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Abstract 
The purpose of this paper is twofold. Primarily to 

describe the dynamic behaviour that can be observed in 
a fixed bed reactor with recycle of unconverted reactant. 
Secondly to describe the possibilities of model reduction 
in order to facilitate control design. Reactant recycle has 
been shown to introduce periodic solution to the fixed bed 
reactor, a phenomenon which is not seen for the system 
without the recycle, at least not within the Peclet number 
range investigated in the present work. The possibility of 
model reduction by the methods of modal decomposition, 
and by characteristics are investigated in the paper for the 
present case. Finally a criterion for actuator selection is 
formulated, and a simulated control example is given. 

1. Introduction 
The introduction of recycle on a process can improve 

the utilisation of raw materials and reduce energy con- 
sumption. Consequently there is an increased interest in 
operating processes in this favourable way. The literature 
on nonlinear dynamics of fixed bed reactors with recycle is 
rather limited. The type of recycle that is studied in this 
paper is mass recycle. This is accomplished by recycling 
unconverted reactant or a fraction of the outlet stream. 
Multiple periodic solutions have been reported in [3] and 
[lo]. The periodic solutions are initiated by Hopf bifur- 
cations, and it turns out that the periods in all cases are 
simple fractions of the thermal residence time. Investiga- 
tion of dynamic behaviour in the case of energy recycle 
has been done in e.g. [6]. In this case the system can 
show periodic solutions as well as multiple steady states. 
Investigations of a combination of two recycle types are 
shown in e.g. [9] and [ll]. Both report multiple steady 
states, however the t8wo disagree on the existence of peri- 
odic solutions. 

2. Dynamic investigation 
In this context dynamic investigation is meant as an 

investigation of the type and number of solutions which 
can be expected for the system under investigation as some 
of the parameters of the system are changed. In short this 
is called a bifurcation analysis. In the present paper the 
bifurcation analysis is performed for the inlet conditions to 
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the reactor ( x l , i n ,  yin), since these are easily manipulated 
in subsequent experiments to verify the simulation results. 
The effect of including a dispersion term in the model, i.e. 
the effect of the Peclet numbers, is also investigated. 

2.1. Model 
The model of the fixed bed reactor with recycle used 

in the main part of this paper is given by the equations 
below. In the fixed bed reactor catalytic oxidation of hy- 
drogen to  form water is performed. Hydrogen is supplied 
to the reactor in wast excess, and consequently it is as- 
sumed that the reaction is a simple first order reaction 
with respect to the oxygen concentration and that the hy- 
drogen concentration has no effect on the reaction rate. 
Arrhenius temperature dependence is applied. Further- 
more all transport parameters are assumed constant, and 
radial effects are neglected. These assumption along with 
other minor ones give rise to  the following pseudo homo- 
geneous model, including a mass balance for oxygen, an 
energy balance, and finally a first order ordinary differen- 
tial equation describing the recycle. 

(3) 

(4) 

(7) 

For numerical values of the parameters see [lo]. This 
model is then discretised using the method of orthogonal 
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Figure I: Bifurcation diagram for the fixed bed reactor 
with mass recycle (solution types see table 1) 

collocation, as described in [14]. The resulting set of ordi- 
nary differential equations is then used in the bifurcation 
analysis. The analysis is performed using PATH [7]. 

2.2. Bifurcation Diagram 
The types of bifurcations encountered in the present, 

system are Hopf bifurcations and what, will he defined as 
Hopf-like hifi~rcat~ions. Hopf bifurcations are characterised 
by a migration of a pair of complex conjugate eigenvalues 
across the imaginary axis, as described in any textbook on 
nonlinear dynamics e.g. [5]. The main difference between 
Hopf and Hopf-like bifurcations is the dimension of the 
normal form necessary to  determine the stability of the 
resulting periodic solution. In the case of an ordinary Hopf 
hifurcation a two dimensiona.1 normal form suffices. In 
contrast a Hopf-like bifurcation is characterised by having 
at least one eigenvalue with positive real part unaffected 
by the bifurcation, at, least a three dimensional normal 
form is required. Furthermore the periodic solution arising 
from this type of bifurcation will always be unstable. A 
more in depth description of this type of bifurcation can be 
found in [lo]. The bifurcation diagram shown in figure 1 is 
obtained when the inlet conditions are used as bifurcation 
parameters. The solution types in the various areas can 
be seen from table 1. 

The dynamic investigation shows that there is the pos- 
sibility of three different periodic solutions, corresponding 
to  migration into the right half complex plane of three 
different pairs of complex conjugate eigenvalues. On this 
basis the hypothesis is that the system can be described 
adequately by a low order model (ideally a sixth order 

Tab1 1: Solution types in the areas numbered in figure 1 
area stable ss unstable ss per. sol. 

I 1 
I1 1 1 
111 1 2 
IV 1 
V 1 2 
VI 1 1 
VI1 1 

model). This hypot,hesis led t,o the invest,igation of t,he 
t8wo different model reduction strategies described in the 
following section. 

