions given in Appendix A

Ter = 2772 (59)

VggN
Here,e = er + esyp is the total nonlinear gain suppression
parameter angy is the differential gain. We considered the
typical case ofry,7;, < 7,0 < 7, and neglected the small
influence of two-photon absorption. The critical pulsewigth
can be related to thé& factor which characterizes the mod-
ulation bandwidth of semiconductor lasers, = 472 /vcay +
47%¢/(gnv,), Where ., is the cavity loss rate. For large
cavity loss ratesK ~ 4r2¢/(gnv,), and we have the simple
relation

K

et (60)

Ter = 2772

the pump and probe overlap in time. The incoherent signal ) o
does not show any dependence @p due to the adiabatic A typical value of K for InGaAsP semiconductor lasers is in

approximation employed in the derivation of (5).

the range of 300 to 400 ps, although it may be as large as 900

We can also calculate the output energy of the pump pul&$: [23], [24]. Fork” = 400 ps, we thus get a typical critical

Uo(L, OO)

:ﬁ/
Zli/
+Ii/

2
= efOLUo(O, o) + 5fefOL[efoL —1]
0

|AS(L, 1) + AAo(L, 1] dt
| AL, )|t
(A" (L, ) A Ao (L, 1) + c.c]dt

X K / - R (G (¢ )dt! (56)

— o0

2
~ LU0, 00) + 5fefOL[efoL —1]

0
00
X\/
—00

x |Ao(0,t)2dt

[PL(t = 0)Un(0, 1) + kh/ (2 = 0)| Ag(0, )]
(57)

pulsewidth of 10 ps.

The 3-dB input pulse saturation energ§*‘(0, ) is the
value of Up(0,00) for which the pulse gain attains half its
small signal value{/s(L, oc) = e%L Uy(0,0)/2, i.e.,

sa, _ 'igo
Us*(0, 00) = 2Bl — 1)
1

“ (= 0) = 20 hH (@2 = 0)/7p0) (61)

Notice that the calculation of the 3-dB saturation energy is just
at the edge of the validity of the first-order perturbative ap-
proach. However, had the characteristic saturation energy been
defined at the 1-dB point, the result would have been the same
as in (61) with just a different prefactor, i.e., the pulsewidth
dependence is the same. In [25], we have developed an
iterative technique for calculating the amplifier input-output
pulse relation, which can be employed for simple and accurate
numerical computation of the saturation characteristics in the
case of single-pulse amplification.

In the next section, second-order perturbation theory is used

where the approximation (42) was used. In Appendix A, it i® calculate the effects of pump-induced saturation on the
shown how integrals over powers of the pulse intensity can benjugate signal.
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B. Saturation Regime—Second-Order Perturbation Theory however, we shall focus on the conversion efficiency, i.e., the
§heray contained in the conjugated pulse.

By use of the approximation (42), the second-order contri-
bution to the energy of the conjugate pulse becomes

Including the next order in the expression for the outp
energy of the conjugate pulse, we have

o0 2
Us(L, 00) = ﬁ/ 1AL, ) + AP (L, )| dt Uy (L, OO)
—OC;O h(25)|2e62L 32 -1
o = i) e e~ )
~ K | A5 (L, )| dt ) ) )
_eo X {B(L)[I,(t = 0)C1 + (W (22 = 0) + I (22))Co]
b [ (AP L0AP L0 + s + Ba(LBH, (¢ = 0)C + (3K = 0) + H(2)Cal}
—o0 (67)
= U§(L, 00) + U (L, 50). 62)
with
The expression for$? (L, ) is given by (29) withRS" (', 1) C = ﬁ—l/ |A41(0, £)]2| Ao (0, H)[*Un(0, t)dt  (68)
found from (22) by insertion of the perturbation expansions —o0
for 4;: c2:/m|Aﬂm@mAdm@Pm. (69)
Rgl)(z’,t) = /Oo h(t’)|Aéo)(z’,t - t’)|2A§1)(z’,t)dt’ These expressions can be used to investigate pulse saturation
—oo characteristics, including the effect of dispersion of the gain,
+/ h(t’)AéO)*(z’,t _#) for various pulse shapes and pulse overlap, as a function of
oo detuning.
y Agl) (7t - t/)eint’A(()O)(Z/7t)dt/ Neglectin_g gain dispersiof€, = §1 = §2), the_ exprgssion
o for the conjugate pulse energy simplifies to (including both
+/ ht)AV (7t — ) first- and second-order contributions)
o o 1
x A" (2t = ) AP (S byt Us(Lyo0) = g e M e = 1P |R(Q) s
=) 0
N A o 1
+ /_Oo W) Ag" (st = ) x {co - -G +Kfc2]} (70)
. 7 0
X Agl)* (2t — ')t Aéo)(z’,t)dt’ where
+/”hw”§%5¢_ﬂ) Ky = —Re{dhp(Q = 0) +h(Q) + ()} (72)
—(o)o W K; = —4Re{h;(t =0)} (72)
x A (7t =)t AV $)dt . (63 =
1 (7 )6 0 (7 ) (63) Co :/ |A1(O,t)|2|A0(0,t)|4dt. (73)

