

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

PACE: A dynamic programming algorithm for hardware/software partitioning

Knudsen, Peter Voigt; Madsen, Jan

Published in:
Proceedings. Fourth International Workshop on Hardware/Software Co-Design (Code/CASHE `96)

Link to article, DOI:
10.1109/HCS.1996.492230

Publication date:
1996

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Knudsen, P. V., & Madsen, J. (1996). PACE: A dynamic programming algorithm for hardware/software
partitioning. In Proceedings. Fourth International Workshop on Hardware/Software Co-Design (Code/CASHE
`96) (pp. 85-92). IEEE. DOI: 10.1109/HCS.1996.492230

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13727231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/HCS.1996.492230
http://orbit.dtu.dk/en/publications/pace-a-dynamic-programming-algorithm-for-hardwaresoftware-partitioning(0b1dae72-2a84-44d4-82d8-b8e23faea993).html

PACE: A Dynamic Programming Algorithm for Hardware/Software
Partitioning

Peter Voigt Knudsen and Jan Madsen
Department of Computer Science, Technical [Jniversity of Denmark, DK-2800 Lyngby, Denmark

Abstract.
This paper presents the PACE partitioning algo-

rithm which is used in the LYCOS co-synthesis system
for partitioning control/dataflow graphs into hardware-
and software parts. The algorithm is a dynamic pro-
gramming (algorithm which solves both the problem
of minimizing system execution time with a hardware
area constraint and the problem of minimizing hard-
ware area with a system execution time constraint. The
target architecture consists of a single inicroprocessor
and a single hardware chip (ASIC, FPGA, etc.) which
are connected by a communication channel. The al-
gorithm incorporates a realistic communication model
and thus attempts to minimize communication over-
head. The time-complexity of the algorithm is O(n2.A)
and the space-complexity is O(n.A) where A is the to-
tal area of the hardware chip and n the number of code
fragments which may be placed in either hardware or
software.

1 Introduction

The hardware/software partitioning of a system
specification onto a target architecture consisting of a
single CPU and a single ASIC has been investigated
by a number of research groups [2, 5 , 1, :', 8, 111. This
target architecture is relevant in many areas where the
performancle requirements cannot be met by general-
purpose microprocessors, and where a complete ASIC
solution is too costly. Such areas may be found in DSP
design, construction of embedded systems, software ex-
ecution acceleration and hardware emulakion and pro-
totyping [lO].

One of the major differences among paxtitioning ap-
proaches is in the way communication between hard-
ware and software is taken into account during parti-
tioning. Henkel, Ernst et al. [2, 1, 61 present a simu-
lated annealing algorithm which moves #chunks of soft-
ware code (in the following called blocks) to hardware
until timing constraints are met. The algorithm ac-
counts for communication and only variables which
need to be transferred are actually taken into account,
i.e., the possibility of local store is explloited. Gupta
and De Micheli [5] present a partitioning approach

which starts from an all-hardware solution. Their algo-
rithm takes communication into account and is able to
reduce communication when neighboring vertices are
placed together in either software or hardware. The
system model presented by Jantsch et al. [7] ignores
communication. They present a dynamic programming
algorithm based on the Knapsack algorithm which
solves the partitioning problem for the case where some
blocks include other blocks and are therefore mutu-
ally exclusive. The algorithm has exponential mem-
ory requirements which makes it impractical to use for
large applications. To solve this problem they pro-
pose a pre-selection scheme which only selects blocks
which induce a speedup greater than 10%. However,
this pre-selection scheme may fail to produce good re-
sults as communication overhead is ignored. Kalavade
and Lee [8] present a partitioning algorithm which does
take communication into account by attributing a fixed
communication time to each pair of blocks. This ap-
proach may overestimate the communication overhead
as more variables than actually needed are transferred.

In this paper we present a dynamic programming
algorithm called PACE [9] which solves the hard-
ware/software partitioning problem taking communi-
cation overhead into account.

2 System Model

This section presents the system model used by the
partitioning algorithm, and describes how it is obtained
from the functional specification.

