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Uniform Physical Theory of Diffraction Equivalent 
Edge Currents for Truncated Wedge Strips 

Peter M. Johansen, Student Member, IEEE 

Abstruct- New uniform closed-form expressions for physical 
theory of diffraction equivalent edge currents are derived for 
truncated incremental wedge strips. In contrast to previously 
reported expressions, the new expressions are well behaved for all 
directions of incidence and observation and take a finite value for 
zero strip length. This means that the expressions are well suited 
for implementation in general computer codes. The new expres- 
sions are expressed as the difference between two terms. The first 
term is obtained by integrating the exact fringe wave current 
on a wedge along an untruncated incremental strip extending 
from the leading edge of the structure under consideration. The 
second term is calculated from an integration of the asymptotic 
fringe wave (FW) current along another untruncated incremental 
strip extending from the trailing edge of the structure. The new 
expressions are tested numerically on a triangular cylinder and 
the results are compared with those obtained using the method 
of moments and the previously reported expressions. 

1. INTRODUCTION 
N the past decade, a lot of work has been done to develop I general computer codes for scattering calculations. In par- 

ticular, numerous codes have been written for calculating high- 
frequency bistatic radar scattering from three-dimensional per- 
fectly conducting structures. Some of the original codes were 
based on the physical optics (PO) approximation. Today, the 
general codes are required to calculate the scattered field more 
accurately than what can be achieved using PO. A more 
accurate calculation can be achieved by adding to the PO 
field the fringe wave (FW) field which takes into account 
the diffraction caused by edges. Within the framework of the 
physical theory of diffraction [I], an approximation to the 
FW field can be calculated from a line integral along the 
illuminated part of the edges of the structure by employing 
one of the closely related approaches known as elementary 
edge waves [2], incremental length diffraction coefficients 
[3] ,  or equivalent edge currents [4], [5], [6]. In the present 
paper, Michaeli’s physical theory of diffraction equivalent 
edge currents [6] will be considered, and these will be referred 
to as EEC’s. The EEC’s are determined from an analytical 
integration of the F W  current (the exact current minus the PO 
current) along incremental strips on the canonical wedge or 
half-plane. 
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Closed-form expressions for EEC’s have been derived for 
untruncated (infinite) incremental wedge strips by Ufimtsev 
[2], Mitzner 131, Michaeli [6], and by Shore and Yaghjian [7], 
[SI;’ these EEC’s will be called untruncated EEC’s in this 
paper. For the analysis of bistatic radar scattering there are two 
problems associated with the untruncated EEC’s, namely the 
presence of the Ufimtsev singularity 161 and the diiscontinuities 
of the calculated FW field across the current layers associated 
with the untruncated strips. The Ufimtsev singularity occurs 
when the direction of observation is the continuation of an 
incident field grazing a face of the structure. 

The above-mentioned problems associated with the un- 
truncated EEC’s are eliminated by using truncated (finite) 
strips leading to truncated EEC’s. Closed-form expressions 
for truncated EEC’s have been derived for thLe half-plane 
by Breinbjerg [9] and by Shore and Yaghjiari [IO]. Cote 
et al. [ l  11 have implicitly derived truncated EEC’s for a 
right-angled wedge. Michaeli [12] seems to be the only 
one who has derived truncated EEC’s for a wedge with 
arbitrary angle. These EEC’s apply to the analysis of bistatic 
radar scattering from three-dimensional structures with flat 
faces. However, from theoretical considerations, as well as 
numerical calculations, it appears that Michaeli’s truncated 
EEC’s contain nonremovable singularities which are caused 
by the mathematical procedure applied to obtain closed-form 
expressions [ 131. The singularities occur for various directions 
of incidence and observation and for zero strip Ilength. 

