

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Developing a Translator from C Programs to Data Flow Graphs Using RAISE

Haxthausen, Anne Elisabeth

Published in:
Proceedings of COMPASS'96

Link to article, DOI:
10.1109/CMPASS.1996.507878

Publication date:
1996

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Haxthausen, A. E. (1996). Developing a Translator from C Programs to Data Flow Graphs Using RAISE. In
Proceedings of COMPASS'96 IEEE. DOI: 10.1109/CMPASS.1996.507878

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13727224?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/CMPASS.1996.507878
http://orbit.dtu.dk/en/publications/developing-a-translator-from-c-programs-to-data-flow-graphs-using-raise(980ff0f0-e822-4308-b764-e65dd42f38bf).html

evelo ata Flow Graphs
Usin SE

Anne Elisabeth Haxthausen
Department of Information Teckmology

Technical University of Denmark, bldg. 344
DK-2800 Eyngby, Denmark

ah @it.dtu.dk

Abstract

This paper describes how a translator from a subset of
C to data $ow graphs has been formally developed using
the M I S E method and tools. In contrast to many develop-
ment examples described in the literature, this development
is not a case study, but a real one, and it covers d l devel-
opment phases, including the code-generation phase. The
translator is now one of the components of the LYCOS sys-
tem, which is a software/hardware co-synthesis sqstem un-
der development at the Technical Universio oJ Denmark.
The translator together with the other components of LY-
COS provides a means for moving parts of C programs to
dedicated hardware and thereby obtaining a better perfor-
mance. The translator was refined in steps starting with an
abstract specijication and ending with a concrete specijica-
tion from which C++ code was then automatically gener-
ated by the RAISE tools. In addition to illustrating the gen-
eral methodology of RAISE, the paper also contributes with
a spec@ method for refining set comprehensions.

1. Introduction

The reliability of software is an increasingly important
demand in software engineering. One of the techniques pro-
posed to increase the reliability is the use of formal methods.
During the last decade several formal methods have been
developed. However, their industrial usage is still limited.
RAISE is a formal method which is intended for real indus-
trial developments, not just toy examples, and it is currently
being used by a number of companies and taught ;at univer-
sities. Examples of industrial applications are an automated
train protection system made by Matra and a tethered satel-
lite system made by SSI. Some of the industrial experiences
are described in [5] .

This paper presents how a translator from a subset of

C to data flow graphs has been developed using RAISE',
and the goal is to illustrate some of the features that make
RAISE useful for the development of high-assurance sys-
tems. What makes this development example interesting is
that it was not done as a case study, but because the author
actually hacl the task of producing a translator and decided
to use RAISE to increase the reliability of the translator.
The paper illustrates the following features of the RAISE
method: how to structure specifications to allow for sepa-
rate development, how to refine abstract property-oriented
specifications into concrete modell-oriented ones, and how
to handle a combination of manual and automatic translation
into code. Eielow, the purpose of the translator is explained.

1.1. The purpose and context of the trans-
lator

For many systems it is crucial1 that the performance is
high. One way to increase the performance of an exist-
ing softwane system may be to move time-consuming parts
of the software to dedicated hardware. A commonly used
method for deciding how a system can be partitioned in an
optimal way into software and hardware is to translate the
existing program into a data flow graph representing the
computation of the program and then analyzing this. As
many existing applications are written in C, it would be use-
ful to have a translator from C programs to data flow graphs,
and we have therefore developed such a tool. As these appli-
cations may be safety critical the reliability of the translator
is very important.

The translator is one of the components of a hard-
warelsoftware co-synthesis system named LYCQS, which is
currently being developed at the Department of Information
Technology at the Technical University of Denmark. (LY-
COS is an acronym for LYngby CO-Synthesis system.) The

In this paper some simplifications have been made in order to make the
presentation more comprehensible.

89
0-7

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 07:47:37 EST from IEEE Xplore. Restrictions apply.

aim of the system is to provide a number of tools for trans-
lating system specifications’ into data flow graphs, for parti-
tioning a data flow graph into two communicating data flow
graphs (for software and for hardware, respectively), and for
transforming a data flow graph into software and hardware,
respectively. Several of the tools have already been imple-
mented and further information on LYCOS can be found
in [16].

