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Abst,ract  

h i  a linear syst,cni of second order differential equa- 
t . i ims tiif stability is studied hy Lyapiitiov's direct. 
~nclhnd. 'The Lyapunov matrix equation is solved 
a r id  n sirffcii?tit conditioii for stability is expressed 
113' the syst.i:rii matrices. For a system which satisfies 
tlic: wridi1.ion for stability the Lyapunov function is 
iisc:d lo derive aniplitudc boonds of displacement, ;uid 
velocity in the homogeneous as well as in the inhonio- 
geneous ciist:. The dwelopwl results art: illustrated 
IJJ. C:~:arll])leS 

I introduction 

Giveri t h e  lincar syst.cni oi differeiii.ia1 equations of 
ilic Snrni 

Al:i(,i) .I- (D + G)?( t )  + ( I <  + N)s:( t )  = f ( l )  (1) 

whcrc I\{, D arid I< are Herniitim (in particiilar 
real symrrier.ric) matrices. The inass matrix M ,  the 
dampiiig inalrix U and the stiffriess matrix K are all 
positive definite ((1.1 > 0 , .D > 0 , I< > 0), while the 
riiatrix G of the gyroscopic forces and t.he matrix N 
of the circulatory forces are skew-Hermit,ian (in par- 
t.iculiir real skew-sytnrnetric). If G = 0 and N = 0 we 
rlcal wit.h a c1;issical darnped syst,ern which of course 
is stnblo. Recmt,ly response hounds of such s y s t e m  
are  given hy Schielilen: Ilu and Eherhard[I, 2 ,  3, 41. 
If 1)ol.h cilculatory forces N and gyroscopic forces C 
iirc pi-t!sciit, t.he stability of the system depends on 
t.hc rrlatioii hi:t,weeti the stabiliziiig forces character- 
ized by U and C and the desta.hilizing forces cliar- 
ncterized by N. If the system is stable, WE can ,ask 
h r  bouiids of the response of tha syst.ein. To exan-  
iiie wlictlier the system is stable, we f i r id  a Lyapuriov 
fiuict.ioii by snlviiig the Lyapunov matrix equation. 
Tliw a suffcicnt condition for st.ability is expressed 
iii k rms  of the properties of the systein matrices. 
This s th i l i t y  cnnditioii includes for a certain chnice 
nf tlic irivolvc~l parariiet.ers the more restrict,ive sti~. 

bility criterion earlier found by Frik[S]. We then 
achieve hourids of the responses by nsirig the Lya- 
puriov function associated with t,he stable system. 
Finally we give exarnples wliich denionstrate the use- 
fulness of the results. 

2 Lyapunov's direct method 

'The ltontogencoiis linear system obtairied from (1) 

M ? ( t ) + ( D + G ) ? ( t ) + { K + N ) z ( t ) = O  ( 2 )  

can be rswritten as a first order system i = -42 where 

;tiid I is thc identity matrix. As a Lyapunov functiou 
V ( z )  for system (3) we take 

\ ' : = z * ( t ) P z ( t )  , (4) 

wlierc P = P' is a Hermitian matrix, wliich satisfies 
the. Lyapunov mat,rix equation 

r.4 + A'P = -Q ~ (5) 

and (1 = Q' > 0. 'The system (3) is asymptotically 
st,able, if there exist, Herniitiari mat2rices P > 0 arid 
Q > 0 which sat,isfy the Lyapunov matrix equation 
(5). 

3 Stab i l i t y  

The crucial point here is t o  find a niatrix P satisfy- 
ing ( 5 )  . Starting with a first integral of t,he of the 
equation of motion wc find a proper solution P . We 
then formulate (.he following 

Theorern: If b2 - 4ac > 0 and 6 > 0 , then s y s t e m  
(2) is asymptotically stable. 
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The scalars a,  6 arid c are ddined by 

