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Abstract 

Assuming linear-phase of the associated time signal this 
paper presents an approximated analytical description 
of the unavoidable aliasing in practical use of com- 
plex cepstrums. The linear-phase assumption covers 
two major applications of complex cepstrums which are 
linear- to minimum-phase FIR-filter transformation and 
minimum-phase estimation from amplitude specifica- 
tions. The description is made in the cepstrum domain, 
the Fourier transformed of the complex cepstrum and 
in the frequency domain. Two examples are given, one 
for verification of the derived equations and one using 
the description to reduce aliasing in minimum-phase es- 
timation. 

of aliasing is well-known but nevertheless the error has 
never been analysed. 

In section 2 of this paper approximated analytical 
equations are derived describing the aliasing in the com- 
plex cepstrum domain, the Fourier transformed of the 
complex cepstrum and the frequency domain. From this 
it can be seen that the error consists of two parts in the 
frequency domain. One of these can easily be reduced 
which is shown in section 3. In section 4 two examples 
are given, one for the verification of the derived equa- 
tions and the other showing the ability to reduce the 
introduced error in minimum-phase estimation without 
finding the zeros. 

2. Analytical description of aliasing 

1. Introduckion The approximated analytical equations derived in this 
section assume that the associated time signal is a non- 

In nonlinear digit$ signal processing cepstrum analysis causal linear-phase signal (without zeros on the unit cir- 
has been extensively used since the introduction in 1963. cle). Consequently, the frequency response can be writ- 
One of the main reasons is the ability to deconvolve ten as [1][5]: 
signals which can be useful in some situations. 

following two applications using the deconvolution prop- 
erty: 

The investigation in this paper is concentrated on the M ,  MO 

H ~ , n ( e ~ ~ )  A n: (1 - ate-3w) r]: (1 - bL1eJw) (1) 

where Mi = MO is the number of zeros inside and out- 
side the unit circle and a, = &. It is assumed that 
M% = MO < 9 and consequently (1) can be trans- 
formed to the time domain using an N point discrete 
Fourier transform (DFT) without losing information. 

2=1 2=1 

~ i ~ ~ ~ ~ -  to minimum7pphase FIR-filter transforma- 
tion [1][2]. 

e Minimum-phase estimation from amplitude specifi- 
cations [3] [4]. 

Both applications use the assumption that the associ- 
ated signal in the time domain is a linear-phase signal 
and therefore a convolution between a minimum- and a 
maximum-phase part. In both situations a separation of 
the two parts is necessary and it is possible to show (see 
[5 ] )  that a transformation of the linear-phase signal to 
the complex cepstrum domain automatically performs 
this separation. 

Theoretically this can be done without error. In prac- 
tice however the involving Fourier transformations are 
discrete and this introduces aliasing in the complex cep- 
strum and consequently some kind of error in the final 
solution (the minimum-phase impulse response or the 
minimum-phase frequency response). This introduction 

The theoretical complex cepstrum of (1) is equal 
[11[51: 

which is an infinite sequence decreasing as $ where 
a = max(lail,-&> I b i I  . 

Computation of the theoretical complex cepstrum re- 
quires the Fourier transform, but in practice it is re- 
placed by the DFT. Due to this the obtained cepstrum 
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(called ip ,an(n))  is a time-aliased version of the true 
cepstrum &in(n) [5][6][7]: 

Equation (11) Can be t r a~~fo rmed  to the frequency 
domain using a DFT followed by the exponential func- 
tion. First the DFT gives k ( e j w k )  (wk = gk) (called 
the Fourier transformed of the complex cepstrum) which M 

hp,lin(n) = &in(n + k ~ )  (3) is approximately equal to: 
k = - M  

Combining (2) and (3) the time-aliased complex cep- 
strum can be written as: 

ip,lin(n) = { log A + 6,=0 n = 0 

where 

M ;  

N - ' + 1  
- Ka,aie-jL'k - $Ka,  (aie-jWk)T (14) 

1 - a i e - j W k  

Kb,bie-jWk - 2Kb, (bie-j") F+' 

1 - b i e - j W k  

N - l  ) - 

(5) 

The exponential function will now transform from 
k p ( e j W k )  to the frequency domain: (6) 

Mi 

is the aliasing. 
The rest of this paper is concentrated on description 

of the minimum-phase part (1 5 n 5 y). Similar 
expressions can be made for the maximum-phase part. 