3. Model reduction strategies 
In order to  do realistic control design it is desirable 

to have a model of the process. Ideally this model should 
bc as simple as possible, in order to  make the design of 
thc controllcr as easy as possible. When thc proccss is 
described by partial diffcrential cquations, the modcl is 
infinite dimensional, and this causes problems for the con- 
ventional control design strategies, since they are based 
on statme space representations or at least a finite number 
of ordinary differential equations. However some strate- 
gies cxist for making reductions in the case of partial dif- 
fercntial equations. The two stratcgics that will be dc- 
scribcd in thc following are the modal approximation and 
the method of characteristics. 

3.1. Modal approximation 
The first approach is a slightly modified version of 

the modal approximation dcscribed by e.g. Ray (1981)[8]. 
Thc modifications result partly from the fact that dcvi- 
ation variables are not used, and partly from the recycle 
equation. Because the modal approximation requires that 
the resulting system of coupled partial differential equa- 
tion should be homogeneous in the boundary conditions. 
Thus the following approximations for the dimensionless 
oxygen concentration and tcmperature were applied. 

These expansions, along with the assumption that the re- 
action term in the two partial equations can be written 
as an expansion in the eigenfunctions ( R  = fn&), 
are introduced in the partial differential equations. This 

N 
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results in the following Sturm-Liouville problem. 

1 I /  - -.$A + -gn - -(Xzn - Bi)&, 

Both equations have boundary conditions like 
Peh 

&(0)  = 0 &(l) = 0 
1 

4 n  (0) - 

The coefficients X i n ,  can be determined from 

where aill. is the n’th eigenmode of the i’th equation, and 
can be calculated from 

These equations can now be solved for the eigenfunctions 
( d ( 4  $(z)) 

Where the coefficients Bin are determined in order to ren- 
der the eigenfunctions orthogonal to  the adjoint eigenfunc- 
tions (see e.g. [8] or [4]). With these results the original 
partial differential equations can now be reduced to a set of 
2N ordinary differential equations, where N is the num- 
ber of eigenmodes chosen to be included in the reduced 
model. 

(18) 
daln 

dt E- + Atnu in  -Dmfl, - C n E i l , r e e  

da2n - + ( X i r z  - Bi)uzn = PDmfzn + B&(Yd - yin) (19) dt 
The coefficients are defined by 

and similar equations for d, and fzn  except that 4 is ex- 
changed by $. The equations (18)-(19) along with the 
original equation ( 3 ) )  can now be used to make a reduced 
order system, by only considering the dominant N eigen- 
modes as significant. In principle this works very well, 
the only hiccup in the present case is in the numerical 
evaluation of the eigenfunctions. The problem is the term 
e*, since Pe, M 270 for this reactor model, there 
are great numerical difficulties in getting a reliable result 
in the present case. Consequently the method had to  be 
abandoned. However it would work fine with lower Peclet, 
numbers (Pe 6 20). 

rcPa I 

0.65 
0 I 2 Inlet 3 concentrntim 4 5 6 

Figure 2: Bifurcation diagram for fixed bed reactor with 
mass recycle 

3.2. Method of characteristics 

.In order to use the method of characteristics the par- 
tial differential equations have to  be of first order in both 
space and time derivatives. This can be accomplished by 
neglecting the dispersion terms. Since the Peclet num- 
bers are relatively large this approximation seems reason- 
able. However there are some fundamental differences in 
the system behaviour depending on whether dispersion is 
included or not. This can be seen when a bifurcation di- 
agram like the one shown in figure 1, is constructed. In 
the case of no dispersion the bifurcation diagram is shown 
in figure 2. A comparison of figures 1 and 2 clearly shows 
that there ‘are differences in the dynamic behaviour de- 
pending on whether dispersion is included or not. In the 
case of no dispersion more unstable periodic solutions arise 
(there are even more Hopf-like bifurcation curves which 
are not shown in the figure). This means that the syst>em 
most likely does not dampen out the high frequencies as 
when dispersion was included in the model. Consequently 
results obtained with a model without dispersion should 
always be evaluated critically to determine whether espe- 
cially unstable periodic solutions are physically appearing 
in the system, or whether they are just a consequence of 
the modelling approximations. However in the present 
case when the model is to be used for control design, the 
approximation was not believed t o  be a serious problem. 
When the method of characteristics as described in e.g. 
[l], is applied to  the present system, the following two 
characteristic directions result. 

_ - _  dt 1 
dz K 

dt E 

dt IC 

- 

- - -  - 
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These directions are used for a change of variables defined 
by 

d t  1 dz  
da tcda! 
----- - 0  (24) 

(25) 
dt E dz  
dw K dw 
_ _ _ _ _  - 0  

now the original equations can be rewritten as 

dx x 
dw E 
_ -  - --Dmexp (7 (1 - f)) 
- dy  =pxDmexp  - B i ( y - y y , )  (27) 
da! 

with boundary conditions 

As it can be seen the recycle is incorporated in the bound- 
ary conditions, along with the assumption that the recycle 
dynamics is pseudo stationary. The idea now is to  make a 
mapping of e.g. output conditions. This corresponds to  a 
discrete mapping, which maps one thermal residence time 
ahead. This means that the model is reduced to  a set of 
two discrete equations. However there is a problem, since 
the recycle requires the knowledge of both inlet and outlet 
conditions in order to be solvable. If this point is ignored, 
the system is simply reduced to  a normal fixed bed reac- 
t,or. Another idea is to  use two sets of discrete equations, 
one for the inlet and one for the outlet, in this way the 
recycle effect could be incorporated. But what happens 
at the outlet is of cause not independent of what happens 
at the inlet, and this coupling of the equations can not be 
taken into account with this approach. Consequently this 
method of model reduction was discarded as well. 

