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Surfaces 
T. 0. Rerup, G. C. Crichton and I. W. McAllister 

Department of Electric Power Engineering, Technical University of Denmark, Lyngby, Denmark 

ABSTRACT 
The use of Pedersen’s X function to evaluate electrostatic probe measurements of charged 
dielectric surfaces is demonstrated. With a knowledge of the probe X function, the proce- 
dure by which this function is employed is developed, and thereafter applied to a set of 
experimental measurements available in the literature. The values of surface charge den- 
sity derived are in good agreement with the published data. Through this field-theoretical 
approach, it is readily shown that areas of charge remote from the probe location can pro- 
duce a major part of the probe signal. If a circuit-theory approach were adopted to analyze 
such probe measurements, then as the field features of the probe response cannot be taken 
into account, a serious misinterpretation of the measurements could arise. 

1. INTRODUCTION 

ITH the development of HVDC-GIs, a need has arisen for 
the study of surface charge on insulating materials. During 

the last 30 years, electrostatic probes were developed and used for 
the measurement of charge on dielectric surfaces. In general, these 
studies based their analysis on the circuit-theory approach devel- 
oped in the sixties by Davies [l]. However, in the mid-eighties it 
was realized that a correct interpretation of measured probe data 
required a proper field solution which considered the entire dielec- 
tric surface and system boundaries [2-51. To facilitate the analysis 
of such measured data, Pedersen introduced a probe response func- 
tion, the X function [3]. 

In the present paper, this function is used to illustrate the manner 
in which a distribution of surface charge density and the associated 
probe response are mathematically coupled together. The proce- 
dure is first developed and thereafter applied to the independent 
measurements of Yashima et al. (41. From their study of a charged 
dielectric surface, the following data are available 

1. the directly measured values of surface charge (Faraday cage 

2. the measured probe response (induced charge) 
3. the calculated surface charge densities (via the probe re- 

technique) 

sponse). 

Using the X function and the measured probe response 2, it is pos- 
sible to determine a unique surface charge distribution, which is 
then compared with 1 and 3 above. Despite a software limitation 
on our X evaluation (2D vs. 3D calculation), the agreement is good. 

In addition, from a detailed examination of the intermediate steps 
in the analysis, each probe response could mathematically be re- 
solved into the contributions from individual surface areas. Thus 
the effect on the total probe signal from areas of charge remote from 
the probe location could be quantitatively assessed. 

2. THE X FUNCTION 
Pedersen’s X function relates the Poissonian induced charge d q  

[6] on the sensor plate of the probe to the dielectric surface-charge 
d Q ;  viz. 

d q  = -XdQ (1) 

This relationship assumes that the permittivity of the dielectric is 
independent of field strength. If the volume charge density within 
the solid dielectric is assumed to be zero, then with respect to the 
contributions from all surface elements of charge we have 

q =  - / / X o d A  
An 

in which q is the total Poissonian induced charge on the sensor 
plate, and 0 is the surface charge density on the surface element 
dA of Ao, the surface of the solid dielectric. If a charge exists within 
the bulk of the dielectric, (2) would contain an additional term [3,7]. 

The dimensionless parameter X is a solution of the general 
Laplace equation for the complete system geometry [3,7], i.e. 

f? ’ (&A) = 0 (3) 
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The boundary conditions are X = 1 at the sensor plate of the probe 
and X = 0 at all other electrodes. In addition, at dielectric interfaces 
the normal derivatives of X must obey the condition 

(4) 

where the t and - signs refer to the opposite sides of the inter- 
face: see [3,7]. Because (3) is simply Laplace’s equation, Ansoft Cor- 
poration’s Maxwell EM Field Simulator (2D version) was used to 
evaluate the variation of X at the dielectric surface. 

plate J 

\ t  

- X  

(b )  

Figure 1. System geometry [4]. 

3. SYSTEM GEOMETRY 

The geometry of [4] is shown in Figure 1. In [4] the charged 
dielectric surface was made of 25 removable solid polytetrafluo- 
roethylene blocks each of upper surface area 5x5  mm2 and with a 
height of 10 mm. The total specimen has a square surface of area 
of 25x25 mm2. The probe consists of a sensor plate of radius of 
2.5 mm, with a guard ring of inner radius of 3.5 mm and outer of 
4.5 mm radius. The height of the probe sensor plate above the di- 
electric surface is held constant at 1 mm. The length of the probe 
body is not stated in [4], but in the present study we set this to 
95 mm. As this dimension is >> 1 mm, it becomes of minor im- 
portance in the evaluation of the X function. The 2D X calculation 
mentioned in the Introduction will be discussed in Section 4. 