2.1 The CDFG F o r m a t

The functional specification, which is currently de-
scribed in VHDL or C, is internally represented as a
control/data flow graph (CDFG) which can be defined
as follows:

Definition 1 A CDFG is a set of nodes and directed
edges (N, E) where a n edge ei,j = (ni,nj) f rom ni E N
to nj E N , i # j , indicates that nj depends on ni
because of data dependencies and/or control dependen-
cies.

Definition 2 A node ni E N is recursively defined as

ni = DFG I Cond I Loop I FU I Wait

0-8186-72438/96 $05.00 0 1996 IEEE
85

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 09:25:17 EST from IEEE Xplore. Restrictions apply.

Cond = (Branchl, Branch2)
Loop = (Test,Body)

Branchl = CDFG

algorithm, parent BSBs can be collapsed as to appear
as single BSBs instead of the child BSBs they are com-
posed of. This is illustrated in figure 2. The partition-

Branch2 = CDFG Wait Wait Wait *
Test = CDFG

Body = CDFG
FU = CDFG

where a DFG is a pure dataflow graph without control
structures, FU represents a function call, Wait is used
fo r synchronization with the environment, Branchl and
Branch2 are the CDFGs to be executed in the “true”
and ‘Yalse” branch case of a conditional Cond respec-
tively and Test and Body are the test and body CDFGs
of a Loop.

2.2 D e r i v a t i o n of B a s i c Schedul ing Blocks

In order to be able to partition the CDFG, it must
first be divided into fragments, in the following called
Basic Scheduling Blocks or BSBs. For each node ni in
the CDFG, a BSB is created as shown in figure 1. Each

MAIN ,--. Wait

- _ _ *

CDFG

. , ._-

DFG
LOOP

Test
Fu

Body
DFG

DFG
Cond

Branchl
DFG

Branch2
DFG

DFG

BSB hierarchy

Figure 1: The BSB hierarchy and i ts correspondence
with the CDFG.

BSB can have child BSBs which are shown indented
under the BSB. In this way a BSB hierarchy which
reflects the hierarchy of the CDFG is obtained. A BSB
stores information which is used by the partitioning
algorithm to determine whether it should be placed in
hardware or software:

Definition 3 A BSB, Bi, is defined as a six-tuple

Bi = < a,,;,t,,i,ah,i,th,i,ri,wi >
where as,i and t3,i are the area and execution t ime of

Bi when placed in software, ah,i and th,i are the area
and execution t ime of Bi when placed in hardware and
ri and wi contain the read-set and write-set variables
O f Bi.

In order to be able to control the number and sizes
of the BSBs which are considered by the partitioning

DFG DFG DFG *
Loop Loop

Test Test
FU FU

Body Body Body
DFG DFG

DFG
Cond

Branchl
DFG

Branch2
DFG

DFG DFG DFG

Original Hierarchy. Cond BSB collapsed. Test and Body BSBs
Seven leaf BSBs. Six leaf BSBs. collapsed. Five leaf BSBs.

Figure 2: Adjusting BSB granularity by hierarchical
collapsing.

ing algorithm only considers leaf BSBs which are BSBs
which have no children. The leaf BSBs are marked
with a dot in the figure. When BSBs are collapsed, the
number of leaf BSBs decreases. As the execution time
of the PACE algorithm depends quadratically on the
number of BSBs, it is relevant to be able to control the
number of BSBs in this way.

As all leaf BSBs together make up the total system
functionality, we can now define the system specifica-
tion in terms of leaf BSBs:

Definition 4 A system specification S is described as
an ordered list of n leaf BSBs, i.e. {Bl , Ba,. . . , B,}
where Bi denotes BSB number i.

In order to estimate performance, it is necessary to
know how many times each BSB is executed for typical
input data. This information is obtained from profiling.
It is convenient to define two global functions which
return profiling information for individual BSBs and
individual variables:

Definition 5 The funct ion pc : Bi E 5’ + Nut re-
turns the number of tames Bi has been executed in a
profiling run’.

