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Abstract 
The simultaneous perturbation stochastic approxima- 

tion (SPSA) algorithm has recently attracted considerable 
attention for optimization problems where it is difficult or 
impossible to obtain a direct gradient of the objective (say, 
loss) function. The approach is based on a highly efficient 
simultaneous perturbation approximation to the gradient 
based on loss function measurements. SPSA is based on 
picking a simultaneous perturbation (random) vector in 
a M o n k  Ca.rlo fashion as part of generating the approx- 
itimtion t,o the gradient. This paper derives the optimal 
tlistribiition for the Monte Carlo process. The objective 
is to minimize the mean square error of the estimate. We 
also consider maximization of the likelihood that the es- 
timate be confined within a bounded symmetric region of 
t,he true parameter. The optimal distribution for the com- 
ponents of the simultaneous perturbation vector is found 
to be a symmetric Bernoulli in both cases. We end the 
paper with a numerical study related to the area of exper- 
iment design. 

1. Introduction 
Consider the problem of determining the value of a p 

dimensional parameter vector to minimize a loss function 
L(B),  where only measurements of the loss function are 
available (i.e., no gradient information is directly avail- 
a.ble). The simultaneous perturbation stochastic approx- 
imation (SPSA) algorithm has recently attracted consid- 
erable attention for challenging optimization problems of 
this type in application areas such as adaptive control, 
pattern recognition, discrete event systems, neural net- 
work training, and model parameter estimation, see, e.g., 

SPSA was introduced in [7] and more thoroughly 
analyzed in [8]. The essential feature of SPSA is its under- 
lying gradient, approximation that requires only two loss 
function measurements regardless of the number of param- 
eters being optimized. Note the contrast of two function 

PI, PI, ~31, [4i1 [51, and PI. 
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measurements with the 2 p  measurements required in clas- 
sical finite difference based approaches (i.e., the Kiefer- 
Wolfowitz SA algorithm). Under reasonably general con- 
ditions, it was shown in [8] that the pfold savings in func- 
tion measurements per gradient, approximation can trans- 
late directly into a pfold savings in total number of mea- 
surements needed to achieve a given level of accuracy in 
the optimization process. 

An essential part of the gradient. approximation is 
a simultaneous (random) perturbation relative to the cur- 
rent estimate of B.  This perturbation is generated in a 
Monte Carlo fashion as part of the optimization process. 
Since the user has complete control over the perturbation 
distribution, there is strong reason to choose a distribu- 
tion as a means of minimizing the number of (potentially 
costly) function measurements needed in the optimization 
process. These function measurements may involve phys- 
ical experiments involving labor or material costs as well 
as computer related costs associated with simulations or 
data processing. 

The aim of this paper is to determine the form of 
the optimal distribution for the simultaneous perturba- 
tions. This will involve both analytical analysis based on 
the asymptotic properties of the parameter iterate and 
numerical finite sample experimentation. The related ob- 
jectives considered here are to minimize the mean square 
error of the estimate and to maximize the likelihood that 
the parameter iterate is restricted to a symmetric bounded 
region around the true parameter. 

The rest of the paper is organized as follows. In 
Section 2, we briefly review the SPSA algorithm. Section 
3 copsiders the choice of random perturbations. Section 4 
presents a numerical example from the area of statistical 
experiment design. Section 5 offers concluding remarks. 

2. Problem Formulation 

dL(B)/dB = 0 for some differentiable loss function L : 
IRP -+ R.  In the case where the dependence of the loss 
function upon B is unknown, but the loss function is ob- 
served in the presence of noise, an stochastic approxima- 
tion (SA) algorithm of the generic Kiefer-Wolfowitz type 

Consider the problem of finding a root 19' of g(B) 
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(see [$I]) is appropriate. 
Let us now briefly review the SPSA algorithm (see 

[8]) for the problem posed above. Let Qk denote the esti- 
niate for 6’ at the kth iteration. The SPSA algorithm has 
the form 