We number the 25 blocks consecutively; i.e. from A1 to A25, see 
Figure 1, with the corresponding surface areas designated AI to 
Ass. This procedure simplifies the mathematical development in 
the ensuing analysis. It can be seen in Figure 1 that the center of 
block A1 has the coordinates II: = -10 mm, y = 10 mm, and that 
the center of block A13 has the coordinates IC = 0, y = 0. 

The data available from the study of Yashima et al. [4] are their 
surface charges measured directly by means of a Faraday cage ap- 
paratus and converted into surface charge densities; their measured 
probe responses (total Poissonian induced charge on the sensor 
plate), and thereafter their derived surface charge densities. With 
reference to Figure 8 of [4], the pertinent numerical data were made 
available directly by these authors, and are as follows. 

The magnitude of surface charge density CTF (pC/m2) from the 

Faraday cage study is 

15.0 12.9 13.4 0.96 12.6 
13.3 11.6 12.2 1.5 13.0 

6.6 11.4 14.0 1.4 12.0 
5.0 12.4 13.6 2.3 14.0 

The measured probe response p (pC) is 

252 295 271 136 194 
297 347 312 175 244 

235 319 314 163 235 
144 261 262 140 204 

(5) 

The magnitude of the surface charge density CTD (pC/m2) derived 
on the basis of the total system geometry and probe response is 

11.5 12.6 11.9 1.8 9.6 
12.2 13.5 12.0 2.8 11.6 

8.6 12.2 12.7 1.8 10.9 
3.8 11.5 11.7 2.3 10.5 

(7) 

It should be noted that to enhance clarity in (5), (6) and (7), a 5x5  
array has been used whenever values corresponding directly with 
the 25 blocks are considered. The first row represents A1 to A5, the 
second row A6 to A10 and so forth. According to Figure 8 of [4], 
the surface charges are negative. However it is uncertain whether 
the stated probe response is the Poissonian induced charge or the 
Laplacian induced charge, see [6]. Normally, the Laplacian induced 
charge is measured via the probe either as the voltage over a known 
capacitor, or as the charge flow in the lead connecting the probe 
sensor plate to ground. However as these induced charge compo- 
nents are numerically equal, and as the surface charges in [4] are 
unipolar, we will Simply perform our calculations using numerical 
values. Such a simplification should of course not be undertaken in 
practice, because surface charges of bofh polarities could be present. 

4. SIMULATION 

As mentioned previously, a 2D finite-element software package 
is used to determine the X function. As the charged dielectric sur- 
face used in [4] is square in form (25x25 mm2), a correct calculation 
of the X function would require a 3D program. We did not pos- 
sess this capability, and it was necessary to adapt our system to the 
available 2D software. Hence, we represent their system geome- 
try by a large disc of polytetrafluoroethylene (relative permittivity 
E, = 2.0) of thickness 10 mm and radius 100 mm. As in [4], the 
probe was placed 1 mm above the dielectric surface of the disc. It 
should be noted that the radius of the disc is made substantially 
larger than the diagonal (25& mm) of the original square dielec- 
tric system in [4]. 

With the probe located on the disc axis, the variation of X across 
the upper dielectric surface is shown in Figure 2. Due to the axially 
symmetric nature of our model geometry, the calculated X function 
is also axially symmetric with respect to the axis of the probe. Hence 
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Figure 2. Variation of the X function across the surface of the di- 
electric. r = d- represents the radial distance from the probe 
axis. 

the value of the X function at any given point on the dielectric 
surface is determined exclusively by the normal distance from the 
probe axis to the point in question. The X calculation is undertaken 
for the PTFE disc, the radius of which is approximately 3 x  the 
diagonal of the square geometry in [4]. Hence in our analysis the 
same X function can be employed within the central area of the disc, 
irrespective of the position of the probe, as the error introduced is 
negligible. This approximation for the true X function is discussed 
in Section 7.1.1. 

