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Abstract 

This paper presents a novel approach to design of 
Generalized Predictive Controllers (GPC) for nonlinear 
processes. A neural network is used for modelling the 
process and a gain-scheduling type of GPC is subsequently 
designed. The combination of neural network models and 
predictive control has frequently been discussed in the 
neural network community. This paper proposes an 
approximate scheme, Approximate Predictive Control 
(APC), which facilitates the implementation and gives a 
substantial reduction in the required amount of 
computations. The method is based on a technique for 
extracting linear models from a nonlinear neural network 
and using them in designing the control system. The 
performance of the controller is demonstrated in a 
simulation study of a pneumatic servo system. 

1. Introduction 

Neural networks have on many occasions been presented as 
an excellent generic model structure for identification of 
nonlinear systems [9]. Utilization of this ability in the 
design of control systems has thus evolved into being one 
of the main classes of applications within the field of 
intelligent control. Over the recent years, many different 
types of neural network based control systems have been 
suggested. In some schemes a neural network is trained to 
act as the controller while in others a more conventional 
type of design is applied to a neural network model of the 
process. An example of the latter is the generalized 
predictive controller (GPC) originally derived for linear 
process models in [l]. Predictive control is a criterion 
based design possessing the attractive property that it quite 
easily can be used in combination with a wide class of 
nonlinear model descriptions, e.g., neural networks. The 
idea of using a GPC based on neural network models is not 
new. See for example [8], [3], and [5].  Unfortunately, 
practical implementation of the controller is not without 
difficulties. From a computational perspective, the 
nonlinear predictive controller has very comprehensive 
demands. For processes with rapid dynamics this 
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requirement will essentially prevent practical utilization of 
the controller. In addition there are a number of problems 
associated with the iterative optimization algorithm used 
for minimizing the GPC-criterion. Some issues that must be 
handled in the implementation are: 

Has the algorithm converged to an acceptable 
accuracy? 
Do numerical problems occur? 
Is the global minimum found (or does it matter that 
another minimum is found)? 
How many times should one execute the minimization 
algorithm and what is the best strategy for initializing 
the algorithm? 

Consequently, the nature of the GPC-criterion implies that 
a number of ad-hoc solutions must be made, leading to a 
relatively complex controller implementation. 

This paper presents an approximate scheme, Approximate 
Predictive Control (APC), which essentially overcome all 
the problems mentioned above. The scheme is based on a 
method for extracting linear models from a nonlinear 
neural network and using these in the control system 
design. The idea of linearizing neural networks has 
previously been proposed in relation to control. [ l l ]  
suggested an approximate pole placement controller and in 
[4] it was applied in an internal model control concept. 
Here the linearization is derived in a manner which allows 
for direct application of the GPC design method presented 
in [l]. To illustrate some of its major characteristics, the 
APC is applied to a pneumatic position servomechanism. 

2. Nonlinear Modelling with Neural Networks 

In our work we have chosen to restrict the attention to the 
so-called Multikyer  Perceptron neural networks (MLP) 
for modelling nonlinear processes. However, the particular 
choice of nonlinear model description is not vital for the 
controller design. Other types of generic nonlinear model 
structures might be used instead. 
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Many different types of MLP based model structures can 
be considered when identifying nonlinear processes. 
However, it is typically assumed that the process can be 
described by the general model 

b 

~ ( t )  = 3tlt  - 1,e) + e(t)  = g(cp(t), e) + e(t) 

where q(t) is the regression vector composed of past 
information, g is the function realized by the MLP- 
network, 8 is the model parameters (the weights), and e(t) 
is additive noise which is assumed to be white and 
independent of past information. 

By inserting g, which is assumed to be a two-layer MLP 
network with tangent hyperbolic activation functions in the 
hidden units and a linear output unit, the predictor takes the 
form: 

where the components of 8, W, and w,,i, specifies hidden-to- 
output layer and input-to-hidden layer weights, 
respectively. 