Definition 6 Let V denote the set of all variables f rom
the read-sets and write-sets of the BSBs in S . Then,
f o r a given variable v f rom the read-set or write-set of
Bi, the funct ion ac : U E V -+ N u t returns the number
of t imes the variable is accessed by Bi:2

(U E ri) V (U E wi) + ac(w) = pc(Bi)

“pc” is short for “profiling count”.
“a?’ is short for ‘Laccess count”.

86

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 09:25:17 EST from IEEE Xplore. Restrictions apply.

3 Problem formulation

The partitioning model which the PACE algorithm
uses is illustrated in figure 3. In this model hardware

SW HW

FI

+ # s 3 ' 4

Figure 3: Partitioning model used by PACE: a) Ex-
ample of actual data-dependencies between hardware-
and software BSBs, b) How data-dependencies between
adjacent hardware BSBs and software BSBs are inter-
preted in the model.

BSBs and software BSBs cannot execute in parallel.
Furthermorle, adjacent hardware BSBs are assumed to
be able to communicate the readlwrite variables they
have in common directly between them without in-
volving the software side. As illustratedl in the figure,
a given hardwarelsoftware partition can be thought
of as composed of sequences of adjacent BSBs which
only communicate their effective read- and write-sets
from/to the software side. The following definitions
formalize these assumptions.

Definition 7 Si,j, j 2 i , denotes the sequence of
BSBS {Bi,Bi+l,. . . , Bj}.

Definition 8 The effective read-set ana! the effective
write-set of a sequence Si; are denoted rid and wi,j
respectively and are defined as

ri,j = (~ i U ~ i + i U . . . U ~ j) \ (~ i U wi-ti U ' . . 1J wj)

w;,j = (w; U wi+l U . . U wj) \ (T ; U Tzi- l U . . . U r j)

Using these definitions and the BSB defnitions given
in section 2.2 we can now compute the speedup induced
by moving a sequence of BSBs from hardware to soft-
ware:

Definition 9 The total (possibly negative) speedup in-
duced by moving a BSB sequence Si,j t o hardware is
denoted s i j and is computed as

k=i

where t3-h and th+s denote the software-to-hardware
and hardware-to-software communication t imes for a
single variable, respectively.

Definition 10 The area penalty a i j of moving Si to
hardware is computed as the s u m of the individual 6 S B
areas..

3

ai,j = a k

k=i

In section 4.2 we discuss how the effect of hardware
sharing is taken into account. Note that in calculating
the speedup and area of a sequence it is not considered
that hardware synthesis may synthesize the sequence
as a whole which would probably reduce both sequence
area and execution time as compared to just summing
the individual area- and execution time components
as described above. Incorporating such sequence op-
timizations in the estimations will be fairly straight-
forward but has not been carried out yet. Note, how-
ever, that the improvement in speedup induced by all
BSBs within the sequence being able to communicate
directly with each other is taken into account.

The partitioning problem can now be formulated
as that of finding the combination of non-overlapping
hardware sequences which yields the best speedup
while having a total area penalty less than or equal
to the available hardware area A.

4 Software, Hardware and Communi-
cation Estimation

This section describes how hardware area- and exe-
cution time, software execution time, and communica-
tion time are estimated.

4.1 Software E s t i m a t i o n

Software execution time for a pure DFG (i.e., no
controlflow) is estimated by performing a topological
sort (linearization) of the nodes in the DFG. The nodes
are then translated into a generic instruction set with
the addressing modes of the instructions determined
by data-dependencies and a greedy register allocation
scheme. The execution times of the generic instructions

87

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 09:25:17 EST from IEEE Xplore. Restrictions apply.

are then determined from a technology file correspond-
ing to the target microprocessor. This is similar to the
approach described in [3], where good estimation re-
sults are reported, and the same technology files for
the 8086, 80286, 68000 and 68020 microprocessors are
used. The execution time of the DFG is obtained by
summing the execution times of the generic instructions
and multiplying the sum with the profiling count for the
DFG. Execution times for higher level constructs such
as loop BSBs and branch BSBs are obtained on basis
of the execution times of their child BSBs.

