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K-SPACE MODEL OF MOTION ARTIFACTS IN SYNTHETIC

TRANSMIT ULTRASOUND IMAGING

Svetoslav Ivanov Nikolov and Jørgen Arendt Jensen
Center for Fast Ultrasound Imaging, Bldg 348, Ørsted•DTU, Technical University of Denmark

DK-2800 Lyngby, Denmark

Abstract - Synthetic transmit aperture (STA) imaging
gives the possibility to acquire an image with only few emis-
sions and is appealing for 3D ultrasound imaging. Even
though the number of emissions is low, the change in posi-
tion of the scatterers prohibits the coherent summations of
ultrasound echoes and leads to distortions in the image. In
order to develop motion compensation and/or velocity esti-
mation algorithms a thorough and intuitive understanding of
the nature of motion artifacts is needed.

This paper proposes a simple 2D broad band model for
STA images, based on the acquisition procedure and the
beamformation algorithm. In STA imaging a single element
transmits a cylindrical wave. All elements are used in receive,
and by applying different delays a low resolution image (LRI)
is beamformed. A Fourier relation exists between the aperture
function and all points in the beamformed LRI. This relation
is used to develop an approximation of the point spread func-
tion (PSF) of a LRI. It is shown that the PSF of LRIs obtained
by transmitting with different elements can be viewed as ro-
tated versions of each other. Summing several LRIs gives a
high resolution image.

The model approximates the PSF of a high resolution im-
age as a sum of rotated PSFs of a single LRI. The approxima-
tion is validated with a Field II simulation.

The model predicts and explains the motion artifacts, and
gives an intuitive feeling of what would happen for different
velocities.

I I NTRODUCTION

Synthetic aperture (SA) imaging has the advantage over the
conventional phased or linear array ultrasound imaging in that
it yields higher frame rates [1] is easily extendible to 3D [2]
and generates images which are perfectly focused both in
transmit and receive. One frame is, however, acquired over
a number of emissions, and if the scatterers move, then their
echoes do not arrive at the expected time instance. This pre-
vents the coherent summation of the echoes.

Previously it was shown that images created with the same
transmission sequence, and subjected to the same motion suf-

fer from the same motion artifacts. The correlation between
such images is high and it is possible to estimate the flow with
high precision [1, 3].

In this paper a model for the motion artifacts is presented.
This model explains why images acquired with the same
transmission sequence exhibit high-correlation. The model
also makes it easy to predict the shape of the point-spread-
function (PSF) in case of motion. The purpose of this work is
to develop an intuitive feeling in the reader of what the nature
of motion artifacts is, and how one can design new motion
compensation or flow-estimation algorithms.

The model is based on frequency domain approximations
which are introduced in Sec.II . These approximations are
used in Sec.III to illustrate the forming of an ultrasound
image. Finally the application of the model is discussed in
Sec.V.

II SOME FOURIER RELATIONS

SA ultrasound imaging is made by sending out de-focused
waves. The defocusing decreases the pressure and non-linear
effects can be neglected so that a linear system description is
adequate. The pulse-echo responsepr(�x, t) of a single scat-
terer at location�x1 is given by [4]

pt/r(�x, t) = vt/r(t)∗t δ(�x−�x1)∗
x

ht/r(�x, t), (1)

wherevt/r is a term accounting for transducer excitation and
impulse response of the scanner, andht/r(�x, t) is thespatial
pulse-echo impulse response accounting for the wave propa-
gation and diffraction. The symbols∗

t
and∗

x
denote convo-

lution in time and space, respectively. For SA focusing, the
image is focused at all points. We will assume, that in the
neighborhood of the focal point, the spatial impulse response
does not change, which makes it possible to describe it as
a separable function. The spatial impulse response for the
transmitting aperture is:

ht(θ, t) = hp1(θ) ·hp2(t) (2)
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Figure 1: The geometry for the Fraunhofer approximation of
the radiation field at the focal point. Plot (a) illustrates the
geometry, and (b) illustrates the spectrum of the point spread
function.