To reduce the degrees of freedom and because it is 
advantageous in many control system designs, it is common 
to consider model structures that are natural extensions of 
well-known linear model structures like ARX, AIWAX, 
and OE in that a similar regression vector is considered [9]: 

0 In the NARX structure the regressors are past inputs 
and outputs (d>O denotes the time delay) 

q ( t ) = [ y ( t - l )  ... y( t -n)  u( t -d)  ... u(t-d-m)]' 

e In the NOE structure the regressors are past inputs and 
predictions 

q ( t ) = [ i ( t - l )  ... j ( t - n )  u( t -d)  ... ~ ( t - d - m ) ] '  

0 In the NARMAX structure the regressors are past 

q(t)  = [ y ( t  - 1) ... y(t - n) u(t - d )  ... u(t - d - m) 

inputs, outputs, and prediction errors 

&(t-1) * e .  &(t -  p)]' 

at) specifies the prediction error: ~ ( t )  = y( t )  - $( t )  

For NOE and NARMAX model structures the regression 
vector depends of past predictions. The MLP-network is in 
this case called a recurrent network to emphasize the 
feedback from the output of the network to the input. 

The weights are estimated from a set of corresponding 
input-output pairs 

Z N  = {[u(t),y(t)]:t = 1, ..., N }  

acquired in a practical experiment with the process. 

The NNSYSID toolbox described in [6] provides a set of 
tools for inferring models as the above from a set of 
experimental data. 

3. Instantaneous Linearization 

[ l l ]  details a technique for linearizing neural network 
models around the current operating point. This 
instantaneous linearization technique is summarized in the 
following. 

Assume that a NARX-model of the process under 
consideration has been identified: 

Y(t> = g(cp(t), 8)  + e(t> 

and interpret the regression vector, Ht),  as the state of the 
process. At time t=z linearize g around the current state 
q(7) to obtain an approximate model: 

y"(t) = -a,F(t - 1)- ...- a j ( t  - n)  + 
b,i(t  - d)+. . .+b,i(t - d - m) + 

e(t> - e(z> 

where 

and 

y ( t  - i )  = y(t - i )  - y(z - i )  

i ( t  - i )  = u(t - i )  - u(z - i) 

The derivative of the network output with respect to an 
input is given by: 

11 -- ' ( ' )  - 5 W, wji [1- tanh rT+L jkcpk ( t )  + w io 
d q j ( t )  j=l k=l  

Separating the portion of the expression containing 
components of the current state (regression) vector, the 
approximate model may alternatively be written in the form 

Y O )  = (1 - A(q-' + q-dB(q-')u(t) + <(TI + e(t> 

where the linearization offset, <(z), is determined by 

{(Z) = Y ( T ) C  U,Y(Z-l)+...+U,y(T-n) 
-b,u(T - d - l)-..-b,u(z - d - m) - e(z) 
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and 

A(q-') = 1 +a,q-'+...+a,q-" 

B(q-') = bo + b,q-'+ ...+ b,q-" 

The approximate model can thus be interpreted as a linear 
ARX model additionally affected by a disturbance, {(z), 
which depends on the operating point. If the nonlinearities 
of the process are reasonably smooth, it is not unreasonable 
to model C(z)+e(t) as a random walk process (i.e., 
integrated white noise): 

This is a common trick that is often used in control and 
observer design for modelling approximately constant (or 
slowly varying) disturbances. The linearized model will in 
this case correspond to an ARZX-model (Integrated ARX). 

It is straightforward to apply the same principle for 
linearizing a more general model like the NARMAX 
models. 

It is obvious that instantaneous linearization is interesting 
in relation to control. The basic idea is illustrated in fig 1. 

I I Controller I 
Parameters 

Reference 
output 

Figure 1. Instantaneous linearization applied to control 
system design. 

As pointed out in [ l l ] ,  the structure of the concept is 
obviously related to the indirect adaptive controller 
examined in [ 141. Instead of recursively estimating a linear 
model at each sampling instant, a linear model is extracted 
from a nonlinear neural network model. Most of the well- 
known linear design methods fit into this structure. If the 
model is deterministic one can for example use pole 
placement and if it is stochastic one can use a minimum 
variance controller or a GPC. The latter is discussed below. 

4. Deriving the Control Law 

The idea behind generalized predictive contr01 is at each 
iteration to minimize a criterion of the following type: 

Nz N" 
J(t ,U(t))  = C [ r ( t  + i )  - $(t + i ) r  + p C [ A u ( t  + i - 1)]2 

i=N,  i d  

with respect to the Nu future controls 

U(t )  = [u(t) ... u(t + Nu - l)]' 
and subject to the constraint 

Au( t+ i )=O,  N , , l i l N , - d  

NI  is denoted the minimum costing horizon, Nz the 
prediction (or maximum costing) horizon, and Nu the 
(maximum) control horizon. r is the reference and p 
specifies a weighting factor penalizing variations in the 
controls. The optimization problem, which has to be solved 
at each sampling instant, results in a sequence of future 
controls, U(t). From this sequence the first component, u(t), 
is then applied to the process. 