Discontinuities and nonremovable singularities in EEC’s 
employed in general computer codes are unwanted for two 
reasons. First, the prediction of the scattered field for direc- 
tions of observation close to discontinuities and nonremovable 
singularities is clearly inaccurate. Second, the nonremovable 
singularities give rise to numerical problems whein performing 
the line integration along the edges of the sitructure. Al- 
though the nonremovable singularities usually are confined to 
a narrow angular region of observation, they do constitute a 
problem in applications in which the scattered field has to be 
calculated for all directions of observation. This is the case, 
for instance, in a power calculation. For those reasons, the 
untruncated EEC’s and Michaeli’s truncated EEC’s are not 
well suited for implementation in general computer codes. 

In this paper new truncated EEC’s are derived. ‘These EEC’s 
do not have the above-mentioned singularity problems of the 
previously reported expressions, that is, they are well behaved 

’ Only the result by Michaeli 161 is expressed directly in terms of EEC’s. 
The results in [2], [3], and [7] can easily he put in the form (of EEC’s. 
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Fig 1 Three-dimensional view of a flat face of a three-dimensional struc- 
ture. The truncated incremental strip extends from the leading edge to the 
trailing edge and is directed along the unit vector C A  The directions of 
incidence and observation are d o  and 8 ,  respectlvely YT is the extenor 
wedge angle, and i t  is assumed that 1 < N 5 2 

for all directions of incidence and observation and they take a 
finite value for zero strip length. This means that the new 
truncated EEC’s are, to the knowledge of the author, the 
first EEC’s that are well suited for implementation in general 
computer codes. 

The paper is organized as follows. In Section 11, the concept 
of truncated EEC’s is summarized and Michaeli’s truncated 
EEC’s are discussed. The derivations leading to the new 
truncated EEC’s are performed in Section 111, and Section IV 
presents numerical examples to illustrate the differences 
among the fields calculated from the method of moments, the 
untruncated EEC’s, Michaeli’s truncated EEC’s, and the new 
truncated EEC’s. Concluding remarks are made in Section V. 
This paper is a condensed version of a Rome Laboratory 
in-house report [ 141. 

11. THE CONCEPT OF TRUNCATED EEC’s 

The configuration under consideration is a perfectly con- 
ducting three-dimensional structure with flat faces illuminated 
by a plane wave (see Fig. 1). In the far field of the structure, 
a high-frequency approximation to the FW field is calculated 
from a line integral along the illuminated part C of the edges 
of the structure. The truncated EEC’s are represented by the 
magnetic current MT and the electric current I,, so that the 
electric FW field is given by [4] 

Herein, j is the imaginary unit (the time factor exp ( jut)  
is suppressed), k is the wave number, 2 is the intrinsic 
impedance of the ambient medium, s’ = i s  is the vector 
to the far-field observation point, and t̂  is the edge unit 
tangent vector. The two adjoining faces at each edge are 
denoted by A and B. Introducing a local rectangular zyz 
system at the integration point with E = t^ and 9 being 
the outward normal unit vector of face A , ?  is expressed 

\ S Y  

w Face A 

Fig. 2. 
plane 3 = 0. 

Two-dimensional view of the configuration shown in Fig. 1 in the 

as i = 2 sin /3 cos q5 + sin ,O sin 4 + E cos /3 and the prop- 
agation direction i,-~ of the incident plane wave is s ^ , - ~  = 
-2  sin PO cos 40 - 9 sin PO sin $0 +i cos P,-J (see Figs. 1 and 2). 
Face B is located in the plane described by q5 = Nn where 
Nn is the exterior wedge angle. Throughout the paper it is 
assumed that 1 < N 5 2. 

The truncated EEC’s are determined by a sum of two 
contributions, one from each of the faces A and B 

Henceforth, the superscripts A and B refer to the contributions 
from the faces A and B, respectively. In this paper, the 
contribution from face A will be derived in detail, and the 
contribution from face B is then obtained from the result for 
face A using a substitution technique. 