The radiated pressure fieldpt(sinθ, t;z f ) at fixed depthz f

(x f = 0) becomes:

pt(sinθ, t;z f ) = At(sinθ;z f ) · vp(t), (3)

vt(t) = g(t)∗
t

ht(t)∗
t

hp2(t), (4)

whereAt(sinθ;z f ) is the radiation pattern of the transducer
when a delta function is used as an excitation,g(t) is the
transmitted pulse, andht(t) is electro-mechanical impulse re-
sponse. The relation is valid over an arc in the neighbourhood
of�x f , and is therefore given as a function of the azimuth an-
gle θ. The radiation patternAp(sinθ;z f ) can be found from:

Ap(sinθ;z f ) =
∞�

−∞

Ap(ω,sinθ;Z f ) dω, (5)

whereAp(ω,sinθ;z f ) is the radiation pattern for a single fre-
quencyω. One can use the Fraunhofer approximation to de-
scribe it. The Fraunhofer approximation is valid in two cases:
(a) the far field, and (b) the focal point in the case of a focused
transducer [5, 6]. It basically states that the radiated field
and the apodization functions are related through the Fourier
transform1:

A(ω,sinθ;z f ) = F −1{a(ksinφ;0)}, (6)

where ω is the angular frequency,k = ω/c is the wave-
number,θ andφ are angles as shown in Fig.1(a). The fig-
ure shows the 2-D case of a transducer which is focused at

1The exact expressions can be taken from one of the references Ref. [1,
5, 6]

a fixed point�x f = (0,z f ). The center of the transducer co-
incides with the origin of the coordinate system (0,0). The
angleθ is measured relative to thez axis (depth), and will be
called ”azimuth angle”. The radiated field is studied along an
arc passing through the focal point(0,z f ). The two arcs - the
surface of the transducer and the line over which the field is
studied - are confocal [1, 6].

Taking the Fourier transform of the PSFs gives the fre-
quency response of the system, which is illustrated in Fig.1
(b). The two spatial frequencieskx andkz are related through:

k2 = k2
x + k2

z , (7)

which is indicated by the arcs drawn within the spectrum.
The arcs are within a limited angle span due to the finite size
of the transducer. Most transducers acts as bandpass filters
k ∈ [k1,k2], and the shape of the amplitude spectrum has a
bell-like shape. When viewed as an image, the 2-D spectrum
appears like a ”tear-drop”.

Sincept(sinθ, t;z f ) is a separable function, then the two-
dimensional Fourier transform of (3) gives also a separable
function:

Pt(kx,ω;z f ) = F {At(sinθ;z f )} ·F {vt(t)} (8)

Pt(kx,ω;z f ) = at(ksinφ;0) ·Vt(ω), (9)

It can be seen that the bandwidth ofkx is proportional to the
size of the aperture.

III M ODEL OF THEACQUISITION PROCESS

Synthetictransmit aperture (STA) ultrasound imaging is done
by transmitting with a single element and receiving with all
elements. An image can be formed by using a delay-and-sum
beamforming. The image is formed as:

H(�x) =
N

∑
i=1

N

∑
j=1

ai j(�x)r(t(�x)) (10)

t(�x) =
1
c

(|�x−�xi|+ |�x−�x j|) , (11)

whereri j(t) is the signal received by elementj after trans-
miting with elementi,�xi and�x j are their spatial coordinates,
and�x are the coordinates of the points from the image,ai j are
the apodization coefficients, andN is the number of elements.
The process can be split in two steps:

Li(�x) =
N

∑
j=1

a j(�x)ri j(t(�x)) (12)

H(�x) =
N

∑
i=1

ai(�x)Li(�x), (13)

Li(�x) is an image in itself, and it has a low resolution, since
the beamforming has been done only in receive. The time at
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Figure 2: Comparison between the PSF created with Field II
and an analytically created and rotated PSF

which the signal is taken is dynamically calculated for every
point, and therefore the Fourier relation from Sec.II is valid
for the receive aperture for all points in the image. In transmit
only a single element is used, the points of the image are in
the far field of the transmitting elements, and therefore the
Fourier relation is valid for all points in the image and the
transmit aperture. The pulse/echo radiation pattern can be
found as:

At/r(sinθ;z f ) = At(sinθ;z f ) ·Ar(sinθ;z f ), (14)

whereAt andAr are the radiation patterns of the transmit and
receive apertures, respectively. The angular spectrum of the
point spread function of the low resolution image can be ap-
proximated as follows:

Pt/r(kx,ω;z f ) = at(ksinφ)∗
x

ar(ksinφ)︸ ︷︷ ︸
at/r(ksinφ)

·F {vt/r(t)}·, (15)

whereat(ksinφ;0) andar(ksinφ;0) are the apodization func-
tions of the transmit and receive apertures, respectively, and
at/r(sinφ) is known as theeffective aperture. The effective
aperture is a fictive aperture that would have aone-way ra-
diation pattern as the pulse-echo radiation pattern of the sys-
tem. We will model the transmit element as a point source:
at(ksinφ0) = δ(ksinφ − ksinφ0). The point spread func-
tion can be found by taking the inverse Fourier transform of
Pt/r(kx,ω;z f ):

p(sinθ, t;z f ) = F −1{at(ksinφ)∗
x

ar(ksinφ)} · vt/r(t) (16)

Notice that a linear array is used. If the position of the trans-
mit element changes, then a different delay is used to acco-
modate for the propagation path. This corresponds to mov-
ing a point source along the arc defining the array in Fig.1
(a). Changing the position of the transmitting element corre-
sponds to changing the position of the whole setup:

at/r(u−∆u) = at(u−∆u)∗
x

ar(u)

= at(u)∗
x

at(u−∆u)

= at(u−∆u/2)ar(u−∆u/2),

(17)

whereu = ksinφ. In other words, the spectrum of the low
resolution imageL(�x) is being rotated (see Fig.1(b)) at an
angle

β ≈ arcsin
∆x
z f

, (18)

where∆x is the distance between the center of the transmit-
ting element and the center of the array. A rotation of the 2-D
spectrum corresponds to a rotation of the 2-D image. This
operation can be expressed as:

p′(x,z;�x f ) = R [β;�x f ]{p(x,z;�x f )}, (19)

whereR [β;�x f ] means ”rotation at an angleβ around the co-
ordinates�x f = (x f ,z f )”. The rotation is given as:

p(x′,z′;z f ) = p(x,z;z f ) (20)[
x′
z′

]
=

[
sinβ cosβ
cosβ −sinβ

][
x− x f

z− z f

]
+

[
x f

z f

]
(21)

(22)

This is illustrated in Fig.2. Fig. 2(a) shows how the point
spread function of a low resolution image is approximated
when the transmission is done with the central element. The
apodization function of the receive aperturear(x) is chosen
to be a Gausian function. The transmit element is assumed to
be omnidirectional. The two way radiation patternAt/r(x) is
equal toAr(x), and is Gausian function too. The point spread
functionp0(x, t) of the low resolution image is parallel to the
transducer surface. Fig.2(b) show the case when the outer-
most element of a transducer is used in transmit. Its point
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Parameter Notation value unit
Speed of sound c 1540 m/s
Center frequency f0 5 MHz
Sampling frequency fs 70 MHz
Wavelength λ0 308 µm
Fractional bandwidth BW 66 %
No elements Nxdc 65 -
Pitch dx 308 µm

Table 1: Simulation parameters used for the simulations.

spread functionpi(x, t) is approximated by rotatingp0(x, t) at
an angleβi as given in (18):

βi = arcsin

(
i− N+1

2

)
dx

2z f
, (23)

wheredx is the distance between the centers of two elements,
i ∈ [1,N] is the index of the transmitting element, andz f is
the distance to the focal point as shown in Fig.1.

The final high resolution image (HRI) is the sum of the low
resolution images, and so is its point spread function:

P(x,z;�x f ) =
N

∑
i=1

pi(x,z;�x f ) (24)

P(x,z;�x f ) =
N

∑
i=1

R [βi,�x f ]{p0(x,z;�x f )} (25)

(26)

IV M ODEL OF THE MOTION ARTIFACTS

In order to continue the considerations, it willl be assumed
that the PSF of the low-resolution images does not change for
small changes in the axial and lateral positions:

p0(x,z;�x f +∆�x) = p0(x,z;�x f ) (27)

The point spread function of the point at the new location will
merely be a translated version of the PSF at position�x f :

pi(x,z;�x f +∆�x) = T [∆�x]{pi(x,z;�x f )}. (28)