4.2 Hardware area e s t i m a t i o n

A common way of estimating the hardware area of
a BSB is to estimate how much area a full hardware
implementation of the BSB will occupy. This includes
hardware to execute the calculations of the BSB and
hardware to control the sequencing of these calcula-
tions. If the total chip area is divided into a datapath
area and a controller area, each BSB moved to hard-
ware may be viewed as occupying a part of the datap-
ath and a part of the controller. Figure 4a shows this
model when one BSB has been moved to hardware.

/a-

Area = A cl+ A D, Area 6 (A ce A m) + Area = (Acr+ A m) + A D

(A DI+ A 02)

A) 8) C)

Figure 4: BSB area estimation which accounts for hard-
ware sharing: a) Controller- and datapath area for a
single BSB, b) W h e n sharing hardware, the total area
for multiple BSBs are less than the summation of the
individual ureas, c) Variable controller urea and fixed
datapath area for multiple BSBs with hardware sharing.

When several BSBs are moved to hardware they may
share hardware modules as they execute in mutual ex-
clusion. Hence, an approach which estimates area as
the summation of datapath and control areas for all
hardware BSBs will probably overestimate the total
area. This problem is depicted in figure 4b where the
area of the datapath is not equal to the sum of the
individual BSB datapaths.

In our approach the datapath area is the area of
a set of preallocated hardware modules in the datap-
ath as illustrated in figure 4c. The BSBs share these
modules and the controller area is the area left for the
BSB controllers. The hardware area of a BSB is then
estimated as the hardware area of the corresponding

controller, and will depend on the number of timesteps
required for executing the BSB. The hardware area of
a BSB therefore depends on its execution time.

4.3 Hardware execu t ion t i m e estimation

The hardware execution time for a DFG is deter-
mined by dynamic list based scheduling [4] which at-
tempts to utilize the hardware modules in the given al-
location in order to maximize parallelism and thereby
minimize execution time. The execution time obtained
in this way is multiplied with the profiling count for the
DFG. The execution time for higher level constructs is
obtained as in the software case.

4.4 C o m m u n i c a t i o n e s t i m a t i o n

Communication is currently assumed to be memory
mapped I/O. The transfer of k variables from software
to hardware is assumed to require k generic MOV mi-
croprocessor instructions and k Import operations as
defined in the hardware library. Communication from
hardware to software is estimated in the same way, just
using the hardware Export operation instead.

5 The PACE algorithm

The idea behind the PACE algorithm is best illus-
trated by an example. Figure 5 shows four BSBs which
must be partitioned as to reach the largest speedup on
the available area A=3. The speedup and area penalty
for a single BSB which is moved to hardware is shown
below each BSB. The numbers between two BSBs de-
note the extra speedup which is incurred because of
the BSBs being able to communicate directly with each
other when they are both placed in hardware.

a A = i a, = 1 a,=? a,=i
s,=5 s,=10 sc=2 s, = 10

Figure 5: Example of partitioning problem with com-
munication cost considerations.

Obviously B and D should be placed in hardware as
they have large inherent speedups. This leaves room for
one more BSB. Should it be A or C? The answer to this
is not obvious as A induces a large inherent speedup but
a small communication speedup when placed together
with B in hardware] whereas C induces a smaller in-
herent speedup but on the other hand induces a large
communication speedup when placed together with B
and D in hardware. The following paragraphs explain
how the PACE algorithm solves this problem.

The algorithm utilizes the previously mentioned
fact, that any possible partition can be thought of as

88

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 09:25:17 EST from IEEE Xplore. Restrictions apply.

composed of sequences of BSBs. If A, C and D are
chosen for hardware, it corresponds to clhoosing the se-
quences SA,A and SC,D. The speedup of sequence SC,D
is larger than the sum of speedups of its components
C and D due to the extra communication speedup in-
duced by both blocks being chosen for .hardware. So
a natural approach will be to calculate the areas and
speedups of all sequences of BSBs, and (chose the com-
bination of sequences that induces the largest speedup.
The areas and speedups of all sequences ,are calculated
and shown in table 1. The ordering and grouping of
BSBs is explained below.