The total aliasing of the minimum-phase cepstrum de- 
scribed in equation (5) can be divided into contributions 
from zeros inside and outside the unit circle. From (5) it 
can be seen that aliasing caused by a single zero inside 
the unit circle is: 

H p ( e j w k )  x n ((11 - aie-jwk) . A1 . A,) (15) 
(7) i=l 

and it can be approximated as: 

resulting in the equation: 

(10) 
an 1 

-*L- a?+kN ln(1- a?) 
n +  kN (1 + E) N k = l  

Using a similar approximation for a zero outside the 
unit circle the total aliased minimum-phase part of the 
cepstrum can be expressed as: 

where 1 5 n 5 y and 

where 

and 

- .  
1 - b ie - jwk  

In the above transformation the exponential function 
has been approximated as e" M 1 + I in the last three 
terms of (14). This cart be done because Kat AKbi  << 1. 

Despite the use of approximations in the derivation of 
equation (15) the difference between the error described 
by this model ( A ,  and . 4 2 )  and the true error introduced 
by aliasing is very small. This is verified in Example 1 
in section 4. 

Equation (15) shoms that the minimum-phase fre- 
quency response found from the aliased cepstrum can 
be divided into three different parts. The first one is 
the true frequency response while the second and third 
parts (called A,  and A.) are the introduced error. 

There are three reasons for this dividing of the total 
error into two parts: 

1. A1 and A2 are generated at two different stages. 
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2. The two parts introduce two different kinds of error. 

3. One of them can be reduced without any informa- 
tion about the exact location of the zeros. This is 
shown in section 3. 

The statement in point 1 can be verified from a dis- 
crete Fourier transform of equation (11). If this transfor- 
mation is performed it can be seen that A, is the direct 
effect of the time-aliasing (see (3)) while A2 is due to 
the limited length ( N )  of the transformation from k,(n) 
to a p ( e j w k ) .  

From equation (16) it can be seen that A, is controlled 
by the constants K,, and Kb,. In practical situations 
these two are small and consequently A1 will only gen- 
erate a minor error in the vicinity of the actual zero. 

The total contribution from the three terms in A2 (see 
equation (17)) is an oscillating error having a constant 
amplitude except in the vicinity of the zero where a 
peak is present. Due to  this disturbance of the whole 
spectrum a reduction of A2 is desirable. The chance of 
reducing this error is investigated in the next section. 

The above two statements are visualised in Example 
2 in section 4. 

3. Reducing aliasing 

In this section the possibility of reducing aliasing is in- 
vestigated. From the total frequency domain descrip- 
tion in section 2 this seems impossible without finding 
the zeros. 

If the investigation is moved into the time domain 
and the dividing in the two contributions is retained 
this section will show: 

0 Reduction of the A1 error requires the zeros of 
h i n ( n ) .  

e A2 can be reduced in the time domain by a trun- 

The assumption Mi = MO < 9 made in section 2 
cause a limitation of the true minimum-phase impulse 
response to the area n E [0, w[. 

From equation (16) it can be seen that the disturbance 
caused by AI is in the same interval. As a consequence 
it is not possible to  remove A1 without finding the zeros. 

The disturbance caused by A2 is not limited to the 
above interval. Actually equation (17) shows that the 
main components will occur outside this area. Truncat- 
ing the impulse response calculated from H p  ( e J w k )  to: 

cation. 

will therefore reduce the error introduced by A,. 
The possibility of error reduction in the two appli- 

cations mentioned in the introduction (using the above 
method) is now investigated. This require discrimina- 
tion between the two applications. 

Table 1: Zeros of a linear-phase FIR-filter. 

In linear- to minimum-phase FIR-filter transforma- 
tion the final solution is the minimum-phase impulse 
response. From this minimum-phase impulse response 
only the first Mi + 1 points are used. Due to this the 
truncation described in equation (18) is automatically 
performed and an additional reduction requires the ze- 
ros of hlin (n). 

The desired signal in minimum-phase estimation is 
3M(kp(eJWk)). This estimated phase is corrupted by 
both types of error and consequently a reduction of the 
error is possible. This is verified in Example 2 where 
a minimum-phase function is estimated and the intro- 
duced aliasing reduced using the above procedure. 

The cost of this error reduction is 2(N + Nlog, N )  
flops where one half are used for the transformation to 
the time domain and the other half used for transfor- 
mation back to the frequency domain and phase calcu- 
lation. 

4. Examples 

Two different examples are given in this section. 
The first one has two different purposes: 

1. to  validate equation (15) the analytical description 

2. to visualize the error introduced by AI and A2. 
In Example 2 a minimum-phase function is estimated 

from an amplitude and the introduced error is reduced 
using the method described in section 3. 

Example 1 For verification of equation (15) a linear- 
phase FIR-filter is generated having the zeros shown in 
table 1. 