1.2. Organization of the paper

The paper is organized as follows. First, in section 2, a
survey of RAISE is given. Then, in sections 3-4, the re-
quirements are stated and an initial specification of the trans-
lator is given. Next, in section 5, the specification is devel-
oped into a form which can be automatically transformed by
the RAISE C++ code generator. After that, we explain how
to generate C++ code for the final specification, and finally,
in section 7, a summary and discussion is given.

2. RAISE

RAISE is an acronym for Rigorous Approach to Indus-
trial Software Engineering and is a product consisting of a
formal method, an associated formal specification language
(RSL), support tools and documentation.

RAISE is the result of two ESPRIT projects carried out
during 1985 - 1995 by companies from six European coun-
tries. The starting point for RAISE was the Vienna Devel-
opment Method, VDM [2, 131, which had had success in
industry, but lacked a number o f useful features. Hence,
the aim was to enhance VDM with structuring facilities,
algebraic specification, concurrency, formal semantics and
computer-based tools. Many languages and methods have
been sources of inspiration for these enhancements, e.g. Z
[l], ML [15], Clear [4], ASL [19], ACT ONE [6], LARCH
[8], OBJ [7], CSP [12] and CCS [17]. A comparison of
RAISE with other formal methods can be found in [9] and
f201.

This section gives a short survey of the principles of the
RAISE method and some of the language features. For more
details we refer to [21] and [20]. The RAISE tools are de-
scribed in [181.

2.1. The RAISE method

and produces a new description which is more detailed. The
specifications are formulated in RSL. The first specification
is typically very abstract. After a number of design steps in
which design decisions are made, one may obtain a specifi-
cation which is sufficiently concrete to be (perhaps automat-
ically) translated into a program.

The exact relationship of the specifications in a devel-
opment is typically the predefined implementation (refine-
ment) relation which stands for theory inclusion.

As a very important feature, the RSL structuring mech-
anisms, together with the implementation relation allow for
separate development. For instance, assume that two mod-
ules, A and B, where B depends on A, are to be developed by
two different teams. The initial versions of A and B are A0
and Bo, respectively. One team refines A0 to A, in m im-
plementation steps, and another team refines Bo to B, in n
implementation steps, while still assuming the properties of
Ao, which acts as a contract between the two developments.
When the developments of the two teams are complete they
integrate their developments by using A, instead of A0 in
E, to form B,+l. Then Bn+l implements Bo. Refinement
is compositional: We can refine components separately and
then integrate them to get a refinement of the whole specifi-
cation.

Verification, or justification as it is called in RAISE, is
rigorous (as the R in RAISE indicates): the method allows
the verification to be formal but does not require it.

2.2. The RAISE Specification Language

The RAISE specification language, RSL, is a wide-
spectrum language which encompasses and integrates dif-
ferent specification styles in a common conceptual frame-
work. RSL enables the formulation of modular, structured
specifications which are model-oriented or algebraic; ap-
plicative or imperative; sequential or concurrent. Below we
give a short summary of some basic language constructs
used in this paper. A detailed description of RSL can be
found in [20].

2.2.1. Specifications

An RSL specification consists of module definitions, A
module may define types, values, variables, channels and
(sub-)modules, and may also present axioms.

RAISE is based on the stepwise development paradigm
according to which the software is developed in a number 2*2*2* vpes

ification, i.e. as abstract data types for which only a name is
of steps. Each step starts with a description Of the Software

2Here “system specification” should be understood in a broad sense: it
can for example be written in a formal specification language which is not
particularly aimed at software or hardware, in a programming language,
like C, or in a hardware specification language, like VHDL.

Types may be defined as sorts as known from algebraic spec-

given:

type Id

90

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 07:47:37 EST from IEEE Xplore. Restrictions apply.

Sorts are typically used in the initial specification in order to
defer design decisions about data type representation.