A (a=l,s=5)

Group B:

AB (a=2,s=17)

B (a=I.s=lO)

Group C

ABC (a=3,s=21)

EC (a=2,s=14)

C (a=l. s=2)

Group D:

ABCD (a=4,s=35)

ECD (a=3,s=28)

CD (a=2,s=16)

D (a=l,s=lO)

E q u e n c e I Elements I Area I S l T t m I
~ G ‘ T O U P A: All s e q u e n c e s e n d i n g w i t h 7 1

‘a,a

Best:
-

a.b S

b,b S

Best:
-

a,c

b,c S

Sc,c

Best:
__

a.d
S

S

S

d,d S

Best:

S

b d

c,d

-

A
Toup B! All s e q u e n c L e n d i n g wit!

ABCD 4 35
BCD - 28
CD - 16
D

‘Table 1: Grouping of sequences.

The problem is to find the combination of non-
overlapping sequences which fits the available area A
and whose speedup sum is as large as possible. This
problem cannot be solved with an ordinary Knapsack
Stuffing algorithm as some of the sequlences are mu-
tually exclusive (because they contain identical BSBs)
and therefore cannot be moved to hardware at the same
time. But if the sequences are ordered and grouped as
shown in the table, a dynamic programming algorithm
can be constructed which does not attempt to chose
mutually exclusive sequences for hardware at the same
time.

The algorithm works as follows. Assume first that
for each group up to and including group C the
best (maxirnum speedup) combination of sequences has
been found and stored for each (integer) area a from
zero up to the available area A. Assume then that
for instance sequence S C , ~ with area is selected
for hardware at the available area a. l-low is the op-
timal combination of sequences on the remaining area
a - ac,D then found? As C and D have been chosen
for hardware, only A and B remain. So the best so-
lution on tlhe remaining area must be found in group
B which contains the best combination of sequences
for all BSBs from the set {A,B}. Similarly, if the “se-
quence” 5 ’ 1 1 , ~ is chosen for hardware, the best com-
bination on the remaining area is found in group C.
The optimal combination is always found in the group
whose letter in the alphabet comes immediately before
the letter of the first index in the chosen sequence. The
important thing to note is that when a sequence from

r
I= Group A

-
Area:

3 5 7

10

Sp=dwlSd,d I 21 BestChoice[D, 41

BestSpeedup[D, 41

Figure 6: The PACE algorithm employed f o r a simple
example.

group X has been chosen, the optimal combination of
sequences on the remaining area can be found in one
of the groups A to pred(X), and, when sequences are
selected as above, no mutually exclusive BSBs are se-
lected simultaneously. In this way the best solutions
for a given group can always be determined on basis of
the best solutions found for the previous groups.

Figure 6 shows how the best combination of
sequences can be found using three matrices;
Speedup [l. . ns, 0. . A] , BestSpeedup [l. . n , 1. . A1
and BestChoiceCl. .n, 0. .Al.

ns is the number of sequences, n is the number of
BSBs and A is the available area. Zero entries are not
shown. Arrows indicate where values are copied from,
but arrows are not shown for all entries in order to
make the figure more readable.

The Speedup matrix contains for each sequence
and each available area the best speedup that can
be achieved if that sequence is first moved to hard-
ware and then sequences from the previous groups are
moved to hardware. In the figure, Speedup CSB,C, 31
is 19 and is found as the inherent speedup of SB,C
which is 14 plus the best obtainable speedup 5 on area
3 - uB,c = 3 - 2 = 1 in group A (as B and C have
been chosen). The Bestspeedup matrix contains for
each group (which there are n of) and each area the
best speedup that can be achieved by first selecting a
sequence from that group or one of the previous groups.
It can be calculated as

BestSpeedupCg, a] =

89

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 09:25:17 EST from IEEE Xplore. Restrictions apply.

max(max(Speedup[S,al), BestSpeedup[pred(g) , a])

The Bestchoice [g , a] matrix identifies the choice of
sequence that gave this maximum value. The last two
matrices are interleaved and typeset with bold letters
in the figure.