T [∆�x]{pi(x,z;�x)} is used to denote translation of the PSF:

pi(x′,z′;�x f +∆�x) = pi(x,z;�x f ) (29)[
x′
z′

]
=

[
x
z

]
+

[
∆x
∆z

]
. (30)

Figure 3 shows the comparison between PSFs of high-
resolution images, obtained without and with motion. The top
row displays the imaging situation. The emissions are done

consecutively with the outermost elements, first with the left-
most and then with the rightmost one. The positions of the
scatterer and the PSFs of the low-resolution images obtained
at the first and the second emissions are given in blue and red
colors, respectively. The middle row shows the superimposed
low resolution images obtained at each of the emissions. The
thick lines outline the envelope detected data at -1 and -20 dB.
The thin and pale lines are contours of the raw RF signal, and
are presented to show the direction and frequency of the oscil-
lations. The distance which the point scatterer passes between
the two positions is chosen to beλ/4 at a center frequencyf0
of 5 MHz. The PSFss were obtained using Field II, and the
simulation parameters are listed in Table1. The bottom row
shows contour plots of the envelope detected high-resolution
images. The contours are drawn at levels -6, -10 and -20 dB
from the peak value. It can be seen that the axial motion re-
sults in a distortion of the PSF. The PSF becomes asymmetric
and its maximum shifts away from the central line. The lateral
motion introduces only minor change in the PSF. The reason
for this is the anisotropy of the PSF - the lateral size is sev-
eral times larger than the axial one. The process of creating a
high-resolution image in the presence of motion becomes:

P(x,z;�x f ) =
Nxmt

∑
i=1

T [i∆�x]
{

R [βi;�x f )]{p0(x,z;�x f )}
}

, (31)

whereβi is the angle relate to the transmitting elementi via
the relation (23).

V DISCUSSION

K-space can be employed to analyze a number of problems in
medical ultrasound. As pointed out in [5] simple graphical
methods are useful for the intuitive understanding of the im-
age formation, and can be used also as an excellent teaching
tool. The main contribution of this paper is that the geometri-
cal model is given in 2-D rather than 1-D (most other papers
consider onlyA(x), rather thanp(x,z)). This makes it pos-
sible to easily explain some effects of motion. For example,
Hazard and Lockwood [7] make the observation that if an
image is made using three emissions, the peak of the PSF is
split in two, and that the side-lobe level rises with about 5 dB.
Looking at Fig.3 one can see that if there were three low res-
olution images, then the resulting two sums will be centered
around two points, rather than one. These two points will not
coincide with the peak amplitude of any of the low resolution
images, and the ratio between the sum and side lobes will be
lower.

This model helps explain why it is possible to estimate the
velocity using synthetic aperture imaging. Figure4 illustrates
the building of high resolution images at every emission. The
low resolution imagesL obtained after transmitting with the
same element are translated versions of each other. The PSFs
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Figure 3: Making a high-resolution image with only two
emissions.

of the high resolution images obtained using the same trans-
mit sequence are also translated versions of each other. In

Emission
     (n−3)

L(n−3)

Emission
     (n−2)

L(n−2)

Emission
     (n−1)

L(n−1)

Emission
     (n)

L(n)

2
∆z

Low−resolution images

H(n−3) H(n−2) H(n−1) H(n)

2
∆z 2

∆z

High−resolution images

Figure 4: High resolution images made at consecutive emis-
sions. Only two of the elements are used in transmit.

Fig. 4, there are two pairs of images, which are created with
the same transmit sequence :H(n−3) andH(n−1), andH(n−2)

andH(n). If a group of scatterers has moved at the distance
∆z, then the resulting signal segements will be a translated
versions, and this translation can be estimated as described in
[1, 3].

The model can be used in designing motion compensation
algorithms. From (28), it can be seen that HRI can be ex-
pressed as a sum of translated low-resolution images. If one
first estimates the vectorial flow [8], then one should translate
back (pick the right samples) from the low resolution images
and sum them to get a motion compensated high-resolution
image.

VI CONCLUSION

This paper has presented a conceptual tool which allows the
analysis ink-space of synthetic aperture imaging. The de-
veloped simple geometric model makes it possible to rapidly
identify and qualify phenomena related to the effects of mo-
tion, and helps understand how an ultrasound image is actu-
ally built.
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