We utilized A§°> = 0 to avoid writing down all the terms.

2 2 i
Inserting the expressions fo¢t§0) and A§1), we get Assume thafAy(t)|* and|A;(t)|* are Gaussian pulses of

the same pulsewidth, and the probe is delayedrbwith
respect to the pump:

1 ;
AP 1) = oo RO AF(0.)410.)

[ Ao () = S() (74)
x { B1(2)[Foo(2 = 0,¢) + h(Q22)[|A0(0, )|?] AL @) =rS(t—7) (75)
* 2
+ By(z) [2F00(Q =0,t) + I (2 =0,1) S(t) = exp <_t_2> (76)
+ h*(Q1)]40(0,8)°] } (64) 70
Co andC, can be evaluated exactly
with .
_ Co = 7’537'060 <7_—> (77)
) . ¢ 0
Bl(z) > (50-1'5)4 — fo* + _ (65)
£0+£ £0+£ 62—7507'062(7-) (78)
£ £ &o
By(z) = ———=cllot07 _ o854 S0 66
2(2) = &o +€ o &o+¢& (66) with the functionscy and¢; defined by
2
We utilized an approximation similar to (40) to calculate the co(x) = \/Eexp <_2i> (79)
integrals containing’t . The expression (64) can be used to 3 32
calculate the shape of the conjugated pulse, which in general eo(x) = ﬁ exp <_3i) (80)
will be different from that of the pump and probe pulses. Here, 2 4
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For C{, one can find the approximate expression (exact for Il. RESULTS AND DISCUSSION
T = 0): In the numerical examples to be presented, we have used
ComorSia2e [ T ﬁ 7T (81) the following set of parameter values, which are typical for
1~ 720700 2 245, ) an InGaAsP laser amplifier operating at wavelengths around

. . 1.5 pm.
C1 has a maximum forr > 0. The 7 corresponding to : . ) .
._Basic material parameters: Effective electron mags—

the maximum calculated by the approximate expression . :
different from the exact value by about 1%. Substituting into%z11mo (mo is the free-electron mass), effective hole mass

: m, = 0.46mg, bandgapE, = 0.77 eV, refractive index
the expression fot/;(L, o), one gets n = 3.40, group refractive index, = 3.56, cross section

Us(L, 50)  c LR PR VT " [ for free-carrier absorptionr. = 1.010~2! m?, two-photon
2 N\ 7o 2 2479 absorption coefficienf3, = 35 cm/GW, “Kerr” coefficient
A Ky T ny = —3.510712 cm?/W, spin-orbit splitting (entering into

T K, €2 o (82) the expression for the dipole momefi) Ay, = 0.33 eV. Time

constants for relaxation processes: carrier—carrier scattering
time; = 50 fs, dephasing time, = 30 fs, temperature relax-
A= i(efoL — 1)K, Somo. (83) ation time (conduction band), = 700 fs. Alpha-parameters:
0 linewidth enhancement factor (associated with carrier density
We find that there is a value af/7, < 0 that corresponds changes)ay = 5, temperature “alphatvy = 3, and SHB
to a maximum forlU,(L, o). The efficiency is maximum if “alpha” asus = 0. Amplifier: cross-sectional areal =
the pump is delayed by an optimum value with respect to tRe4 (zm)?, confinement factol’ = 0.3, and “higher order”
probe, since in this case the gain is saturated less compa¢effinement factork; ~ I', I'; = 0.5. Operating point: carrier
to the case of perfect pulse overlap. This result has be@@nsityN = 1.7510%* m~3, fiw, = 0.80 eV (corresponding to
already found by Shtaif and Eisenstein in [17] for the specialpump wavelength at the gain peak for this particular carrier
case of K; = 0, i.e., neglecting the saturation due to th&lensity). These values are similar to those used in [7], [18],
intraband effects. To give an order of magnitude estimatigd [19].
of the conditions under which the results of [17] are modified From the microscopic parameter values, we calculate the
by the intraband dynamics, let us neglé¢f2;) andh(Q,) in following values for the differential gain and the nonlinear
the definition of Ky gain suppression parametersy = 4.1:1072° m?, esgp =
3.31072* m?, and ez =8.510-2* m3. The saturation power

