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non-conservative linear systems
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Abstract

For a linear system of second order differential equa-
tions the stability is studied by Lyapunov’s direct
method. The Lyapunov matrix equation is solved
and a sufficient condition for stability is expressed
by the systerm matrices. For a system which satisfies
the condition for stability the Lyapunov function is
used Lo derive amplitude bounds of displacement and
velocity in the homogeneous as well as in the inhomo-
geneous case. The developed results are itlustrated
by examples.

1 Introduction

Given the lincar system of differential equations of
the form

MER) + (D + Q)alt) + (K + Nalt) = £ (1)

where M, D and & are Hermitian (in particular
real symmetric) matrices. The mass matrix M, the
damping rnatrix 12 and the stiffnress matrix K are all
positive definite (M > 0,0 > 0, K > 0}, while the
matrix (7 of the gyroscopic forces and the matrix N
ol the circulatory forces are skew-Hermitian (in par-
ticular real skew-symmetric). If G = 0 and N = 0 we
deal with a classical damped system which of course
is stable. Recently response bounds of such systeins
are given by Schiehien, Hu and Eberhard{l, 2, 3, 4].
if both circulatory forces NV and gyroscopic forces ¢
arce present, the stability of the system depends on
the relation between the stabilizing forces character-
ized by 2 and (¢ and the destabilizing forces char-
acterized by N. If the system is stable, we can ask
for bounds of the response of the system. To exam-
ine whether the system is stable, we find a Lyapunov
function by solving the Lyapunov matrix equation.
Then a sufficient condition for stability is expressed
in ferms of the properties of the system matrices.
This stability condition includes for a certain choice
of the nvolved parameters the more restrictive sta-
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bility criterion earlier found by Frik{5]. We then
achieve bounds of the responses by using the Lya-
puncv function associated with the stable system.
Finally we give exarmnples which demonstrate the use-
fulness of the results.

2 Lyapunov’s direct method

The homogeneous linear system obtained from (1)
MED+ D+ @)+ (K+N)x(5) =0 (2)

can be rewritten as a first order system z = Az where

_ G 1 _{® ¢
“1"‘( KN m,z)—c')’z“(aa) 3)

and [ is the identity matrix. As a Lyapunov function
V{(z) for system (3) we take

V = Z*(t)PZ(t} , (4)

where P = P is a Hermitian matrix, which satisfies
the Lyapunov matrix equation

PA+A'P=-Q , (8)

and @ = @Q* > 0. The system {3) is asymptotically
stable, if there exist Hermitian matrices I» > 0 and
(R > 0 which satisfy the Lyapunov matrix equation

(5).

3 Stability

The crucial point here is to find a matrix P satisfy-
ing (5) . Starting with a first integral of the of the
equation of motion we find a proper solution P . We
then formulate the foliowing

Theorem: [f b —dac > 0 and b > 0, then system
(2} is asymptotically stable.
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The scalars ¢, b and ¢ are defined by
o = Amaz (M +G*E7LGY,
b= Apnin (20 + %(G* KW+ N K7'@)),
€= Ao (N KTINY,  (6)

where Mg and Amge denocte the smaliest and the
largest eigenvalues of the respective matrices. A
more resirictive stability condition we achieve by
making a rough estimate of the scalars o and

1 .
< Mgz + ‘4‘ g,zmu / kmin

b 2 2dinin = Umax nmaa:/kmi?n . (7)

Here 711y, is the largest eigenvalue of M | gma, and
Mnay are largest values of the moduli of the eigenval-
ues of ¢ and N |, respectively, and k,,;, denctes the
smallest cigenvalue of K. Then the stability condi-
tions of the theorem bhecome

(zdmin — Dmarmax /kr'min)2
1 . .
=4 (g + Z gfnagc / Emin) n’fna:r [ kmin > 0,
2ehhnin — PnazMmax/ ki > 0. (8)

Both inequalities in (8) are satisfied if

2
drm'n knun - dmin Qenez Tmax

— Mapax n‘fmw > 0. {9

This inequality is known as a sufficient condition
for asymptotic stability, se Frik[5] and Kliem and
Seyranian[6] .