The contribution from face A to the truncated EEC’s, M 4  
and IF,  is calculated analytically by integrating the FW current 
on face A of a wedge appropriately conforming to the structure 
along a truncated incremental strip with the length I*. The strip 
extends from the leading edge (the edge at which the EEC’s 
are placed) to the trailing edge and is directed along the unit 
vector CA which is the intersection of the Keller cone and the 
face A. as shown in Fig. 1. However, the integration of the 
exact FW current along the truncated incremental strip cannot 
be performed exactly in closed form, and thus, an asymptotic 
calculation is necessary. To this end, the truncated EEC’s are 
expressed as the difference between the untruncated EEC’s 
and the correction EEC’s 

MT = MUT - M,,, and IT = ILTT - I,,,. (3) 

Michaeli [6], [12] found that the untruncated EEC’s can 
be expressed exactly in closed form, whereas closed-form 
expressions for the correction EEC’s can only be obtained 
using an asymptotic technique. In the present paper, Michaeli’s 
untruncated EEC’s are used but a new asymptotic calculation 
of the correction EEC’s is performed because Michaeli’s 
correction EEC’s contain nonremovable singularities. 

The contribution from face A to the untruncated EEC’s, 
M& and I;,, is obtained by integrating the FW current 
on face A along an untruncated incremental strip. The strip 
extends from the leading edge and is directed along CA. 
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Michaeli found that [6, (4)-(7)1 

T -- a 
N 

MGT = 

sin ~ 

and 

A 2 j  
4 0  

I U T  = 
k N  sin Po cos ~ - cos .> ( 

along CA. Michaeli found that MA, and I,",, are calculated 
from the relations [12, (3)-(7)] 

sin$ A 
M,,, = -Zsinpo-L, sin ,8 

A (9) 

and 

T - - N  
HZosin ~ 

sin Q 
(cot p cos - p cot 00) 

ksin/?o(p+cos4o) 
Zsinpo I ' 

EzO sin 40 

Z sin P o  ( Hzo(cot p cos $h + cot po cos 4 0 )  - 

(5) 

where H,o and EzO are the z components of the incident 
magnetic and electric field, respectively, at the origin of 
the local zyz system, and U ( x )  is the unit step function. 
Moreover, 

(6) 
sin sin p cos 4 + cos Po (cos p - cos Po) 

c L =  sin2 PO 

and a is the solution to p = cosa determined by 

a = - j  Log ( p  + J,2 - 1) (7) 

with Log z = In IzI +jArg z and -7r < Arg z 5 7r .  The square 
root in (7) is defined as 

The only nonremovable singularity in M4T and I i T  is the 
Ufimtsev singularity [6] which occurs when p = 1 (a  = 0) 
and simultaneously, 4 0  = T-that is, when the direction of 
observation is the continuation of an incident field grazing 
face A. 

The contribution from face A to the correction EEC's, M,",, 
and I,",,, is obtained by integrating the FW current on face A 
along another untruncated incremental strip. This strip extends 
from the point of truncation at the trailing edge and is directed 

where J , ,y ,A denotes the z- and z components of the FW 
current on face A. The approach used by Michaeli [12] to 
calculate the integral L& in (11) is as follows. First, the 
expressions for the exact FW current, which is given in 
terms of contour integrals in the complex plane 1.12, (9)], are 
inserted into the integral (1 1). Next, the order of integration is 
interchanged, the inner integral is calculated analytically and 
finally, the resulting integral is evaluated asymptotically for 
L = S I A  sin2 PO >> 1. However, this asymptotic evaluation 
gives rise to two problems in the correction EEC's when N # 
2. First, the correction EEC's tend to infinity as L -+ 0. The 
quantity L can become small for edge points clo!je to corners 
in the evaluation of the integral (1). As discussed in [12], it 
is possible to avoid small values of L by omitting part of 
the edge which is close to comers. However, this approach is 
not robust in practical applications because the ca1,culated field 
will depend on the ratio of the edge being omitted. Second, 
the correction EEC's contain nonremovable singularities for 
$o = - (T  + a)+ 27rN and for a = T ,  and they are caused by 
the fact that only few of the poles potentially nearby the saddle 
point are isolated in the decomposition [12, (29)] applied by 
Michaeli. For a detailed discussion on these singularities, the 
reader is referred to [14]. The singularities occur for various 
directions of incidence and observation. It should be noted that 
no singularity problems occur in the correction ]EEC's when 
N = 2. 