where

—~ ! p——
Ky~ —Ahp(2=0). (B4 pecomesP,a; = fiwod/(Lgn7s) = 14 mW.
Hence Let us note that the values used for the intraband scattering
K; (2 = 0) c times7, andr; are in the low end, reported values range up

%~ E=0) = (85) to _100—200 fs,_ and the calculated total value of the nonlinear
s s 20 gain suppression factot, = esug + e = 1.21072® m?, as
As before, the term related to the fast saturation is of the samell as theK factor, K = 136 ps, are therefore also in the
order or larger than the term related to the slow saturationldiw end. This makes our estimate of the influence of nonlinear
the pulsewidth is below a critical value corresponding to  gain saturation on pulse amplification and four-wave mixing a
€ K conservative one, i.e., in practical cases, the role of the ultrafast
Toer = = = gp2 (86) dynamical processes may be even larger than in the numerical

VggN . .
] ) ] _exmples presented in the next section.
Let us consider now the special case where there is no time

delay between the pulses,= 0, but allow for pulse shapes
other than Gaussian: A. Short-Pulse Saturation

140(0, )2 = S(); A0, )2 =rS(t), r<1. (87) In _t_his _section,_the saturation effects under single_-pulse
amplification are illustrated. Based on (61), we obtain the

Using the results of Appendix B, we then find result displayed in Fig. 1 for the pulsewidth dependence of
Us(L, o) the 3-dB input saturation energy. The regimes I-Ill correspond
n= T1(0,00) to different separations of the total response functi¢f) into

slow h, and fasth  components, respectively. The appropriate
} } (88) choice of course depends on the actual pulsewidth; the valid

pulsewidth range of each regime is indicated by solid curves
where the quantitys is related to the pump input energyin Fig. 1. Notice that there are pulsewidth ranges around each

u? K
- ef°L|h<92>|2—2{n3 - u[cKs NS,
Tp Tp

Up(0, 00): of the characteristic scattering times in which this separation
ol _ 1 cannot be made and where one has to resort to numerical
U= <—£ )ﬁ_on(O,oo). (89) calculations [21].
0

The dotted curve in Fig. 1 shows the constant saturation
Here,n; and{ are constants which depend on the pulse shapeergy obtained when nonlinear gain effects (i.e., CH, SHB,
(see Appendix B). and TPA) are neglected and only the influence of the carrier
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Fig. 1. Variation of 3-dB input saturation energi®* with pulsewidthr,,.
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Pump pulse energy [J]

Fig. 3. FWM efficiency versus input pump pulse energy at a fixed detuning

Dashed parts indicate the regions where the separation of the response fun@foff2/27 = —2 THz. Dotted lines: small-signal result—no saturation.

into slow and fast components compared with the relaxation timeand 71

Dashed lines: including only the saturation of the carrier density. Solid lines:

are not valid. The conditions for the validity of the different regimes are: including also saturation due to the nonlinear effects.
TR < Tp < Ty LT < 1p < 1 N T < Ty
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as 1/75 for fixed pump energy in the small-signal regime,
corresponding to scaling with the peak pump intensity squared
[17].

In Fig. 3, we investigate the saturation behavior of the FWM
efficiency by plottingn versus input pump pulse energy for
different pulsewidths. The FWM efficiencies were calculated
at a detuning ofQ2;/2r = —2 THz (where the absolute
efficiency is less than af),/2r = +2 THz, cf. Fig. 2),
but since the detuning only influences the saturation behavior
through the parametek’; which varies little with detuning
(cf. (71); |hs (82 = 0)] > |h(22)]), the result is representative
for all values of the detuning.