4 Response bounds
First we consider the homogeneous system (2) which

we agsumne to be stable according to the stability the-
orem. The Lyapunov function can be used to esti-

We now return to the inhomogeneous system (1)
which we again assume to be stable according to the
theorem. If we assume f(¢) to be a non-transient
excitation, it is normally easy to find a particular so-
lution zp,-:(t) e.g. by making a suitable guess. Since
every solution z(f) to (1) can be expressed as a sum
of a solution xh,m () to the homogeneous equation
(2) and a particular solution Zuer(t) to the inhomo-
geneous equation (1) we achieve the bound as follows

Vo
[f=(e)) S\/ F— G
Amin(K +3D - Z M)
+12pare (DI

where Vp, is given by (11} if we in on the right side
substitute 2{f) by the zg.m,(2). For a transient exci-
tation f{t) we find a solution to {1) with the given
initial conditions (0} = 0 and £{0) = 0 by calculat-
ing the convolution of the impulse response matrix

(1) and f(£)

(13)

¢
z(t) = [0 Gt — 1) f(r)dr (14)

Taking f(t) = ui(i), where « is a constant vector
and (t) is a scalar function subjected to the condi-
tion

p:AIWMW<w, (15)

we can deduce

* —1
(8}l < wMY s )
)\min(l{ + B D — a A/[)

5 Examples

5.1 Example 1

To illustrate the formulas for response bounds of the
homogeneous system (2) let us consider the 3 x 3
system described by

mate the 2-norm ||z{8)]| = /&* ()t} as follows M= :13 ; _ll ’

Vo —~1 1 3

Nzl < \/ 5 ) (10) 8 —2 9
Amin(K + 3D~ 5 M) D:(_Q : 4)’

where v = b/(2a} and ¥ is the value of the Lyapunov 2 -2 8

function for ¢t = 0 which souads 0 2 3-
v oo G=| -2 0 2 ],

Vo = 2™ (0) (K + E'D-—IIM):E(O)—{- —-3 -2 0

“y ~

F0) + =~ ()" M (£(0) + £ 5(0)). 11 4 2 3
(H0) + 5 2(O)" M (&(0) + J2(0). (1) K_( A

In a similar way we obtain the estimate for the time 32 4

derivative 0 1 1

N=| -1 o 1], (17)
DI < 2 @l + Fﬁ_____Vo (12) -1 -1 0
IQ -2 \/ )\mén(M)
ilQ7
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Theoretical bound

Figure 2: Theoretical bound and [jz(t){|

Given the initial conditions 2(0) = [1,1,1}" and
#(0) = [0,0,017 , we calculate the constants defined
in {B) as
37 + 809
0= Amar(M+GK'G) = ——-ig————- ,

i1 .
b:AmMJQD-p5«?3“‘N+wvvr*c)): 13,
€= Amas (N"K7IN) = 3.

Because b > 0 and b* — dac = 70.8 > 0 the syster is
stable according to the stability theorem, while the
Frik criterion given by (9) Is not satisfied in this case.
To get. the bound of the 2-norm given by (10) we first
calculate the vatues v = 5/(2a) = 0.794 , Vp = 33.94
and Apin(K + 2D — T M) = 2.752 . The bound
is then found to be ||z(#)]] < 3.51 and this value is
comparcd to the exact value of ||2(t)]| as shown in
figure 1 . Using Amin(M) = 1 we can calculate the
bound of ||&(t)|| according to equation (12). Figure
2 shows the bound of {|#(#)]| compared to the exact
value of |[&(£)]] .

Theoretical bound

2. ol

Figure 3: Theoretical hound and [|&()]|
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Figure 4: Theoretical bound and {|£(£)]}

5.2 Example 2

We now look at the inhomogenecus system (1) with
the same system matrices (17) as given in example 1
. We assume that the systern is excited by a transient
force given by f(t) = [t,1,1]T . A particular solution
to the inhomogencous equation is

13/30 —1087/450
Tpartlt) =1 1/15 |+ | —233/450 . (18)
-7/30 1003/450

With the initial conditions z(0) = [0,0,0]" and
#(0) = [0,0,0]" we have for the initial conditions
of Tpom(t)

—1087/450
~233/450 |,
1003/450
13/30
1/15

~7/30

T hom (0} = (]9)

i:hom (O) = -

1108
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Substituting 244, (0) and Zpe, (0} into (11) we ob-
tain Vo = 34.6% . The bound of the 2-norm given
by (13} is then found to be {[w(t}|] < 3.55+||zpare(t)]]
. This value is compared to the exact norm ||z()|
as shown in figure 3 .
If we instead excite the systern with a transient force,
say f{f) = wp(t) , where u = [1,0,0]T and #(t) = ¢
for 0 < ¢ < 1 and otherwise ¥(f) = 0, we have
= 1/2 and w"M'u = 1/2 . Then the equation
(16) gives the bound of the 2-norm ||z{¢)|| < 0.213 .
This value is be compared to the exact value of the
norm ||z(#)|] as shown in figure 4 .

6 Conclusions

Using the Lyapunov’s direct method we have for-
mulated a sufficient condition for stability of a cer-
tain class of non-conservative systems. The condition
is expressed by the largest and smallest eigenvalues
of combinations of the system matrices, The con-
structed Lyapunov function is used to obtain bounds
for the norms of the displacement and the velocity.
There exist stable non-conservative systems, which
do not satisfy the deduced condition for stability.
For such systems, no response bounds are available
by this method.
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