Assume that an approximate ARX model has been obtained 
by instantaneous linearization: 

A(q-' )YO) = q-'B(q-I M) + C(z) + e( t )  

If C(z)+e(t) is modelled as integrated white noise and the 
future predictions are determined to accomplish minimum 
variance, the setting corresponds exactly to the one 
considered in [l]. Thus, we refer to this reference for a 
derivation. An implementation of the controller is 
described in [7]. 

Extension to more complex models (such as ARIMAX) 
and more general criteria is discussed in [2] and [lo]. 

5. Example 

A simulation study is now presented to provide some 
insights into the characteristics of the proposed predictive 
control strategy. The control object is the pneumatic 
position servomechanism also studied in [ 131. The 
servomechanism is illustrated in fig. 2. 

cr, 

I "' P1 

The servomechanism consists of a linear compressed air 
cylinder lifting an inertial weight. The cylinder is fed from 
a system of servovalves which open proportional to a 
control signal. The servovalve opening characteristics are 
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approximately linear, so that the main nonlinear behavior is 
due to the cylinder itself. The cylinder chambers 
compression dynamics are position dependent and the 
servo valve flow characteristic is nonlinear. The sampling 
period of the control system is set to 0.1 seconds. 

0 

-0 5 

-1 

-1 5 

In order to train a neural network model of the 
servomechanism, an experiment has initially been 
performed to collect a set of data. Since the 
servomechanism contains an integration, the experiment 
was carried out in closed-loop using a manually tuned PI- 
controller. A data set of 3500 samples was generated. The 
first 3000 samples were used for training while the 
remaining 500 samples were kept for validation. The 
reason for collecting this rather large data set was to ensure 
the entire range of operation was represented in the data. 

OS-- 

..- 

- 

- 

A NARX model with 12 tanh units in the hidden layer was 
trained on the data set with a Levenberg-Marquardt 
algorithm [6] .  Due to the size of the data set there was only 
little sensitivity towards the choice of network architecture. 
For this reason it was not necessary to consider issues like 
weight decay and pruning algorithms. The servomechanism 
is a fourth order system and the network input was thus 
composed of the four past output measurements and four 
past controls, respectively . 

0 2 -  

t! 
9 
E 

The trained neural network model was then used in a 
simulation where the pneumatic servomechanism was 
controlled by an APC. The design parameters of the 
controller were selected to: 

N,=d=l, Nz=lO, N,,=2, andp=0.05 

r ‘ 
o /  ‘h /y I 

The simulation gave the result displayed in fig. 3. The 
reference signal was a series of steps with the magnitude 
varied inside the permitted output range. 

t! 
9 

0 2 -  

E 

Reference and process output 

/y I ‘i ‘\ I 0‘ ‘h 

- 0 2 -  I - 0 2 t  

Samples 
Control signal 

21 I 

, , , , , ~ !U] 

-2 

-3 -lzzrc!d -4 0 50 100 150 Samples 200 250 300 350 400 

It is seen that a close and offset free reference tracking was 
achieved for all steps (fig. 3a). Also the predictive nature of 
the controller can be seen in the response, in that the 
controller anticipates future set-point changes. Fig. 3b 
shows that this was accomplished with a very smooth 
control signal. Moreover, fig. 3.b indicates that the process 
is in fact nonlinear: The magnitude of the control signal is 
not proportional to the reference change. To further 
investigate the nonlinearities, the coefficients of the 
extracted linear models are displayed in fig. 4. This type of 
plot gives a good indication of the “degree of nonlinearity.” 

Numerator coefficients 
0.05 

0 04 n 

0 01 

-0.01 1 I 
50 100 150 200 250 300 

Denominator coefficients 

Perhaps a better illustration of the variations in process 
dynamics is accomplished by showing the location of the 
poles in the complex plane. This has been done in fig. 5. 