5.  THE A MATRIX AND 
EVALUATION OF SURFACE 

CHARGE DENSITY 
To evaluate the charge distribution on the dielectric surface re- 

quires a multipoint measurement to be performed with the probe. 
Such a technique generates a series of probe responses. Each re- 
sponse is related to the specific position (x, y) of the probe relative 
to the selected origin on the dielectric surface. In the present case, 
owing to the symmetry and identical nature of the blocks, the probe 
positions are taken in turn above the center point of each of the 25 
blocks. Yashima et al. [4] adopted the same probe locations in their 
evaluation. 

If the charge per block is assumed to be uniformly distributed 
over the upper surface of the block, then a uniform surface density 
oj may be assigned to each block. Consequently, the magnitude of 
the charge induced on the probe by a single block may be expressed 
as 

141 = g j / /XdA  (8) 

Because the integral in (8) contains only X and surface area, we 
are able to take into account simultaneously both the geometrical 
scanning procedure and the X function by introducing a A matrix. 
The formation of this matrix must correspond with the 25 blocks. 
For each probe position (block center), a sub-matrix is derived with 
1x25 elements, with each element given by 

(9) 

where dA is a surface element of A,. The index i refers to the posi- 
tion of the probe while j relates to the surface area in question. The 
subscript i in A, indicates that, in general, the X values associated 
with a block are dependent upon the position of the probe. Each 
sub-matrix element is directly connected with the discretization of 
the charged surface area, and as the X function itself is dimension- 
less, the dimension of the A matrix is that of area. 

With the probe fixed in a position directly above the area element 
A,, the contribution to the probe response (induced charge) from 
surface charge element a, of surface area A, is given by Aa,o,, By 
summation of all the contributions for j = 1 to 25, the total probe 
response p ,  is obtained for the probe positioned above A,, i.e. 

25 

The global probe response can then be developed by positioning 
the probe above each block in turn, i.e. for i = 1 . . .25: see Section 
6. 

With the probe placed above block 1 (i = 1, 2 = -10 mm, 
y = 10 mm), the A1 array is, on the basis of XI and elements AI, 
(S), given in units of 25x lop4  mm2 by 

4161.0 936.2 196.1 76.8 34.2 
936.2 402.8 154.7 66.9 31.2 

76.8 66.9 46.5 28.5 16.6 i 34.2 31.2 24.1 16.6 10.8 

(11) Ai  = 196.1 154.7 89.3 46.5 24.1 

This array can also be represented as a 1x25 row matrix, and as 
such is a sub-matrix of the A matrix. 

The OF array in (5) may be expressed as a 25x1 column matrix 
Thus (10) can also be expressed in the form 

pi = &UP (12) 

Upon performing the matrix multiplication of the RHS using the 
elements of (5) and (ll), we obtain (in pC) 

p i  = 266.4 (13) 

pi = 228.1 (14) 

Repeating the calculation using the CTD values, see (7), gives (in pC) 

while according to the p array of Yashima et al. see (6), their probe 
response value was measured at (in pC) 

pi = 252 (15) 
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For the probe placed centrally above block 13 (i = 13, n: = 0, 
mm2) via the y = 0), the A13 array is calculated (units of 25x 

X function to be 
89.3 154.7 196.1 154.7 89.3 
154.7 402.8 936.2 402.8 154.7 

154.7 402.8 936.2 402.8 154.7 I 89.3 154.7 196.1 154.7 89.3 

A13 = 196.1 936.2 4161.0 936.2 196.1 

From (12) by combining the elements of 1213 and o ~ ,  we obtain (in 
PC) 

pi3 = 315.4 (17) 

pi3 = 318.8 (18) 

while upon employing the C ~ D  values, see (7), gives (in pC) 

Again from the p array, see (6), the measured probe response value 
was (in pC) 

pi3 = 329 (19) 

Instead of deriving directly the total probe response with the 
probe placed above block 13, the intermediate result before summa- 
tion can be studied. This gives a clearer picture of how the probe 
response is made up of the contributions from the surface charges 
located on the individual blocks. This generates the following array 

