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CThW4 Fig. 2. Extracted one-way idler output power and the one-way circulating intracavity 
pump-power at 1.064 pm as a function of the external pump power from the diode laser for the case of 
PPLN and PPRTA 

Figure 2 summarises performance of the two 
devices. The PPLN OPO has a lower threshold in 
terms of intracavity pump-field, namely 30 W, 
compared to 65 W in the case of PPRTA; expect- 
ed from its higher nonlinear coefficient. Howev- 
er, the external pump-power required to reach 
threshold is higher at 8W in the case of PPLN 
compared to 4.2 W in the case of PPRTA as a re- 
sult of the higher slope efficiency shown by the 
intracavity field in the latter material, ascribed to 
the greater immunity of PPRTA to thermal lens- 
ing and aperturing compared to PPLN. In both 
cases the output power in the idler wave is in the 
range 200-250 mW at external pump-powers of 
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C 
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the order of 12 W. (Unidirectional idler power, 
total generated power is twice this value). The 
spatial quality and temporal behaviour associat- 
ed with the idler outputs are markedly different 
in the two cases. In PPRTA the idler mode is a 
stable, high spatial-quality mode close to TEMOO, 
whereas in PPLN the spatial mode quality is both 
poor and unstable. In PPRTA the idler output 
from the OPO is true CW (intensity modulation 
below 5%), whereas in PPLN trains of relax- 
ation-oscillation pulses are continually triggered 
leading to severe and noisy intensity modulation. 

Figure 3 shows the temperature tuning char- 
acteristics of the PPRTA. At 20°C (room temper- 
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CThW4 Fig. 3. Experimental temperature tuning characteristics of PPRTA; upper trace (open cir- 
cles) idler wave, lower trace (filled circles) signal wave. Calculated tuning characteristics based on Frad- 
kin-Kashi’ and Fenimore3 are shown by dotted and solid lines respectively. In both cases, the tempera- 
ture tuning characteristics were deduced using the (dnldT) data of Karl~son.~ 

ature), the observed signaUidler wavelengths 
agree closely with those predicted by the Sell- 
meier relations of Fradkin & Kashi.’ 

In PPLN we have.investigated cavity geome- 
tries which allow low threshold operation (intra- 
cavity fields around 6 W), and enhanced idler 
outputs (350 mW at 12 W external pumping). 
We will report further on this and also on tech- 
niques for control of the relaxation oscillations 
that are still present in these improved geome- 
tries. 
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Cw and pulsed compact tuneable laser sources in 
the infrared have widespread scientific, medical 
and industrial applications. Such a laser source 
can be obtained by use of a diode-pumped intra- 
cavity optical parametric oscillator (IOPO). 

Several investigations in this field have been 
published.”* Here we report on a IOPO based on 
a %:YAG laser incorporating a periodically 
poled LiNbO, (PPLN) crystal inside the laser 
cavity to take advantage of the high circulating 
intracavity field. The Yb:YAG crystal is pumped 
by a reliable 940 nm fibre-coupled diode laser. 
The IOPO consists of aYb:YAG crystal coated for 
HR at 1030 nm, an intracavity lens to generate a 
beam waist in the PPLN crystal, a dichroic mir- 
ror to separate the laser and signal fields and two 
end mirrors as shown in Fig. 1. 

The 30 mm long AR-coated PPLN crystal 
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CThW5 Fig. 1. Schematic drawing of the 
IOPO. 

contains 14 gratings with periods of 25.9 pm to 
29.5 pm. OPO operation have been obtained in 
gratings with periods of 25.9 pm to 27.4 p cor- 
responding to signal wavelengths in the range 
1340-1410 nm and idler wavelengths in the 
range 380W450 nm. The output power de- 
creased with increasing idler wavelength due to 
absorption in the PPLN crystal. The signal out- 
put was coupled out of one of the two OPO end 
mirrors. 

The output from the IOPO in cw and pulsed 
at 2 kHz repetition rate can be seen in Fig. 2. In 
cw operation the expected clamping of the laser 
field is evident, whereas this does not occur in 
pulsed operation. The high threshold of the cw 
IOPO of approximately 20 W is attributed to 
losses in the IOPO, especially in the AR-coatings 
of the PPLN and from absorption in the PPLN. 