From the impulse response the complex cepstrum has 
been found using N = 512 points FFT’s. The minimum- 
phase part of the complex cepstrum is transformed back 
to the frequency domain and called Hcep(ejwk).  The 
difference between this true aliased frequency response 
and the theoretical-one calculated using equation (15) 
(called H p ( e j w k ) )  is the model error. The model error 
for this example is plotted in figure 1. For comparison 
the error introduced by aliasing is depicted as well (the 
difference between Hcep(e jWk)  and the true minimum- 
phase amplitude response H ( e j “ k ) )  

The two plots in figure 1 clearly demonstrate that the 
model error is negligible compared to the error intro- 
duced by aliasing. Consequently, the derived equations 

in the frequency domain. 
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Figure 1: Top: Model error. 
Bottom: Error introduced by aliasing. 

can be used as an analytical description of aliasing in 
the complex cepstrum domain (ll),  in the domain of 
the Fourier transformed of the complex cepstrum (14) 
and in the frequency domain (15). 

The second part of this example illustrates the error 
introduced by A1 and A2 which was described at the end 
of section 2. A1 and A2 are calculated from equation 
(16) and (17) using the zeros shown in table 1. The 
amplitude and angle of the two errors are plotted in 
figures 2 and 3. 

0.999 
0 0.5 1 1.5 2 2.5 3 

Frequency in radsec. 

-2' 
0 0.5 1 1.5 2 2.5 3 

Frequency in radsec. 

Figure 3: Absolute value and phase of A,. 

Resistance 
Capacitance 
Inductance 

I Rl (load resistance) I 6000 I 
Table 2:  Cable data 

circle completely dominates the total error. This can be 
explained by the fact that the complex cepstrum de- 
creases as $ where Q = max(lai1, &). m 

Example 2 As explained in the beginning of this 
section the possibility of error reduction in minimum- 
phase estimation is illustrated in this example. 

The amplitude usecl for the estimation is the ampli- 
tude of a minimum-phase (FIR) cable-equalizer (opti- 
mal in the LS-sense). This equalizer is generated from 
the cable data shown :in table 2 (f, = 48kHz) using the 
method described by Hermann et a1 [8], which can be 
summarized as: 

1. Design a linear-p:hase FIR-equalizer Hiin (ej") hav- 
ing an amplitude IH(ej")I2 equal to  the square of 
the desired amplitude. 

Figure 2: Absolute value and phase of Al .  2. Generate a new FIR-equalizer from the zeros of 
H*i,,(ej") inside ithe unit circle. This new equal- 
izer (H(ej"k)) is a minimum-phase FIR-equalizer 
having the amplitude IH(ejWk)I. 

The two figures confirm the two statements from sec- 
tion 2:  

0 A1 error is concentrated in the vicinity of the zeros. 

0 A2 generates an oscillating error having a peak near 

figure 4 the amplitude of the cable and the amplitude 
and phase of the desig,ned minimum-phase equalizer are 
plotted. 

The theory of compliex cepstryms is used to estimate a 
minimum-phase function ( 3~ ( H p ( e j w k ) ) )  from the am- 
plitude of the cable-equalizer [3][4]. The length of the 

the zeros but not limited to this area. 

As expected the two figures illustrate that the error 
introduced by the zeros having least distance to the unit 

1601 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 09,2010 at 07:38:56 EST from IEEE Xplore.  Restrictions apply. 



.- - 
4 

Figure 4: Top: Amplitude response of cable (solid line) 
and equalizer (dotted line). 
Bottom: Phase response of equalizer. 

? - 2 O L  - 

involving discrete Fourier transformations is N = 256 
points. 

The error in the estimated phase can be visualised 
by plotting the difference between the phase of the 
minimum-phase equalizer L H ( j W k )  and 7~ (kP(dwk)) 
which is done in figure 5. In the same figure the phase 
error after reduction is depicted. 

0 
cd 
.e * 
.d 

3 
2 
2 a 

0- 

Figure 5: Top: Phase deviation before reduction. 
Bottom: Phase deviation after reduction. 

As stated the error introduced by aliasing can be re- 
duced by the truncation in the time domain. In this 
example the reduction is a factor 5 which is obtained 
using only 4608 flops. U 

nal is a linear-phase signal. The description covers the 
complex cepstrum domain, the domain of the Fourier 
transformed of the complex cepstrum and the frequency 
domain. 

In the frequency domain the introduced error consists 
of two parts called AI and Az. The error introduced 
by AI is limited to the vicinity of the zeros while the 
oscillating error from A2 disturbs the whole spectrum. 

A total removal of the error requires the exact ze- 
ros of the impulse response but it is shown that the 
oscillating error can be reduced without finding the ze- 
ros. The computational cost for this reduction is only 
2 . N + 2 . N log, N flops where N is the length of the 
discrete Fourier transformations. 

Two different examples are given for verification. The 
first one verifies the derived equations describing the 
introduced error and the second one demonstrates the 
ability to reduce the oscillating error without finding 
any zeros. 
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5. Conclusion 

Approximated analytical equations describing the un- 
avoiable aliasing in practical use of the complex cep- 
strum are derived assuming that the associated time sig- 
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