3.3 5.0 6.6 0.4 2.8 
5.1 11.7 28.6 1.5 5.0 

2.6 11.5 32.8 1.4 4.6 
1.1 4.8 6.7 0.9 3.1 

or as a total charge (pC), see (17), 
25 

j=1 

From (20) it can be seen that when the probe is placed above the 
center of the specimen, only 42% of the total probe response is 
derived from the block directly beneath the probe (A13), whereas 
21% derives from the outer border of blocks. This tendency is still 
more marked if the composition of the probe response is studied 
with the probe above block number 14 where the known surface 
charge has a mimimum value, see (5). In a manner identical to the 
above, but by using A14 and g ~ ,  we evaluate p14 to be 

(0.6 2.8 5.3 1.1 5 .4)  (22) 

1.7 2.9 5.2 0.5 4.9 
2.2 4.5 12.3 3.5 13.1 

pi4 = 2.7 6.0 29.5 14.6 28.1 
1.1 4.4 14.1 3.3 12.1 

total response. Moreover, although the actual charge densities on 
A13, A14 and A15 are in the ratio of approximately 10110, see (5), 
the individual contributions from A13 and A15 are remarkedly only 
twice that of A14 alone. Hence, the contribution from the blocks 
which do not abutt A14 amounts to as much as 30%, and thus it 
becomes evident that, when the total response is considered, areas 
of charge remote from the probe position can play a very significant 
role. 

To derive the global charge distribution, that is to solve for all 
o:, using the different p,, the 25A, sub-matrices are combined into 
a 25x25 A matrix. Thereafter on the basis of (12) we have 

p = ACT (24) 
where p is a 25x1 column matrix, in which each element denotes 
the measured total induced charge on the probe sensor plate for 
each position of the probe. U is also a 25x1 column matrix with 
each element representing the surface charge density on the upper 
surface of one of the blocks. For a given A matrix and a measured 
set of probe responses, (24) can be solved for the unknown a:, by 
inverting the A matrix: i.e. (24) may be re-written as 

CT = A-lp (25) 

The number of surface elements and that of probe measurements 
must agree. However, any other division of the surface area may 
be undertaken, but in each case the surface elements and the set 
of probe responses must still agree in number. Furthermore, such 
situations also require that the relevant X functions be employed. 
The reason for this rigidity is that, for a given set of probe responses, 
(25) has one and only one solution. 

6. RESULTS: GLOBAL 
EVALUATTON 

Using the probe A matrix and the measured probe response, 
the surface charge densities of the blocks were calculated from (25) 
using APL software. The results obtained were 

13.3 13.5 13.8 0.6 11.7 
12.9 13.2 12.3 1.4 13.3 

9.0 11.9 13.5 0.1 12.3 
3.8 12.9 13.3 1.3 12.9 

in pC/m2, where the subscript X denotes that the U values were 
determined using the X function. The aj elements of o~ can be 
compared with the following o arrays determined by Yashima et 
al. [4]. 

As derived from Faraday cage measurements CTF, see also (5), 

which if expressed as a sum gives 15.0 12.9 13.4 0.96 12.6 
25 13.3 11.6 12.2 1.5 13.0 

:,=1 6.6 11.4 14.0 1.4 12.0 
5.0 12.4 13.6 2.3 14.0 

p14 = zp14.3 = 181.9 (23) 

In this case, the induced charge on the probe deriving from the 
block directly beneath the probe (A14) amounts to only 8% of the in pC/m2. 
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As calculated from the probe response UD,  see also (7), 

11.5 12.6 11.9 1.8 9.6 
12.2 13.5 12.0 2.8 11.6 

8.6 12.2 12.7 1.8 10.9 r 3.8 11.5 11.7 2.3 10.5 I OD = 13.3 13.9 12.8 2.5 11.3 

in pC/m2. 
Further, as a means of control on the calculation, the average 

surface charge density 5 (pC/m2) for the 25x25 mm2 dielectric 
surface is compared in all three cases: 

U A :  5 =  10.1 

(29) 
OD : 5 = 9.6 

It can be seen that there is excellent agreement between the glob- 
al charge distribution calculated via the X function, and that mea- 
sured by Yashima et al. [4] by means of a Faraday cage apparatus. 
Thus the 2D X function approach has not influenced adversely the 
final result. 

7.  DISCUSSION 
7.1. THE PRESENT EVALUATION 

As the X function is simply the proportionality factor between 
the source charge and the resulting induced charge, the application 
of this function to the analysis of probe measurements is relatively 
straightforward. As the X function is a solution of Laplace's equa- 
tion, the variation of this function is dependent on the complete 
system geometry. Consequently, for each measuring location of the 
probe there is a unique X function, unless a high degree of symme- 
try exists. 