& + I  = o,, - akgk(4k) 
whcre { a k }  is a gain sequence and g k ( O k )  is a simultane- 
ous perturba.tion approximation to g ( @ k )  at iteration k. 
The simultaneous perturbation approximation is defined 
as follows. Let. & E Rp be a, vector of y mutually inde- 
pendent, mean zero random variables { A k l ,  A k 2 ,  ..., Akp} .  
Consistent, with the usual framework of stochastic approx- 
imatrionst we have noisy measurements of the loss function 
at specified “design levels”. In particular, at  the kth iter- 
ation 

y p )  = L(8k + C k A k )  + E k  (+) 

y i - )  = L(6,  - C k A k )  4- €i-) 
wlierc {CA.) is a gain sequence and CL+) a.nd 6 i - l  represent 
ineasurernent noise terms. The basic simnltaneous pertur- 
Iia.t,ion form for the estimate of g( . )  at the bth iteration is 
the1 I 

Note that, at, each iteration, only two measurements are 
needed to form the estimate. To help mitigate noise ef- 
fects in  high noise environments, it is sometimes useful to 
consider averaging among gradient approximations, each 
genera.ted as in Eq(2.1) based on a new pair of measure- 
ments that are conditionally (on 8 k )  independent of the 
other measurement pairs; this is examined in [8] but will 
not be examined further here. Throughout the paper, we 
assume that: 

AI :  ak = a/ka, and Ck = l / k Y  where a > 0, 
0 < a 5 1, y > 0 , a - y  > 0.5, a-27 > 0, and 3y-a/2 2 0 
(since ck and A k  always appear together as C k A k ,  we fix 
the numerator in ck to unity and let Ak vary freely). 

Az: E { c i + ) - t i - ) 1 8 k l A k }  = 0, and for some a 0 , S  > 
0 and V k ,  E{c:(”’)} < (YO. Moreover, there is a u2 such 
that ,!?{(ti+) - E i - ’ ) 2 1 & ,  A , }  --+ U’ as k -+ 00. 

AB: For all k < 00, {&}  ( i  = I ,  ..., p )  are i.i.d. 
and symmetrically distributed about 0 with IAkiI 5 a0 

a,.s. and EJA;;) 5 a1 a.s. for some L Y O , L Y ~  > 0. For some 
cr2,a3,6 > 0, i t  holds that E { l L ( e k f ~ k A k ) 1 ~ + ~ }  5 a 2  and 
E(Aii2-’) 5 a3, i = 1, ..., p .  Moreover, there are p 2 , t 2  
such that as k --+ M, E ( A i i )  --+ p 2  and E(&;) -+ E’ for 
all i = 1, . . . ,p.  

Aq: supk I l ik l l  < 00 a.s. where 1 1 .  1 1  denotes usual 
Euclidean norm. 

.45: 6’’ is an asymptotically stable solution of the 

differential equation d x l d t  = -g(z). 
Ag: Let D(O*) = (20 : lim r(t lz0) = 0.) where 

x(tl to) denotes solution to the differential equation of A5 
based on initial condition 20. There exists a compact set 
s C D ( e * )  such that 8 k  E s infinitely often for almost all 

A7: For almost all e k ,  there is an open ball about 
8, whose radius is independent of k or 8 k ,  where the third 
derivative of the loss function exists continuously and is 
uniformly bounded. 

The reader is referred to 181 for remarks on the as- 
sumptions. 

The problem of selecting random perturbations is 
formulated as selecting a sequence of probability distri- 
butions for Akl, k = 1,2,  ..., each from the set of allow- 
able probability distributions for the random perturba- 
tions (see A 3 ) .  The objective is to optimize a suitable 
criterion related to the parameter estimate. 

For small k ,  the exact distribution of 6 k  is depen- 
dent upon the (unknown) joint probability distribution 
of the noise sequence. Therefore, we solve the optimal 
random perturbation problem using the asymptotic dis- 
tribution of the estimate. It follows from Proposition 2 of 
[8] that as k -+ CO: 

t+03 

6 k .  

where p is a positive constant, and d and D are quantities 
not dependent upon the random perturbations. The ma- 
trix D depends on the Hessian of L(0)  a t  6* and d, and d 
depends on the third order derivative of L(0) a t  0’. Both 
d and D are dependent upon a, a,  and y. The reader is 
referred to [8] for the detailed forms of d and D. 

From Eq(2.2), it is evident that the distribution of 
2 is affected by the random perturbations only through 
p2 and E’ (see A3).  Hence, using the asymptotic result for 
sufficiently large number of iterations, the problem sim- 
plifies to selection of a single probability distribution for 
Aki, for all k = 1 ,2 ,  ..., optimizing some criterion related 
to 2. 