In the example, BestchoiceLC, 31 is 21 as this is
the maximum speedup that can be found in group
C with available area 3 and it is larger than the
largest speedup that could be found in the previous
groups, namely 17. The corresponding choice of se-
quence is SA,^. In contrast, Bestspeedup [C, I] and
BestChoice [D, I] are copied from the corresponding
entries of the previous group. For group C this is be-
cause all Speedup entries in that group for area l are
smaller than the best speedup 10 achieved with only se-
quences from groups up to and including B. For group
D, Speedup [S D , D , I] is also 10, so the choice of best
sequence for this group is arbitrary.

The solution to the posed problem is found in
the Bestchoice [D, 31 and Bestspeedup [D, 31 en-
tries. The best initial choice is sequence SB,D with
the corresponding total speedup of 28. As the area of
this sequence is 3, no other sequences were taken, and
need thus not be found by backtracking. This shows
that it was best to chose C for hardware instead of A.
The area 4 was included in the figure to show that the
algorithm correctly chooses all four BSBs for hardware
when there is room for them. This can be seen from
the [D,4] entries.

Once the Bestspeedup and Bestchoice lines have
been calculated for each group, the Speedup values are
no longer needed. Actually, the Speedup matrix is not
needed at all, as it can be replaced by the Bestspeedup
matrix whose maximum values can be calculated “on
the run”. This is because we are only interested in
maximum values and corresponding choice of sequences
for each group. This means that instead of the mem-
ory requirements being proportional to the number of
sequences ns, they are now proportional to n, as only
the Bestspeedup and Bestchoice matrices are needed.
The PACE algorithm is shown as algorithm 1.

After the algorithm has been run, the best
speedup that can be obtained is found in the entry
Bestspeedup [NumBSBs , AvailableArea] . But as for
the simple Knapsack algorithm, reconstruction of the
chosen sequences and thereby of the chosen BSBs is
necessary.

5.1 Algorithm Analysis

S E 9

Direct inspection of the PACE algorithm shows that
the time complexity is O(n2 . d) and the space com-
plexity is O (n . d) (the PACE-reconstruct algorithm
obviously has smaller time and area complexity and
can hence be disregarded). Note that areas must be
expressed as integral values. d can be reduced (at the
expense of partitioning quality) by using a larger “area
granularity”, for example by expressing BSBs sizes in

PACE (n ,A)

forall groups g = 1 to n do
forall areas a = 0 to A do {

}

J
forall groups g = 1 to n do {

HighBSB t g;
for LowBSB = 1 to HighBSB do {

SeqArea area(SLowBSB,HighBSB);
SeqSpeedup t SPeeduP(SLowBSB,HighBSB);
foral l areas a = SeqArea to A do {

if (LowBSB = 1) then {
if SeqSpeedup > BS[g, a] then {

BS g,a] t SeqSpeedup;
Bc\g.al i- SLowBSB,HighBSB;

}
} else {

if SeqSpeedup + BS[LowBSB-1, a-SeqArea] >
BS g, a] then {
BS[g,a] t SeqSpeedup +

BS [LowBSB- 1, a-SeqArea] ;
BC[gza] SLowBSB,HighBSB;

1
1

1
if (HighBSB > 1)

fora11 areas a = 0 to A do
if BS[g-1, a] > BS[g, a] then {

BS[g, a] i- BS[g-I, 81;
BC[g, a] t BCrg-1, 81;

I
}

}

{
PACE-reconstruct (n, A, BS[], BC[]) =

HwBSBList t {};
AStart t 0;
Found t false;
while (AStart <= A) and not Found do

if BS[n, AStart] = BS[n, A] then

else
Found t true

AStart t AStart + 1;
a t Astart;

repeat {
g t n;

Seq + BCk, a];
if Seq <> {} then {

LowBSB t first index of Seq;
HighBSB t second index of Seq;
for BSB = LowBSB to HighBSB do

a t A - area(Seq);
g t LowBSB - 1;

add BSB to HwBSBList;

1
} until (a < 0) or (Seq = {}) or (g = 0);
return HwBSBList;

1

Algorithm 1: PACE - A Partitioning Algorithm with
Communication Emphasis.