111. DERIVATION OF NEW CORRECTION EEC's 

In this section, a new approach is used to calculate the 
correction EEC's. Instead of employing the exact expressions 
for the FW current when calculating the integral L& in (1 I) ,  
the asymptotic expressions for the F W  current are employed. 
Thus, the first thing that will be dealt with in this section is 
the determination of the asymptotic expressions for the FW 
current. 

A. Uniform Asymptotic Expressions for the 
FW Current on Face A 

[12, ( 9 1  
The x component of the FW current on face A is given by 

.JLw>A = Hzo CXP (-,7kz cos 00) 
j T N  
E sin - exp (jkx sin Po cos C;) d[ J i (12) < PO 

N N 
cos - - cos - J r  
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where I? is the steepest descent path trough T .  Using the 
substitution 

s = -+ 5 E 

where fi means cxp (j(7l/4), and a decomposition technique 
similar to the one applied by Michaeli [12, (29)] to isolate the 
pole potentially nearby the saddle point ( s  = 0), the integrand 
in (12) is written as a sum of a simple pole term and a regular 
term so that 

Herein, a = d c o s  ( & 1 / 2 ) ,  A = - N / f i .  r'= .?z + i z :  and 
the regular term is 

A 
t sin E 

WO = 40) -5 a ' (15) 
sin - cos - - cos - y 2 i N 

The integration of the simple pole term in (14) is performed 
exactly and expressed in terms of a Fresnel function [15, 
(12)]. Since the quantity E(() given in (15) is regular near 
the saddle point, the integration of E(<) in (14) is evaluated 
asymptotically for kic sin P o  >> 1 using the standard steepest 
descent technique [16]. The result of these calculations is 

J:w,A - -2Hz, exp (-jkUA ' 7) 
r 

7l 

N COS - - COS - + ( ;  N 
where F is a modified Fresnel function [12, (37)] 

F ( z )  = E e x p  (.jz2) exp ( - j t ' )  d t .  (17) 

A similar procedure is used to obtain the asymptotic result for 
JLWiA [14] 
jZfw,A 

r 

which applies for kzsinpo >> 1 

B. Expressions for  the New Correction EEC's 

The asymptotic expressions for the contribution from face A 
to the correction EEC's, MA,  in (9) and I,",, in (lo), are now 
obtained by inserting the expressions ( I  6) and (1 8) for the FW 
current into the integral Li , z  in (11). By using the relations 

l: exp (-jku sin' po (1 - p ) )  
$U 

fi 

and 

. exp (-jkusin2 Po(l - p) )  du 

where ,u and F are defined in (6) and (17), respectively, and 
L = kZA4 sin2 PO. the result for the new correction EEC's is 
obtained through a straightforward calculation [ 141 

ZZH,, sin qh exp ( j L ( p  - I)) 
j k  sin /3 sin 0, MA 

-sign (cos $) 
F ( a i c o s  $ 1 )  

40 
q p  + cos $0) cos - 2 

7l 
f i s i n  - 

- N 

N 

1 L 
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and 

Ezo sin 4 0  
- Hz"(cot p 0  cos 4" + cot p cos 4) 