The dynamics of the IOPO was investigated 
using fast photodiodes monitoring the laser and 
signal output. The dynamic behaviour is very dif- 
ferent from the dynamic behaviour of the laser 
itself. The relaxation oscillations of the laser oc- 
curs at approximately 90 kHz, while the relax- 
ation oscillations of the IOPO occur in the MHz 
range. This behaviour which is due to coupling 
between the non-linear OPO equations and the 
laser equations is in good agreement with the 
theory of Turnbull et al.3 
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Dual-cavity DROPGAn ideal singlemode 
source for non linear spectroscopy. 

I. Ribet, C. Ventalon, C. Drag, M. Lefebvre, 
E. Rosencher, Ofice National #Etudes et de 
Recherches Atrospatiales, B.P. 72-92322 Chdtillon 
Cedm-France 

With the appearance of periodically poled crys- 
tals, tremendous developments were recently ob- 
tained in the field of continuous-wave (cw) opti- 
cal parametric oscillators. However, the low 
power delivered by cw sources is not appropriate 
to address the problems of non linear spec- 
troscopy and open air pollutant species detec- 
tion. Pulsed OPOs seem to be a good alternative 
for such applications since high output power 
can be delivered over a large domain of wave- 
lengths from rugged and compact devices. 
Nonetheless, the broad spectral bandwidth of 
nanosecond-duration pulsed OPO remains a se- 
rious drawback for spectroscopic purposes. 
Thereby alternatives were proposed to achieve 
single-mode output. On the one hand, single- 
mode output has been demonstrated by use of 
the injection seeding technique despite of a re- 
stricted tuning range of the OPO to the seeder 
source.’ On the other hand, the insertion of fil- 
tering elements inside the cavity’ provides single- 
mode operation but important losses are intro- 
duced, increasing dramatically the threshold of 
oscillation. 

In this paper, we propose a new alternative, 
based on a dual-cavity doubly resonant OPO.’ 
Figures la  and l b  present two cavities that we 
tested in our lab. Figure IC illustrates the princi- 
ple of mode selection operated in these devices 
by use of a Giordmaine and Miller diagram : if a 
signal and an idler modes overlap perfectly, the 
energy conservation condition is fulfilled and 
those pairs of modes which are in exact coinci- 
dence are emitted. Practically, imperfect mode 
overlap can also lead to oscillation yielding to the 
well-known cluster behavior of single-cavity 
DROPOs. As we demonstrate here, using two 
separate cavities allows us to prevent oscillation 
with imperfect mode overlap. Hence, if only one 
exact coincidence lies within the gain bandwidth, 
the output will be single-mode. We thus capital- 
ize on two advantages offered by the same double 
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Fig. 2. Output power from the IOPO in cw and pulsed operation. 
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CThW6 Fig. 1. L-shaped cavity (a) and linear 
cavity (b) dual-cavity DROPOs. (c) principle of 
mode selection in dual-cavity DROPOs. 

cavity design: low threshold thanks to the double 
resonance, single-mode output thanks to the 
double cavity. 

Clearly, the spectral behavior of the DROP0 
depends on the value of the difference in length 
of the two cavities (AL). Hence, to predict the 
condition for single-mode operation, we calcu- 
late, for different AL values, the overlap integral I 
between all the signal and idler modes located in 
the gain bandwidth. This calculation is per- 
formed assuming that an exact coincidence is lo- 
cated in the center of the parametric gain band- 
width. If the threshold of oscillation is overcome, 
a parasite mode is emitted. Otherwise, the output 
is single-mode. Figure 2 illustrates the evolution 
of the maximum overlap integral as a function of 
ALILi, where Li is the optical length of the idler 
cavity. The dashed line represents the threshold 
of oscillation. From this figure, it is seen that the 
mode overlapping remains below the threshold 
over five separated regions. For these regions, sta- 
ble single-mode emission is expected. Figure 2 
also presents experimental points. Dots corre- 
spond to AL/Li values for which stable single- 
mode output was obtained, and squares to ALILi 
values for which the output was always multi- 
mode. The agreement between our model and 
experiment is quiet satisfactory. 

Our model was also very useful to understand 
the role of the cavity finesse (the higher the 
finesse, the broader the single-mode regions). 
It is now used as a tool for designing new cavi- 
ties. Experimental performances of two dud- 
cavity DROPOs will be presented spectral line- 
widths (less than 300 MHz, see figure 3a), 
continuous tuning range (30 GHz), frequency 
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CThW6 Fig. 2. Overlap area as a function of 
the difference in length of the signal and idler 
cavities. Calculation corresponds to the L-shaped 
cavity OPO (gain bandwidth : 2.5 cm?; signal 
and idler cavity finesses are 50 and 7 respective- 
ly). 
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