The dotted lines in Fig. 3 are the small-signal results ne-
glecting saturation; the dashed curves arise when only the
) . o . effect of carrier density saturation (linear gain) is included,

Fig. 2. Small-signal four-wave mixing efficiengyversus frequency detun- . e . . .
ing (|Q]/27 = |1 2|/27) for different pulsewidths. Solid (dashed) lines are@Nd finally the solid lines are the full result including nonlinear
for Q5 = w2 —wo > 0 (< 0). The input pulse energy is fixed at 100 fJgain. Notice that the perturbative approach limits the validity
and saturation effects are neglected. of the results to small relative departures from the unsaturated
efficiencies. Even so, it is clear that the influence of nonlinear
density saturation is considered. For pulses shorter than g?éin becomes very large for pulses with energies in excess of
ps, the error commited in neglecting nonlinear gain is 25% 8hly 100 fJ, when the pulsewidth is on the order of 10 ps or
larger, and for pulses shorter than 5 ps the contribution frogss. For shorter pulses, the “penalty” due to nonlinear gain
nonlinear gain is the largest one. rapidly increases due to the increase of peak power.
Due to the limitations of the perturbative approach, the

B. Saturation of FWM Efficiency present theory cannot be used to make any conclusions about

Fig. 2 shows the detuning dependence of the FWM effire existence of a an optimum value of the FWM efficiency for
ciencyn for different widths of the pump and probe pulsesa particular pump pulse energy. This is an important question
Perfect pulse-overlap has been assumed and saturation efftsgrtg¢he practical applications of FWM and has already been
are neglected [i.e.K; = Ky = 0 in (88)]. Solid curves discussed to some extent in the litterature. In [13], it was
correspond tofls = ws — wg > 0, i.e., the conjugate shown analytically that for CW beams there exists an optimum,
is blue-shifted with respect to the pump, and dashed linpsovided that the FWM mechanisms saturate like the gain
are for Q; < 0. The pump pulse energy at the input igtself. In [17], the analysis was extended from the CW case and
kept fixed atlUp(0,00) = 100 fJ and the efficiency is only numerical calculations predicted an optimum even for pulses.
calculated for detunings significantly larger than the pulddowever, that analysis did not inlude the saturation effects due
spectral width,|2|/27r > 1/7,,. The detuning dependence ofto intraband dynamics, and from Fig. 3 we therefore conclude
the FWM efficiencies correspond with earlier calculations arttat the result is limited to pulses on the order of tens of
measurements for CW beams [6]-[8]. picoseconds or longer. In addition, as pointed out in [13],

From Fig. 2, it is clear that the FWM efficiency increaseBWM due to carrier heating by free-carrier absorption does
significantly as the pulses get shorter; (88) shows #tetales not approach zero as the amplifier is saturated to the level

Frequency detuning QI/277 [GHZ]
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1*10™ reflecting the effects of carrier depletion, carrier heating, SHB,
] and two-photon absorption, respectively. The real parté of
Linear gain are proportional to the corresponding gain changes and the
imaginary parts are proportional to the index changes. The
expressions for the various terms are

Characteristic energy [J]

r r
hv(t) = ‘%@um(l —da)[e ™™ — e u(t)
0
(A2)
’ Th
S ho(t) = —CE0oEra(@) ot
1*1045 T WIMH‘!I LLALAALLY B R R ALY R B R RLLL B R R T honh L
10" 10" 10® 10" 10" 10° (A3)
. r

Pulsewidth [s] hSHB(t) = — EOHTL;{ZSHBQ(WO) (1 - 'L.OCSHB)C_t/‘rl U’(t) (A4)

071

Fig. 4. Pulsewidth dependence of the characteristic enékgyat which

4
the FWM efficiency is down by 3 dB from its unsaturated value. The resmﬁtH)A(t) = —2¢q9cn F’2/32 — iFQ—WHQ 5(t)_ (A5)
is—to a good approximation—independent of the detuning frequency. Curve A

signatures are as in Fig. 1.

The expressions for the three first terms have been derived
of transparency, and the FWM efficiency does not exhibitfeom semiclassical density matrix equations [19], while the
maximum in this case. last term is included phenonomenologically to account for

Fig. 4 depicts the pulsewidth dependence of the input puristantaneous virtual transitions. Thus, the two-photon absorp-
pulse energy/<ka* at which the FWM efficiency is down by tion coefficient/3, and the “Kerr” coefficientn, encompass
3 dB from its unsaturated value. From (88): two-photon, electronic Raman and optical Stark effects [26].