A necessary step in developing a solution for the unknown sur- 
face charge density is the discretization of the surface area under 
study. In this process each of the surface elements is assumed to 
be a uniformly charged area. With such an assumption, it becomes 
possible to reduce the basic induced-charge integral, (8), to one in- 
volving only the X function. Due to the discrete nature of the mea- 
surement procedure together with the discretization of the surface 
area, such integrals form the elements of the A matrix. This ma- 
trix may be referred to as the geometric matrix because it depends 
only on the geometry of the system and surface elements. Taken 
together with that of the probe responses, the A matrix enables the 
solution for the unknown surface charge to be obtained. From the 
present simple geometry, it is clear that any symmetry of the sys- 
tem geometry can be exploited to reduce the amount of numerical 
calculation associated with the determination of the A matrix. 

In developing the present analysis, the C T ~  results of Yashima et 
al. and the elements A,j of the A matrix were combined to illustrate 
how each surface charge element contributed to the total probe re- 
sponse pi. In this way the individual induced charge contributions 
could be identified. It is clearly demonstrated that it is possible 
for areas of charge not situated directly beneath the probe to con- 
tribute a significant percentage of the probe signal. Normally, such 

an analysis can only be undertaken after the global evaluation of 
U~ through (25) has been performed. However, in this theoretical 
exposition ~j values were available at the onset of the analysis. 

In Figure 3, we illustrate the three sets of surface charge densities 
block by block It is seen that there is a good agreement among the 
three different methods. This agreement may be taken as confirma- 
tion that the basic assumption in the experimental measurements 
reported in [4] is, in general, fulfilled; viz. that the surface charge 
was uniformly deposited over the upper surface of each block. A 
possible exception to this condition may be the blocks of the 4th 
column on which, although CJ was set to zero [4], a finite charge 
was recorded with the Faraday cage measurements. 

In general to solve the basic integral Equation (2), for the un- 
known surface charge distribution, it is necessary to discretize both 
the charged surface area and the probe scanning technique. How- 
ever, the X function is independent of this process: i.e. X is a con- 
tinuous function. Hence on the basis of (2), it is possible to examine 
the response of any probe for a known surface charge distribution. 
By this means, the characteristics of different probe designs can be 
examined and evaluated. 

7.1 .l. LIMITATION OF X FUNCTION 
EVALU AT1 0 N 

As mentioned, the evaluation of the X function was undertaken 
with a 2 D field program. This implies that, as the calculations were 
not made on the exact 3D geometry of [4], but on an axially symmet- 
ric geometry, then the A matrix employed does not comply with 
the exact boundary conditions in [4]. This approach, however, did 
provide a simplification in that only one X function was required 
in order to generate the A matrix. In contrast at least 6 different A 
functions would be necessary in the 3D case in order to establish a 
correct A matrix. Although this would require an increase in the 
data storage, together with a modification to the APL program, the 
theoretical analysis presented here would remain unaltered. 

In an attempt to quantify the degree of approximation intro- 
duced by using one axially symmetric X function, additional cal- 
culations were undertaken. For these, a right cylinder of 5 mm 
diameter was used to simulate a single 5x5 mm2 block. This rep- 
resentation allows the effect on the X function approximation to 
be assessed for probe positions near the edge of the 25x25 mm2 
dielectric block. In comparison with the X values associated with 
the 100 mm radius cylindrical block, those for the 2.5 mm radius 
cylinder are higher along the upper surface: e.g. the presence of 
an edge at T = 2.5 mm leads to a 22% increase in the latter X Val- 
ue at this radial distance. However, with respect to the associated 
A-integral, see e.g. (9), this deviation reduces to 12%: i.e. an integral 
of this nature is less sensitive to changes in the X function. As the 
2.5 mm radius cylinder is a worst-case situation, the edge error in- 
troduced by the lack of 3D software cannot possibly exceed 12%. 
Consequently, the agreement among the results shown in Figure 3 
is maintained. 
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Figure 3. Surface charge density ~7 on the 25 blocks. (a) multi-point measurement, C ~ D  [4], (b) measured with a Faraday cage, OF [4], 
(c) determined with the use of the X function, u ~ .  