U = A m a z ( i l f  + G'IC-IG), 
h =  A,,,,"(2D+ 2(" '"-11\r. t"*"~~IG)),  1 

c = , L n O z ( N * I C ' M ) ,  (6) 

whert? Ani,,, arid A,,, denote the smallest and the 
largest eigenvalues of rhe sespective matrices. A 
morc res1,rictive st,ahility condition we achieve by 
making a rough estimate of the scalars U arid b 

' 2  5 ~ ~ m a 1 :  + ,qtnCLs I kmin , 

b 2 2dmin - ,Yrnazr~~,naz/knirt . (7) 

tlera inmoz i s  the largest eigc:iivdile of M , y,,, arid 
n,,,ns are largest values of thi: moduli of thc iiigenval- 
ues of G und N , respectively, and k,,Li,, denot.cs the 
smallest i,igenvalue of I<. Theii the stability condi- 
tions of t,lre theorem hecomc 

(2d,,i,, ~ ,q,nw.nmn. 1 k d 2  

- 4 (7rLrnrLr ~t Z S , , , ~ ~  I h i d  n.fnaz I &in > 0 ,  1 2  

2dmit7 -- ~ i , ~ ~ ~ ~ l , ~ ~ ~ ~ l k ~ ~ ~ i , ,  > 0 ,  (8) 

I o t h  inequalities in (8) arc satisfied if 

dKhi,, k m n  - dmiu ,qmaz rlnior 

- 7flrnwz v,:o.z > 0 (9) 

This inequality is known as r2 sufficient coriditioii 
for asymptotic stability: se Frik[5] aiid I<liern arid 
Seyranian[G] . 

4 Response bounds 

First wc consider the homogi!tieous system (2) which 
we assurne to be stable according t.o the stability t , l e  
orern. The Lyapunov function can be used to esti- 
mat,(: tilt: 2-norin ilz(t)ll = "w(7 as follows 

wliore 7 =: 6 / (2a )  and If, is the value of thc Lyapunov 
fimctioii for t = 0 which sounds 

Wc now return to the inhomogeneous system (1) 
mlrich wi: again assume to he stable according to the 
t,heol-em. If we assurnc f ( t )  to tie a noii-transient 
excitation, it is normally easy to find a particular so- 
lution zpor t ( t )  e.g. by making a suitable guess. Since 
every solution z ( t )  to (1) can he expressed us a suin 
of a solution xhom(t) to the homogeneous equation 
(2) and a particular solution zparL(t) to t,he inhomo- 
geneous equat,iori (1) we achieve the boiiud as follows 

+ l l % 7 d ~ ) l l  1 (13) 
wherc V ~ J ,  is given by (11) if we in on the right, side 
substitute s(t) by the zhom( t ) .  For a transient exci- 
c.ation f ( t )  we find a solution to (1 )  with t,tie given 
initial conditions z(0) = 0 arid i(0) = 0 by calculat- 
ing the convolution of the impulse response matrix 
@ ( t )  and f ( t )  

z ( t )  = * ( t - ~ ) f ( ~ ) d . r  . (14) i' 
'raking f ( t )  = ,u$(t), where U is a constant vector 
;md G ( t )  is a scalar f u n d o n  subjected bo the condi- 
t,iori 

Tu 

P = 1 lllil(t)lldt < 02 I (15) 

we can deduce 

5 Examples 

5.1 Example 1 
To illustrak the forrnulrrs for response bounds of the 
homogeneous syst.cin (2) let us consider the 3 x 3 
system described by 

M = ( - ;  3 1 -1 i ) ,  
D =  (-; 8 -2  -: -!), 

f 0 2 3 . \  

-3 -2 0 
7 .  T2 I/" = z"(0) ( I < +  - U - - I l . r ) :c (O)  + 
2 4 

2 2 

In a :;irnilar way we obtain the cst,imate for I.he tiinc 

(j.{O) + 2 Z(O))* M ( i (0 )  + 2 Z ( 0 ) ) .  (11) 4 2  

deriva(.ivt: 0 1  
N =  ( -1 

0 1 ) .  -1 -1 
(17) 

(12) 
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4 
Theoretical bound 

i 3 :  

2 i  
i.. i ~ ... \\,l":"l 

1 !, 

Figitre L :  'l'heoret,ical bound mi i  ils(l)li. 