— K& - (00) In the frequency domain, we have
2(650[‘ — 1) (K, +774Kf/7'p'

In Fig. 4, the small detuning dependence fgf has been hn(92) =

3 Fegneg(wo)gnTs

. ) . h
neglected and the result is therefore independent of detuning. o 1
The different regimes and curve signatures correspond with x (1 —iay) — — (A6)
Fig. 1, and since the saturation of the FWM efficiency is in- - (=ifdry + D(=iim +1)
duced by the pump pulse saturation, the qualitative pulsewidth p.(Q) = _Leonngerg(wo)
dependence is the same. Tiwo :
X (1 — i, ) — - (A7)
IV. CONCLUSION (=iQm, + 1)(—if2m + 1)
Using a perturbation approach, we have derived analyti-hsyp(§2) = —FEO””QTESHBQ(WO)(l —'iasHB)%

cal expressions for nondegenerate four-wave mixing between “o —UATL +(,i8)

short optical pulses. These results should be useful for the
e_malysis (_)f spe_ctroscopic measurements carried_out in thg o, (Q) = _2506n<rf2/32 —il“24—7rn2). (A9)
linear regime with the purpose of extracting material charac- A
teristics. More importantly, the results can be used to analyze
the saturation behavior of the conjugate signal, which is Other parameters appearing in (A2)—-(A9) are vacuum per-
of practical importance, e.g., for frequency converters amttivity o, speed of light in vacuuny, refractive index
demultiplexers based on FWM. As an important result, we find group refractive indexn,, gain g(wg), wavelength ),
that ultrafast carrier dynamical processes like carrier heatipoton energyiwg, carrier density/V, differential gaingy =
and SHB have an important impact on the saturation behavity(wo)/3N, gain suppression factorsy and esyp due to
for pulses shorter than 10—20 ps. For such pulses, the ultrafegtrier heating and SHB (expressions for these may be found
dynamics also strongly influence the optimum pump-probe [19]), linewidth enhancement factoesy, «r, and asyp
overlap for the generation of the conjugate signal. due to the respective effects (see [19]), carrier lifetime

An interesting and important future application of the theorgarrier—carrier scattering timg, temperature relaxation time
will be the analysis of the chirp characteristics of the FWM;,, Heaviside step function(t), and Dirac delta functioA(¢).

process. Finally, T", Ty, andT are confinement factors associated with
the transverse mode distribution of the waveguide, cf. [20]. For
APPENDIX A simplicity, we have neglected the transverse spatial variation

THE MATERIAL RESPONSEFUNCTION h(t) of the carrier density profile in the active region, which leads

to the introduction of the “higher order” confinement fackor
in the response functionsy, h7, and hsgg for time scales
h(t) = hy(t) + hr(t) + hsap(t) + hrpra(t) (Al) faster than the transverse diffusion time [20].

The total material response function is
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APPENDIX B For square pulsegi? = 1 and(® = % For Gaussian pulses,
INTEGRALS OVER POWERS OF THEPULSE INTENSITY f(t) = exp(—t?):
Let us consider the integrals 1
e 77rCLia,uss — i 2vin2 (512)
D, = / S™(t)dt (B1) N
- 2In2
) : Lo . G = : (B13)
whereS o |A]? is the pulse intensityD; is proportional to the ™3
pulse energy and we are interested in expressing the various ) a a
integrals over the pulse in terms of the pulse energy and tﬁge numerical valges argr*vs = 1, 772Ga“ss ~ 0.6643,
pulsewidth. We shall take the pulst) on the form Nz =~ 0.5095, 77" ~ 0.4145, and(™** ~ 0.2548.

For secant hyperbolic pulseg(t) = sech?(t): et = 1,
_ t nyet = 2In(v2 + 1) ~ 0.5876,n5" = S (V2 + 1) ~
S(t) —SOf<7_> (BZ) 0.4143,772@:11 — %1113(\/5 + 1) ~ 03130’ andcsech —
_ _ _ £ W*(V2+1) ~ 0.2072.
where the shape functiof(¢) is symmetric around = 0, with
maximum f(0) = 1, andr > 0 is a parameter related to the

FWHM 7, through
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