7.2. THE EVALUATION BY YASHIMA, The p and CT matrices are identical with those of the present anal- 
ysis. Each element of the P matrix consists of the coefficient Pi3 
which is the response at position i due to a unit charge density at 

FUJINAMI AND TAKUMA 

In [4], the matrix equation solved by Yashima and colleagues is 
expressed as 

p = P ,  
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element j .  This coefficient is dependent on the complete system ge- 
ometry and is determined by a numerical field calculation with the 
probe sensor plate at zero potential, see Figure 6 of [4]. In this way 
the Laplacian induced charge is automatically set to zero, so that 
the Poissonian induced charge can be evaluated directly from the 
field solution. Each coefficient PtJ is then the ratio of the induced 
charge to the source charge. 

If the dielectric surface is discretized into n small surface ele- 
ments, then PzJ will need to be evaluated n times for each of the 
n positions of the probe. With the X function approach, A, would 
be evaluated once for each of the n probe positions and thereafter 
A, determined for each of the n surface elements. Thus, although 
the procedures for determining the P and A matrices differ, the 
two matrices would be identical and hence the two approaches for 
evaluating the surface charge density are equivalent. 

In a separate experiment with a different dielectric geometry, 
Yashima et al. [4] established the importance of charged areas not 
positioned directly beneath the sensor plate in contributing to the 
probe response. In the present study, this aspect has been brought 
fully into focus in a quantitative manner by utilizing the elements 
of the A matrix. The weakness of the circuit-theory approach is 
now fully in evidence. 

7.3. THE EVALUATION BY OOTERA 
AND NAKANlSHl 

With all conductors except the sensor plate at zero potential, an 
expression similar to (24) is also employed in the work of Ootera 
and Nakanishi [2]. However, their method of deriving the elements 
of the equivalent A matrix is more involved. This situation arises 
due to the procedure adopted to obtain the electrostatic field solu- 
tion. In [2], on the assumption that there is no charge within the 
volume of the dielectric, the dielectric body is represented by a fic- 
titious surface charge density in vacuum. Thereafter the sum of 
this fictitious charge and the real surface charge is referred to as the 
apparent charge density. Subsequently these authors use a surface 
charge method to develop the electrostatic field solution, which is 
then manipulated to separate the two components of the apparent 
charge. This process leads eventually to a matrix equation. How- 
ever, through this approach, each element of the geometical matrix 
necessarily consists of the product of two sub-elements. Thus the 
evaluation of this matrix is considerably more complicated than the 
corresponding A matrix. Due to the underlying complexity of the 
method adopted in [2], the individual contributions of the charged 
surface elements to the probe response are not readily identifiable. 

7.4. THE EVALUATION BY 
SUDHAKAR AND SRIVASTAVA 

These authors [5] adopted a surface charge simulation technique 
[8] to evaluate the surface charge distribution on a spacer. Conse- 
quently, the matrix equations which result from the electrostatic 
field analysis exhibit the same degree of complexity as those ob- 
tained by Ootera and Nakanishi [2]. 

8. CONCLUSION 
HROUGH the use of independent experimental measurements, T we have demonstrated in detail the X function approach to the 

evaluation of electrostatic probe measurements. In this approach, 
the X function serves as the link between the data measured with 
an electrostatic probe and the actual surface charge distribution. Al- 
though this function is dependent on the position of the measuring 
probe in the overall geometry, it is however independent of the dis- 
cretization of the charged surface area. This feature simplifies the 
evaluation of the geometric matrix, the A matrix, associated with 
the surface elements. It is through this matrix together with the 
matrix of the measured probe responses that the unknown surface 
charge density is determined. 

To understand fully the nature of the response of an electrostat- 
ic probe it is necessary to examine the intermediate steps in the 
surface charge evaluation. Such an examination has been under- 
taken via the X function, and the significance of contributions to 
the probe signal from areas of surface charge not directly under the 
probe have been clearly highlighted. This latter aspect cannot be 
accounted for when a circuit-theory approach is employed. Thus 
severe errors in the evaluation of global distributions of surface 
charge would undoubtedly arise with such an analysis. 

In conclusion, only field theoretical solutions can provide a valid 
evaluation of surface charges on dielectric bodies. The X function 
approach provides an elegant solution with added insight. 
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