4. Control Design 
Before deciding on the particular control design and 

strategy to be applied in the specific case, it is important 
to be able to  answer the question, what is the purpose of 
t,he control? Is it to extend the area in which the pro- 
cess can be operated with only one stable attractor (i.e. 
to avoid regions of periodic solutions), or perhaps to sta- 
bilise some of the open loop unstable periodic solutions or 
some third objective. An alternative approach could be 
to combine the two, i.e. to extend t,he area where a single 
stable steady state exists, and simultaneously ensure that 
the bifurcating periodic solution is stable. This approach 
is described in e.g. [15]. However this method applies 
nonlinear control technics and the calculations will be ex- 
tremely time consuming if the model of the system is not 
of relatively low order and complexity. 
The more simple approach taken in this paper, is to try to 
stabilise the unstable steady state in t,he areas where it is 
surrounded by either stable or unstable periodic solutions. 

The controller applied is a simple PI-controller. The con- 
trol parameters are designed with the aid of dynamic op- 
timisation. The optimisations are performed using gOPT 
([12], [13]) which is an optimisation algorithm integrated 
in the gPR0MS system [2]. 
In designing controllers the first thing is to  decide on ac- 
tuators and measurements. The measurement chosen in 
the present case is the temperature at the outlet of the 
reactor (similar results will be obtained if concentration is 
used). The remaining problem is what actuator to  choose? 
The idea is not to  destroy the inherent feedback in the 
system, by breaking the recycle loop. Consequently can- 
didate actuators are inlet temperature (yin) and flow rate 
( K ) .  However thorough investigation have shown that it 
seems impossible to stabilise the system at a steady state 
using any of these actuators, or indeed any other candidate 
actuators that will preserve the loop structure. This is 
probably caused by the fact that mass fluctuations travel 
much faster through the reactor than thermal ones does 
(confer E = 1/600: ratio between mass and thermal resi- 
dence time). Consequently the only possibility to  obtain a 
fixed outlet temperature from the reactor is to  break the 
recycle loop. i.e. to  control the combined inlet concen- 
tration to the reactor (sl,in + a ! ~ l , ~ ~ ~ ) .  But it should be 
pointed out that from a dynamic point of view the system 
is no longer a recycle reactor, but behaves like an ordinary 
fixed bed reactor. An example of a closed loop simulation 
with a PI-controller designed by the objective function 

is shown in figure 3. The reason for the untraditional 
objective fundion, is t,o severely penalize oscillatory re- 
sponse. The latter is especially unattractive in the present 
case because of the inherent oscillatory nature of the open 
loop process. The change applied in the figure is a rather 
large set-point change. It can be seen from figure 3 that 
the controller is quite capable of handling even this large 
change, exactly as would be expected if the system had 
been a fixed bed reactor without recycle. 

5. Discussion and Conclusion 
It has been shown that multiple periodic solutions can 

arise in a fixed bed reactor with mass recycle. Further- 
more a fundamental effect of dispersion in the model has 
been described. The main difference is that  high frequency 
dynamics is damped in the case when dispersion is in- 
cluded and otherwise not. Not including dispersion will 
cause an increasing number of unstable periodic solutions 
to  occur in the system, and since this is a known route to  
chaos, the system might behave chaotic for some parame- 
ter values. 
Model reduction by either modal decomposition or the 
method of characteristics has been examined. But none 
of the methods gave results that were applicable in the 
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[9] B. Recke and S. B. Jgrgensen. Physical implications 
of periodic solutions in a fixed bed reactor with re- 
cycle. In J .  B. Rawlings, editor, DYCORDS'95. 4th 
IFAC Symposium on Dynamics and Control of Chem- 
ical Reactors, Distillation Columns and Batch Pro- 
cesses, 1995. 

[lo] B. 0. Recke and S. B. Jflrgensen. Nonlinear dynam- 
3 :  Stabilizing controller designed around ics of a fixed bed reactor with recycle. In A.R. Giona 

(zl>in 'yin)  = (1.0,0.8), control parameters Tj = 4.0, 
Kp = 1.34726 

G. Biardi, M. Giona, editor, Chaos and Fractals in 
Chemical Engineering. World Scientific Singapore, 
1997. 

present case. The unsatisfactory result is caused by the 
high Peclet numbers, and the recycle respectively. 
Finally it was shown that the only way to stabilise a fixed 
bed reactor with mass recycle at an open loop unstable 
steady state appears to be to break the natural feed- 
back loop by controlling the combined inlet concentration. 
From a dynamic point of view, this results in a reduction 
of the system to an ordinary fixed bed reactor. 
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