Figure 2: Tlicoretical hound arid Ii.z(t)/l 

Given the iriitial conditions ~ ( 0 )  .= [I, 1,1]" imd 
: i ( ~ )  = [(I! 0,0\' , we calculate the cixistarits (iefincd 
i n  (6) as 

1 
2 b =  X,,,,,(2D-t- - - ( G ' K ~ ~ " ~ ' i ~ N " K - ' G ) )  1 13, 

c = X,,,",(N'I<--") = 3 .  

Ijecausi: 6 > 0 aud b2 - 4nc = 70.8 > 0 t.he system is 
stable according t o  the stability theorem, while tho 
Frik criterion given by (9) is not sat,isficd in this casc. 
To get l . l~e boiind of thc 2-riorni given by (10) we first. 
(:d(:iilate t l i e  mhies y = 6/(2a) = 0.794 , VO = 33.91 
arid A,,ti,z(f< + 2 D - $ M )  = 2.752 . The hound 
is i,hen found t,o be llz(t)l/ < 3.51 and  this value is 
i:orrip;ircd 1.0 ~ l i c  exa,ct value of llr(t)ll i15 shown in 
ligrirc 1 , TJsirig A,><in(A4) = I we can calcuiate the 
bou~ir l  of l l :k(t) l /  according 1.0 equation (12). Figure 
2 S I I ( J ~ L  t.ho bound of /l.i.(t)il corriparcd 1.0 thc  exact 
Y>LILl<' of ~ ~ : b ( / . ) ~ ~  

8 :  Theoretical bound 
7 ~: 

6 ~: 

5 :  

____ 

Figure 3: Theoretical hound and Ilk(t)ll 

0.25 , 
-. I Theoieiicai bound I - 

0.15 

~ 

5.2 Example 2 
We now look at, the inlioinogeneous system ( 1 )  with 
the same system rnat,rices (17) as given in example 1 

We assume that the system is excited by a transient. 
force given by f ( t )  = [t; 1, I]' . A particular solution 
to the inhomogeneous equation is 

13/30 -10871450 

-7/30 1003/450 
zpn;.i(t) = 1 ( 1/15 ) + ( -233/450 ) . (18) 

With  ttic iriitial conditions z(0) = [0,010]" and 
i ( 0 )  = [0,0,0]' we have for the initial conditions 
of :Lho,n(t)  

-1087/450 
zho,,,(0) = - -233/450 , (19) ( 1003/450 ) 

Shovn(0)  = - 
-7130 
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Substitut,irig zhorn(0)  and i.,2,0nl(0) int,o (11) we ob- 
tain Vb.h = 34.69 . The hound of the 2-norm givcn 
hy (13) is then found to he ~ ~ : c ( t ) ~ ~  < 3.55+llzp,,.,(t)l/ 
. This value is c:omparcd to the exact norin Ilz(t)ll 
as shown in figure 3 . 
If IVC instead excite the system with a transient force, 
say f ( t )  := u$(t)  , where U := [ 1 , 0 , 0 ] ~  and i ( t )  = t 
for 0 < t < 1 and oslierwise $ ( t )  = 0 , we havc 
p = l j 2  and 'u+IV-'u = 112 . Then the equation 
(16) gives the honnd of the 2-norm Ilz(t)ll < 0.213 . 
This vniue is be cornpared to the exact value of thc 
norm Ilz(t)ll as  show^^ in figure 4 . 

6 Coriclusions 

llsing tlrc l~yapunov's direct rncthod we h a w  for- 
inulatcd a sumcient conditiori for stability of a cer- 
tain class of noli-conservative systems. The condition 
is expres:;ed by the largest and smallest, eigenvalues 
OS combinations of the system matrices. The con- 
structed Lyapunov function is used to obtain hounds 
for the norms of tlie displacemen1 and she velocity. 
There cxist stable non-conservative systems, which 
do not sat,isfy thc deduced condition for stsbilit,y. 
For such systems, no response bounds are wailable 
tiy this method. 
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