90

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 09:25:17 EST from IEEE Xplore. Restrictions apply.

terms of RTL modules. The n2 term can be reduced
by enlarging BSB granularity by hierarchical collapsing
or by only considering BSB sequences which induce a
speedup greater than zero (or greater than some given
percentage). Also, there is no need to pre-calculate ar-
eas and speedups for sequences whose total area will
be greater than A. Another optimization could be to
only consider sequences of length 5 m where m is an
arbitrary value selected prior to execution of the algo-
rithm.

As for the simple Knapsack problem, the dual prob-
lem of minimizing area witlh a fixed time-smstraint can
be solved by swapping the area- and speedup entries
calculated for each sequence. Another approach could
be to scan the bottom line of the Bestspeedup matrix
from the left (see figure 6) until an entry is found which
violates the time-constraint, as the PACE: algorithm in
effect calculates the best speedup for all areas.

Note that the areas and speedups of all sequences
must be pre-calculated before the algorithm can ex-
ecute. This operation basically has time complexity
O(n2) but tlhis can also be reduced.

6 Experiments

A series of experiments which demonstrate the capa-
bilities of the PACE algorithm have been carried out.
The experiments were carried out in LYCOS, the LYn-
gby CO-Synthesis system, an experimentid co-synthesis
system currently being developed at our institute.

The sample application used for the experiments is
a VHDL behavioral description, taken from an image
processing application in optical-flow. Tlhe application
calculates eigenvectors which are used tlo obtain local
orientation estimates for the cloud movements in a se-
quence of Meteosat thermal images. The application
consisting of 448 lines of behavioral VHD L. The corre-
sponding CDFG contains 1511 nodes and 1520 edges.
BSB software execution-time is estimated for a 8086
processor and a hardware library for an Actel ACT 3
FPGA is used to estimate hardware datapath and con-
troller area. Partitioning is performed fcir a sequence
of total hardware areas ranging from 1000 to 2000 in
steps of 20, where an area unit equals the area of a
logic/sequential module in the FPGA. Ta’ble 2 summa-
rizes the characteristics of the most important modules.

Hardware modules used for the expel?-

‘ ~ m & 2 E E F k ~ z y +
1103

Table 2: Area and execution-time estimates for hard-
ware modules and operations.

Figure 7 shows the results of partitioning the sample
application using three different partitioning models;

loowoo Irk

I
1OW 12W 1400 1600 1800 2000 2200 2400

Total chip area

Figure 7: The PACE algorithm compared with Knap-
sack algorithms which ignore communication or do not
account for adjacent hardware block communication op-
timization (allocation A).

ignoring communication, simple communication where
the read- and write-sets of a BSB are always transferred
regardless of other BSBs placed in hardware, and adja-
cent block communication which is the one used by the
PACE algorithm. All three approaches are assumed
to be implemented with local hardware store, and are
thus evaluated in the model domain according to the
adjacent block communication model.

For chip areas less that the allocated area for the
datapath (in the figure 760), no speedup is obtained as
no control area is available. As soon as control area
is available the approach which ignores communication
starts to move BSBs to hardware. For the approaches
taking communication into account, moving BSBs to
hardware is not beneficial before the total area reaches
around 1040. It can be seen that as the chip area in-
creases, more and more BSBs are moved to hardware.
From the figure it is clear that the approach using the
simple communication model does not move as many
BSBs to hardware as the approach which takes adja-
cent block communication into account. This is mainly
due to the fact that many of the BSBs have a communi-
cation overhead which is larger than the speedup they
induce. In any case the best results are obtained by
partitioning according to the adjacent block communi-
cation model.

I Datapath allocations I
I I Allocation I

Area I 760 I 1148 I 427 I

Table 3: Modules and corresponding area fo r each of
the three allocations.

91

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 09:25:17 EST from IEEE Xplore. Restrictions apply.

7 w W O

6wWO

5moo
-
r Y
8
n’
r

B 4wWO

d
30WOO

z m o o

I
500 1 WO 1500 2wo 25w

Total chip area

Figure 8: The PACE algorithm employed for different
allocations.