3. Optimal Choice of Random 
Perturbations 

As mentioned in the previous section, the analysis here 
is based on the asymptotic distribution of the parameter 
iterate; the authors are unaware of any corresponding fi- 
nite srtmple result that would be useful in such calcula- 
tions. 

We consider the design of optimal perturbation dis- 
tribution with the goal of minimizing the trace of mean 
square error of the estimate, and maximizing the probabil- 
ity of restricting the estimation error within some bounded 
symmetric about zero region, respectively. 

First suppose that we seek a probability distribution 
that minimizes the expression M S E  = E{trace[ZZ‘]}. 
We refer to this criterion as the mean square error crite- 

A 
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rion. Now, using Eq(2.2) 

M S E  = p2trace{D} + t4dTd. (3.1) 

Denote K 1  = trace{D} and K 2  = dTd  (the numbers Ii1 
and Ii'2 do not depend upon the random perturbations). 
I n  the following, we let Pr( .) denote probability. 

Proposition 1 For all k = 1,2, ..., and i = 1, ..., p ,  the 
symmetric Bernoulli distribution 

is the unique single allowable distribution for A k , ,  mini- 
mizing the mean square error criterion. 

PROOF: See [lo]. 

From a practical point of view, Corollary 1 below is 
important in  showing that a Bernoulli distribution with 
given p 2  and E 2  will always improve upon any other dis- 
tribution with the the same p 2  and t2 .  This result requires 
no knowledge of K 1  and K 2 .  

Corollary 1 For a given p2 (or E ' ) ,  the Bernoulli distri- 
bution = f p  (or A k i  = A<-') provides a lower value 
of Eq(3.1) than any other distribution with the same p 2  

Follows immediately from the necessity 
(or ( 2 ) .  

PROOF: 
part of Proposition 1, see [IO]. 

REMARK 1 To invoke the full optimality of the result in 
Proposition 1, we require knowledge of K1 and K 2 .  This 
is analogous to the calculations for the optimal gain se- 
quences of st,ochastic algorithms, see e.g. [ll] and [12]. 
The result in Corollary 1 partially mitigates this situa- 
tion in that it implies that no matter how a given per- 
turbation distribution is determined, there is a Bernoulli 
distributions t,hat yields a lower M S E ,  for any p (or t )  
of the given distribution. Another frequently encountered 
situation is the case where an implicit Q priori model for 
L(8)  is given (i.e., it is only possible to compute L(8)  
for each 8). In such cases, it is often difficult to accu- 
rately evaluate the second and third order derivatives or 
the noise variance u2 to determine Ii'l and ICz.  The fol- 
lowing procedure may be useful in such situations. By 
applying SPSA to the available model using very large 
number of iterations K ,  we obtain the estimate 6~ which 
we use as the true optimum in our calculations. We then 
obtain (rough) estimates of IC1 and Ii'z using the given 
model and $ K ,  and use Eq(3.2) to find an approximation 
to the optimal perturbation magnitude which will be used 
a.s a n  initial guess for a numerical search. Corollary 1 
implies that t.he optimal perturbation distribution should 
be sought among symmetric Bernoulli distributions. We 
sample the A k ;  from Bernoulli distributions with varying 
magnitudes around the initial guess. For each magnitude, 
we apply SPSA a number of times (cross sections), ob- 
tain d k  for each cross section to find [ l e k  - 6~11' where 
k << IC is some large iteration number of interest, and 

average over the computed values of ll6k - 8 ~ 1 1 ~  to numer- 
ically evaluate the mean square error for each one of the 
Bernoulli distributions respectively. The numerical study 
of the paper illustrates such a procedure. 

Now consider maximization of the likelihood of restrict- 
ing the error 2 within some bounded symmetric (about 
zero) region Ve. A similar approach is pursued in [13] 
to determine the constants of a Robbins-Monro stochas- 
tic approximation algorithm. The optimality criterion is 
written as 

J = Pr{Z  E VQ}. (3.3) 

An important special case is where Ve is the closed unit 
ball. Then the criterion is PY{IIZII 5 A } ,  where as usual, 
1 1  ' 1 1  denotes Euclidean norm and A is a positive number 
chosen by the user. It reflects the user's tolerable amount 
of error. 

For the probability criterion J ,  a result identical 
to Corollary 1 holds (see [lo]). Numerical procedures 
for optimizing J ,  given an implicit a priori model for 
the loss function, are similar to the procedure described 
in Remark 1; they involve application of Bernoulli dis- 
tributed perturbation sequences and numerical assessment 
of Pr{Z  E Ve}. 