2 sin 

(cot p0 cos 4" + cot p cos 4) 
7l 

HzO sin - ( p  + cos 4 0 )  (cot 

N 

- cot p cos 4 )  
N 

These asymptotic expressions apply for L >> 1. The final 
expressions for the truncated EEC's are obtained by first 
calculating M k  and I$ by subtracting the above results (21), 
(22) from the untruncated EEC's (4), (9, as shown in (3). 
Second, the contribution from face B is calculated using the 
results for M$ and I@ by replacing with 7r - PO. p with 
r-p, 40 with N T - ~ o , ~  with NT-4.  and l A  with 1". Third, 
the contributions from the two faces are added to determine 
Ill, and IT ,  see (2). Finally, these expressions are inserted 
into the radiation integral (1) to determine the approximate 
FW field from the truncated EEC's. 

It is noted that M z ,  in (21) and I,",, in (22) do not contain 
singularities for a = 7r ( p  = -1). 4 0  = -(T + a)+ 
27rN, and L = 0 as do the previously reported expressions 
[12]. Using the result of [6, Appendix 111 it is shown that if 
40 # T .  M,",, and I,",, remain bounded as p 4 1. If 40 = T 

and p + 1, M& and I,",, are singular but this singularity 
(the Ufimtsev singularity) is cancelled by the singularity in 
MGT and I& given by (4) and (3, respectively. This means 
that MT and IT are valid for all directions of incidence and 
observation. Furthermore, the fact that M& and I,",, are finite 
for L = 0 implies that no numerical problems arise for edge 
points close to comers when evaluating the integral (1). This 
is very convenient from a practical point of view. However, 
the field calculated from the truncated EEC's for edge points 
close to comers is a poor approximation to the exact field 
because no information on the distortion of the current near 
comers 1171 is introduced. 

C. Special Cases 

cos (40/2)1 and 
d m  of the modified Fresnel functions in (21) and (22) 
are so large that the asymptotic formula [12, (40)] 

If it is assumed that the arguments 

can be applied, M& in (21) and I,",, in (22) become 

7l 
- & z H , ~  sin 4 sin - cxp ( j ~ ( p  - 1)) 

N 

j k s i n p s i n p ( , f l N ( I  - p)  
N 

MAr - 

and 
7l - \ /ZH,~  sin =(cot - cot pcos di) exp ( j L ( p  - I)) 

Except for 40 = -(T +a)+ 27rN and a = T ( p  = -1) these 
expressions are the same as those obtained using Michaeli's 
correction EEC's [12]. 

For the half-plane, i.e., N = 2, the expressions for MA, in 
(21) and I:, in (22) simplify. Besides, in this case the uniform 
asymptotic FW current found in Section 111-A equals the exact 
FW current. This means that Ill& in (21) and I& in (22) are 
valid for any value of L. The correction EEC's, that is, the 
sum of the contributions from faces A and B ,  become 

(-sign (cos 
4ZHz0 sin exp ( j L ( p  - 1)) 

( p  + cos 4 0 )  j k  sin /3 sin Mcor = 

4 0  &cos - 
2 

and 

. (cot p0 cos 4 0  + cot p cos $ ) F  d z  cos - ( I $ 1 )  
40 &cos -((cot p c o s  4 - p c o t  Po) 
2 + 

which are the same results obtained using Michaeli's expres- 
sions [12]. The expressions (26) and (27) are further verified 
by letting l A  = 0. In this case Mc,, = Mu, and I,,, = IUT.  
Thus, the truncated EEC's, MT and IT in (3 ) ,  are zero which 
is the result obtained by integrating the FW current along a 
strip with length zero. 
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Fig. 3. 
by a TE plane wave. 

Cross-section of triangular cylinder with side length 2X illuminated 

MFIE minus PO - 
Truncated EEC's ----- - - 

I I I I 

-30 ' I I I I I 
0 60 120 180 240 300 360 

cp (deg.) 
Fig. 4. FW field for the configuration shown in Fig. 3. 