Figure 8 shows the results of partitioning with the
PACE algorithm for three different allocations; A, B
and C, all listed in table 3.

Widely different results are obtained for given avail-
able areas, and a specific allocation which is optimal
for all areas cannot be found. Allocation C has the
smallest datapath area which means that for relatively
small areas, the partitioning algorithm is able to move
BSBs to hardware and, thus, obtain the best partition.
Around the area 1500 this is changed, now allocation A
becomes more attractive due to the fact that the larger
datapath allocation can benefit from the inherent par-
allelism of the sample application, i.e., larger speedups
may be achieved for the individual BSBs. The figure
also illustrates the problem of allocating too much dat-
apath area, as allocation B which has the largest data-
path area never manages to give the best partitioning
even for large chip areas.

7 Conclusion

This paper has presented the PACE hard-
warelsoftware partitioning algorithm which, within the
presented partitioning model, gives an exact solution
for the problem of minimizing total execution time with
a hardware area constraint as well as for the problem
of minimizing hardware area with a global execution
time constraint. The partitioning model recognizes 1)
that sequences of hardware BSBs only need to commu-
nicate their effective read- and write sets from/to soft-
ware and 2) that both area and execution times can be
calculated on a BSB sequence basis and therefore may
be smaller than the sum of the individual area- and
execution times of the BSBs in the sequence. The al-
gorithm has quadratic time complexity, but as shown,
this may be reduced.

Experiments have been carried out that show that
the algorithm is superior t o algorithms which ignore

communication or do not recognize adjacent block com-
munication optimization . Also, it has been demon-
strated how the algorithm can be used with a BSB
hardware area model which assumes hardware sharing
among BSBs.

Acknowledgements

This work is supported by the Danish Technical Re-
search Council under the “Codesign” program.

References

[l] R. Ernst, J. Henkel, and T. Benner. Hard-
ware/software co-synthesis of microcontrollers. Design
and Test of Computers, pages 64-75, December 1992.

[2] Rolf Ernst, Wei Ye, Thomas Benner, and Jorg Henkel.
Fast timing analysis for hardware/software co-design.
In ICCD ’93, 1993.

[3] Jie Gong, Daniel D. Gajski, and Sanjiv Narayan. Soft-
ware estimation from executable specifications. Tech-
nical Report ICs-93-5, Dept. of Information and Com-
puter Science, University of California, Irvine, Irvine,

[4] Jesper Grode. Scheduling of control flow dominated
data-flow graphs. Master’s thesis, Technical University
of Denmark, 1995.

[5] Rajesh K. Gupta and Giovanni De Micheli. System
synthesis via hardware-software co-design. Technical
Report CSL-TR-92-548, Computer Systems Labora-
tory, Stanford University, October 1992.

[6] D. Herrmann, 3. Henkel, and R. Ernst. An approach
to the adaptation of estimated cost parameters in the
cosyma system. In CODES ’94, 1994.

[7] Axel Jantsch, Peeter Ellervee, Johnny Oberg, Ahmed
Hermani, and Hannu Tenhunen. Hardware/software
partitioning and minimizing memory interface traffic.
In EURO-DAC ’94, 1994.

A global
criticality/local phase driven algorithm for the con-
strained hardware/software partitioning problem. In
Third International Workshop on Hardware/Software
Codesign, pages 42-48, September 1994.

Fine-grain partitioning in code-
sign. Master’s thesis, Technical University of Denmark,
1995.

[lo] Giovanni De Micheli. Computer-aided hardware-
software codesign. IEEE Micro, 14(4):10-16, August
1994.

A
binary-constraint search algorithm for minimizing
hardware during hardware/software partitioning. In
EURO-DAC ’94, pages 214-219, 1994.

CA 92717-3425, March 8 1993.

[SI Asawaree Kalavade and Edward A. Lee.

[9] Peter V. Knudsen.

[ll] Frank Vahid, Jie Gong, and Daniel D. Gajski.

92

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 09:25:17 EST from IEEE Xplore. Restrictions apply.