REMARK 2 Consider the degenerate case d = 0. This 
for example occurs when the third order derivatives of 
the loss function at  0' are zero (see [SI). Then, clearly 
the optimal solution according to both the mean square 
error and probability criteria will be a distribution with 
p -+ 0, forcing the covariance p2D to zero. This implies 
that A k ;  -+ fcc is the optimal choice for random pertur- 
bations. However, liin Ck = 0, meaning that it is not pos- 
sible to draw any definitive conclusion about the optimal 
size of c k A k  based on the asymptotic properties. In finite 
sample cases, c k  does not get infinitesimally small, and it 
is obviously not allowed to let -+ 00, either. How- 
ever, a practical guideline in d = 0 situations is to select 
the magnitude of A k i  as large as the algorithm does not 
go unstable. This example shows that the results based 
on the asymptotic distribution must be interpreted and 
used with some care in finite sample cases. 

k - t o o  

4. Numerical Study 
I,n this section, we apply SPSA to a statistical ex- 

periment design problem for parameter estimation in a 
dynamic model, see e.g. [14]. Consider the following au- 
toregressive model with exogenous inputs (ARX(2,l)):  

Zlt = hlZlt-1 + h2Yt-2 + 'Llt + et (4.1) 

where { u t }  and {yt}  are input and output sequences and 
{et} is a sequence of mean zero i.i.d. Gaussian random 
variables. We assume that the input sequence is generated 
by a finite register with length 10, meaning that the input 
repeats periodically with cycle 10. We wish to compute 
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the input sequence parameter (211, ..., 
from zero initial condition minimizes 

which starting 

M S E  
J 

.Jt, = - E {  log det M p }  + 0.5 U: 

0.0063 0.0052 0.0073 0.1061 
0.36 0.51 0.35 0.0 

where 

Notice t1ia.t such a problem formulation implies that we 
deal wit,h a static optimization problem and not, a dynamic 
one since we consider the whole sequence of data {y,} i n  
batch mode within the loss function and a fixed number 
of pa.ra.meters independent of the size of the data set. We 
explain Eq(4.2) as follows. Assuming that we are inter- 
ested in esthnat,ing A = ( h l ,  h ~ ) ~ ,  the basic least squares 
est,ima.t,e is given by (see, e.g. [15]) 

n z  .i;:. (Y t  - U t ) Y t - l  1 .  
A =  MF c (Yt - .ut)Yt-2 

z=nl 

Hence, by selecting the input sequence to maximize the 
expected value of the (logarithm) of the determinant of 
M F ,  we wish to avoid the problem of the singularity of 
Mr;.. Indeed. for large values of sample size, the matrix 
M I ;  is (a.pproximat.ely) proportional to Fisher's informa- 
tion matrix for the model given by Eq(4.1) (see [14], Chap- 
ter 6). Since the positive semi-definite matrix M F  is an 
i.ncreasing function of the input power U:, the second 
term of the criterion penalizes signals with large power. 
For a detailed treatment of the problem of input design 
for dynamic system identification, see [14], Chapter 6. In 
a. large part of the literature on experiment design, the 
solution is obtained by assuming a model for the data and 
calculation of the information matrix as a function of in- 
put. Such models are often obtained through performing 
preliminary identification experiments. Here, we directly 
estimate the optimal inputs without requiring a prelimi- 
nary identification stage. 

Let us assume that the model parameters are given 
by hl = 1.45, h2 = -0.475 (which correspond to poles 
0.5 and 0.95), the standard deviation of et is 0.05, and 
the system is initially a t  rest. Note that these values are 
used for data generation purpose, and to (approximately) 
determine the optimal distribution of the random pertur- 
bations. The SPSA algorithm requires no knowledge of 
these values and the optimization may be carried out by 
real experiment,ations that involve exciting the system at 
initial rest by different inputs and output measurements 
to compute J,. In the following, we select nl = 9, n2 = 64 
(see the definition of h f ~  below Eq(4.2)), ak = 0.1/k0,9, 
and Ck = l / k 0 - 1 7 .  