IV. NUMERICAL RESULTS 

In this section, the FW field scattered by a two-dimensional 
perfectly conducting triangular cylinder is calculated using 
both the EEC's and the method of moments applied to the 
magnetic field-integral equation (MFIE). The purpose of the 
numerical calculations is to illustrate that the new truncated 
EEC's do not predict infinities in the far field as do both 
the untruncated EEC's and the previously reported truncated 
EEC's [12]. 

The lengths of the three sides of the triangular cylinder are 
all equal to 2X, X being the wavelength, and the illuminating 
field is a TE-polarized plane wave with direction of incidence 
shown in Fig. 3. The FW field is calculated in the far field of 
the structure and expressed in terms of the two-dimensional 
radar cross section (RCS). The direction to the far-field obser- 
vation point is determined by the angle p. Fig. 4 shows the FW 
field calculated from the difference between the MFIE solution 
and the PO solution, and from the untruncated EEC's. It is 
seen that the untruncated EEC's yield a poor approximation 
to the exact scattered FW field: the Ufimtsev singularity occurs 
for cp = 60" and the field is discontinuous across the current 
layers located at p = 120, 180, 240, and 360". In addition, 
discontinuities at p = 60 and cp = 300" exist but these cannot 
be seen on the RCS plot of Fig. 4. However, the phase of the 
scattered field reveals the discontinuities. 

The Figs. 5 and 6 show the results when the truncated EEC's 
are used. Fig. 5 shows the results obtained from the previously 
reported truncated EEC's and in Fig. 6 the results obtained 
from the new truncated EEC's are shown. From both figures 

t 

-40 I I I I I 

0 60 120 180 240 300 360 
cp (deg.1 

Fig. 5. 
reported expressions [ I O ]  are used to calculate the truncated EEC's. 

FW field for the configuration shown in Fig. 3 .  The previously 

I I t I I I 
MFIEminusPO - 

Truncated EEC's ----- 

-40 ' I I I 
I I I 

0 60 120 180 240 300 360 
<p (deg.1 

Fig. 6. 
EEC's are employed 

FW field for the configuration shown in Fig. 3. The new truncated 

it is seen that the Ufimtsev singularity and the discontinuities 
across the current layers disappear. However, Fig. 5 reveals 
that five spikes occur in the far field obtained from the 
previously reported truncated EEC's when p = 61, 179, 299, 
300, and 301". These spikes are caused by the nonremovable 
singularities in the expressions. The spikes at p = 61, 179, 
299, and 301" are caused by the singularity occurring when 

= - (a  + T ) +  27rN (see the discussion in Section 11) 
which is almost satisfied for edges B and C (see Fig. 3). 
The spike at cp = 300 occurs because a is close to 7 (see 
Section 11) for edge B. Although the singularities only affect 
a small angular region, they constitute a problem in practical 
applications in which the far field has to be predicted for 
directions of observation close to the singularities. As noticed 
from Fig. 6, no spikes occur when the new truncated EEC's 
are used. However, the agreement between the two methods 
of calculation is not perfect. The reason for this discrepancy 
is that the truncated EEC's only take into account part of the 
second-order edge diffraction because the FW current exited 
at the trailing edge is neglected. 

V. CONCLUSION 

New closed-form uniform expressions for physical theory 
of diffraction equivalent edge currents have been derived 
for truncated incremental wedge strips. The new truncated 
EEC's are well behaved for all directions of incidence and 
observation. The expressions are asymptotic for L >> 1, L 
being a parameter proportional to the strip length; however, 
they take a finite value when L is zero. This implies, in contrast 
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to the previously reported expressions, that the new truncated 
EEC’s are well suited for implementation in general computer 
codes calculating the bistatic radar scattering from perfectly 
conducting three-dimensional structures with plane faces. 

Future work may address the problem of enhancing the 
accuracy of the truncated EEC’s by taking into account the FW 
current exited at the trailing edge, for instance, by employing 
the procedure introduced by Breinbjerg [9]. 
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