Poles of extracted linear models 

O C  X 

-1 -0 5 0 0 5  1 1 5  

Figure 5. The poles of the extracted linear models. 
Figure 3. A: Reference signal together with the output of 
the process. B: Control signal 
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Obviously the process has a complex pair of poles, an 
integrator and an additional real pole. 

-10.. 

-20 

-30 

-40 

-50 

However, it is possible to obtain further information from 
the linearized model. In E121 a continuous-time model of 
the servomechanism was derived. This model was 
linearized in the stationary point (u,y)=(O,O), which gave: 

k 
H(s)  = 

s(s + 2l3m + U Z )  

where the natural frequency is 0=22 raasec and the 
damping factor is lzO.034. 

' 

- 
- 

- As mentioned earlier, the process is in fact of order four. 
However, in the stationary point (u,y)=(O,O) a zero cancels 
the additional pole, which results in a third order model. 
According to [12], it is reasonable to assume that the 
linearized models in continuous time in general will have 
the following structure: 

B(s)  H(s)  = 
(s + PI )(s + P2 )(s + 2 l m  + U2 1 

where p1 is always zero (the integration) and where w 2 2  
ragsec and c=0.034 for small variations around 
(u,y)=(O,O). B(s) describes the numerator polynomial. The 
four parameters (U, d p1, pz) determined from the 
denominator coefficients of the linearized models are 
shown as functions of time in fig. 6 (natural frequency and 
damping factor) and fig. 7 (integrator and additional pole). 

Natural frequency (rad/s) 

3 5 q 7  
25 "1 
4 ;o 1;o 1;o 2;o 2;o do 3;o 4 L  

Damping factor 

0 06 

0 0 o~~~ 02 04 0 50 100 150 200 250 300 350 400 

Figure 6. A: Natural frequency and B: Damping factor. 

Not only are the values of natural frequency and damping 
factor (fig. 6) close to their expected values for small 
outputs, they generally behave as expected for larger 
variations too. 

Integrator 

0 5 -  

0 

-0.5 - 

-1 - 

0 50 100 150 200 250 300 350 400 

Additional pole 
O n  I 

-601!l i 0  l;O l;O 2;O 2;O 3;O 3;0 4;O 

Figure 7. A: Integration and B: Additional pole. 

The pole p1 shown in fig. 7a is close to zero as expected, 
but significant variations occur when the servo is not in 
steady state. The physical interpretation of the second pole, 
p2 (fig. 7b) is less clear. In the stationary point (u,y)=(O,O) 
it was cancelled by a zero, which corresponds to the 
dynamics being partly unobservable. 

To briefly summarize the experience gathered in this study, 
it must be concluded that the proposed controller seem to 
work well on a nonlinear process. In addition the 
instantaneous linearization technique provides a valuable 
physical insight about the dynamics of the process. 

6. Conclusions 

A design method related to generalized predictive control 
and which lends itself to control of unknown nonlinear 
processes has been proposed. The method is characterized 
by being simple to implement in practice: in comparison to 
the true nonlinear predictive controller investigated in [ 5 ] ,  
a substantial reduction in computational effort has been 
accomplished. In addition, a number of serious drawbacks 
have been eliminated. 

The foundation for the method is the instantaneous 
linearization technique. Apart from opening up for the 
application of most linear control design methods, such as 
GPC, it produces an excellent physical understanding of 
the process as a spin-off. 

Naturally the method has its shortcomings. When the 
nonlinearities are not reasonably smooth, the linearized 
models will be valid only in the proximity of the current 
operating point. In practice this implies that the design will 
also be highly sensitive to overparameterized models. In 
fact, it may be advantageous to underparameterize the 
network deliberately (or use a large weight decay) to 
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impose a certain smoothness on the network. If the 
nonlinearities of the process cause the APC design to fail it 
may instead be used for generating an initial control 
sequence for the iterative minimization scheme used in the 
“true” nonlinear predictive controller. 

Although this is hard to tell from fig. 3, an interesting 
property of criterion based designs applied to nonlinear 
processes is that one must expect that the characteristics of 
the controller will depend heavily on the present operating 
regime. In principle it is therefore necessary to verify the 
behavior of the closed-loop system over the entire 
operating range. The nature of the inverse and model- 
reference type strategies discussed in [3] are quite different 
in this respect in that the desired closed-loop behavior is 
here imposed directly in the training of a neural network 
controller. 
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