We first apply SPSA with 50000 iterations and 
Aki = f O . l  (Bernoulli distributed) in order to obtain an  
estimate of the (uncomputable) optimal sequence { 71;) for 

later reference. This value will be used as the true opti- 
mum for the rest of the paper since the number of itera- 
tions for all later estimation is 1200 << 50000. Then, we 
assess the second and third order derivatives of the loss 
function at  the optimum, { u t } ,  by numerical finite differ- 
ence method for the noise free case. Also, we approximate 
u2 by simulation of 1000 realizations of [logdet(MF)] at  
{ U : } .  Inserting these estimates in Eq(3.2) yields the dis- 
tribution Pr(Aki  = f0 .19)  = ?j. This distribution shall 
only be used as an initial guess for a numerical search to 
find the optimizer for the mean square error and probabil- 
ity criteria since only rough estimates of Ii1 and K z  (see 
Eq(3.2)) are available. 

We apply Bernoulli distributions with magnitude of 
the outcome around 0.19, estimate the optimal input se- 
quence 100 times, and assess the values of the mean square 
error and probability criteria numerically. The optimal 
distribution, according to both the mean square error and 
probability criteria, is found to be a f0 .25  Bernoulli distri- 
bution. We use the same procedure as above to compare 
the optimal distribution against other choices of distri- 
bution. In Table 1, all the distributions correspond to 
Bernoulli distributed variables. The top row of the ta- 
ble provides the relevant Bernoulli distributions. For the 
probability criterion, we have chosen the special case be- 
low Eq(3.3) with A = 4 x The results indicate that 

II f 0.15 II f 0.25 I I  f 0.4 I I  f 1 n 

Table 1: Performance of SPSA under varying Bernoulli dis- 
tributions 

an inappropriate choice of random perturbations (e.g. f l  
in this numerical study) would lead to very poor estima- 
tion properties. 

We also apply a random variable uniformly dis- 
tributed over [-0.3, -0.21 U [0.2,0.3]. This choice is in- 
teresting since the distribution is continuous and its sup- 
port includes the support points of the optimal Bernoulli 
(f0.25). The numerical evaluations of M S E  and J yield 
0.0062 and 0.39, respectively, which are noticeably worse 
than the results for the optimal Bernoulli distribution. 

Finally, notice that in Table 1, the number of iter- 
atiods have been chosen relatively large (1200) in order 
to let'the iterates reach the asymptotic condition. There- 
fore, we expect that the optimum should be sought among 
symmetric Bernoulli distributions (see Section 3). In or- 
der to investigate the performance of the asymptotic SO- 

lution for small sample cases and large initial deviations 
from the true optimum, consider a case of 10 iterations 
with a 17.5% initial deviation for all components of {tit}. 
We are particularly interested in numerically evaluating 
the performance of the (asymptotically) optimal Bernoulli 
distribution against other (symmetric) distributions that 
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contain more than two support points. Therefore, we use 
the M S E  criterion to test the Bernoulli (*0.25) distri- 
bution against two bimodal distributions. One is cho- 
sen to be a random variable uniformly distributed over 
[-0.3, -0.21 U [0.2,0.3]. The other corresponds to a ran- 
dom variable triangular distributed over both [0.2,0.3] and 
[-0.3, -0.21. The corresponding M S E  values are 0.0756, 
0.0789, 0.0764, respectively. This comparison indicates 
that the asymptotic solution may perform reasonably well 
even for very small sample sizes. Notice however that 
t,he solution to the random perturbation problem in small 
sample cases is an open question. 

5 .  Concluding Remarks 
The paper deals with the optimal choice of random 

perturbations for the SPSA algorithm. Since the user has 
full control over this choice, there is strong reason to pick 
this distribution wisely in order to reduce the overall costs 
of optimization. We have shown that for the mean square 
error a.nd probability criteria, the optimal random per- 
f,urhations should be sampled from a symmetric Bernoulli 
distribution. The choice of the optimal Bernoulli distribu- 
tion (i.e. the magnitude of its outcome) is dependent upon 
the prior information about the loss function. However, 
in  the usual case where such information is unavailable, 
this paper shows that the Bernoulli distribution form is 
the (a.synipt80tically) optimal form regardless of the value 
of the variance of the perturbation distribution. This has 
significant practical implication as the perturbation dis- 
tribution is typically determined based on small scale ex- 
perimentation and/or limited prior knowledge about the 
form of the loss function. All the results are based on 
the asymptotic theory. Investigating the choice of ran- 
dom perturbations for finite sample cases is of significant 
theoretical and practical interest and represents a possible 
topic for future research on the subject. 
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