Alternatively, types may be given a name as well as an
explicit representation constructed from built-in 'types and
type constructors as known from model-oriented specifica-
tion, e.g.

type Table = Id & Int

Types may also be defined as subtypes of other types, e.g.

2.2.5. Modularity

RSL has two kinds of modules, sc.hemes and objects, as ex-
plained below.

Both kinds of modules are built from class expressions,
where a basic class expression just embraces a set of defi-
nitions and axioms by the keywords class and end. A class
expression denotes the set of all models concordant with its
definitions and axioms (i.e. it has loose semantics).

type NegInt = {I i : Int i < 0 I} RSL provides a number of class-building operators for
renaming and hiding entities, for extending one class expres-
sion with another, etc.

A schenze is a (generic) class and an object is an instance
of a class (i.e. denotes a single model from a class). For ex-
ample

RSL additionally provides union and short record type defi-
nitions similar to those in VDM, and variant type definitions.
For example the variant type definition

type Colour == black I white

defines a type (Colour) containing exactly two values (black
and white).

2.2.3. Values

scheme S = class variable i : Init . . . end
object Ml : S
object M2 : S

declares a scheme S and two objects M1 and M2 which are

variables provided by M1 and M2 can be referred to as M1 .i

Values (constants and functions) can be defined i n a signa- distinct instances of S. In other modules, the two distinct
ture/axiom style as known from algebraic specific ation:

value x, y : T
axiom x # y

in a pre/post style:

value
square-root : Real < Real
square-root(x) as y

pre x 2 0.0
post y * y = x A y 2 0.0

or in an explicit (signature/body) style as known from
model-oriented specification:

value
update : Id x Int x Table -+ Table
update(id, i, t) t t [id e+ i]

and M2,i, respectively.
This example illustrates that if two modules use the same

scheme S, this gives rise to two copies of S. If instead two
modules M[1 and M2 are going to share entities specified in
S, this can be achieved by defining an object, OS, which is
an instance: of S and then letting A41 and M2 use the entities
(e.g. 0S.i) provided by OS:

object OS : S
object hdl : class ... 0S.i ... end
object h42 : class ... 0S.i ... end

(The same holds for schemes M1 and M2.)

3. Requirements

The overall aim is to produce a translator from a subset,
SubC, of (1 to the kind of data flow graphs used in the LY-
COS system. To be more precise, the system should provide
a function, translate, which takes as input a well-fomed3

2.2.4. Variables

In RSL, functions may access, i.e. read or write, declared
variables, as indicated by read and write clauses in their
type. For example,

variable t : Table
value mk-empty : Unit + write t Unit

C programi. If the input belongs to the SubC subset of C, it
should return a data flow graph (in a textual representation),
which represents the computation of the program, otherwise

declares a variable t and a function mk-empty, which may
write in t. Instead of writing names of variables after the
keywords read and write, one can write any to indicate that
the function is allowed to read or write any variable.

The Unit type corresponds to the void type in C and is
used as argument type for functions without paraineters and
as result type for functions which do not return ainy result.

it should produce an error message. The input and output
should be text files.

The following two subsections give an informal descrip-
tion of the SubC subset of C and an informal introduction to
data flow graphs, respectively.

3The welll-fomedness can be checked by existing C compilers.

91

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 07:47:37 EST from IEEE Xplore. Restrictions apply.

3.1. SubC programs

There are two reasons for only supporting a subset of C.
The first is that not all C programs are translatable due to
limits in the expressive power of data flow graphs, and the
second reason is that we want to solve the problem in stages,
starting with a small subset of C and then later extending4
this subset. A SubC program consists of a sequence of dec-
larations of global integer variables followed by a defini-
tion of a parameterless main function, which may access the
global variables and which does not return any value (the re-
sult type is void). I.e. the form of a program is

int vl; . . . ; int vn;
main () body

The body of the function definition is a compoundstatement
of the form

(int VI; . . . ; int vn;

}

statement1 . _ _ statementm

where n 2 0, m 2 0. A statement is an assignment, an if
statement, a while statement or a compound statement. An
expression is an integer constant, a variable name, a prefix
expression or an infix expression.

3.2. Data flow graphs

This section provides a short informal introduction to the
data Bow graph model used in LYCOS and gives an idea
of how they can represent C programs. Later, in section 4,
a formal specification of an abstract syntax for data flow
graphs is given. A more detailed description of the graphs
and their computational semantics is presented in [3] and
[141, and an informal description of how all SubC constructs
can be translated is given in [111.

The purpose of data flow graphs is to represent computa-
tions of programs.

An example of a graph representing the computation of
the C program

int x, y , z;
main() (z = x + x * y ; }

is given in figure 1.
A data flow graph is a directed graph consisting of nodes

and edges. The semantics is based on a token passing mech-
anism, similar to colored petri nets. The edges are entities on
which tokens (i.e. values) can flow between nodes. Nodes
can remove tokens from their input edges and place tokens
on their output edges according to certainfiring rules. There
are different kinds of nodes, and they each have their own

41n [l l] it is already explained how extensions to the SubC subset can
be translated.

J

Figure 1. Data flow graph for z = x + x t y

firing rules. The only kind of nodes shown in figure 1 are in-
fi nodes, which have two input edges, one output edge and
an associated infix operator. When an infix node, op, has to-
kens, say V I and v2, on its input edges and no token on its
output edge, it can fire by placing the token, V I op v2, on its
output edge, and removing VI and v2 from its input edges.
Other kinds of nodes are prefix nodes, constant nodes, con-
trol nodes to express conditionals and loops, void nodes to
absorb tokens from edges etc. For more details on these, see
[3] and [141. A graph is executed by placing tokens on its in-
put edges and letting the nodes fire until no more firing rules
are satisfied.

Note that an edge can have more than one sink node. This
is for instance the case for the x edge in figure 1, because its
value is needed by the Add node as well as the Mult node. If
an edge, ed, has several sink nodes, the edge can be consid-
ered as split into several arrows, one for each sink. When a
token is placed on the edge, each arrow gets a copy of that
token, and it will not be considered empty until each of the
sinks has removed its copy.

The graph in figure 2 represents the following C program

i n t a, x, y, z;
main0 i a = x * y; z = x + a; 1

J' 1
Figure 2. Data flow graph for a = x*y; z = x+a

92

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 07:47:37 EST from IEEE Xplore. Restrictions apply.

If we compare this graph with the graph in figure 1, we
note how the a edge now also appears as an output edge,
even though it has a sink. That is because a is a global vari-
able which has been written to, and we want to know its con-
tents after the execution of the graphlprogram.

A SubC program should be translated into a data flow
graph representing the computation of the program, i.e. the
graph should have an input edge for each variable that it
might read5 before writing (i.e. making an assignment) to
it, and an output edge for each global variable that it writes
to. For any given values on the input edges, “execution” of
the graph leads to values on the output edges, which are the
same as the values the corresponding variables would have
had after a call of the function, if the variables had the input
values before the call.

There is a strong relationship between variables in the
program and edges in the graph. At any point in the pro-
gram, any variable in scope has a corresponding edge in the
graph. When the graph is executed, the value transferred on
that edge is the same as the value of the variable at ithat point
in the program.

In LYCOS, there is also a textual representation of
graphs. It is not presented here, as it is sufficient to know
the graphical representation in order to read this paper.

4. Initial formulation

In this section the initial RSL specification of the trans-
lation system is created. A modular decomposition of the
system into modules is made in the first subsection, then
these modules are defined in the following subsections, and
finally, in subsection 4.8, the correctness of the iniitial spec-
ification wrt. the requirements is discussed.

4.1. Modular decomposition

We aim at making a modular decomposition of the initial
specification which can provide a good base for separate de-
velopment.

We do this by investigating which functions the system
should provide and which kind of data the functions should
manipulate. The idea is then to have afunction module
for each collection of functions which conceptuallly belong
together and a data type module for each main #data type.
These modules will typically be defined as schemes, because
they allow for more reuse than objects do. Schemes are sub-
ject to refinement and we give them names of thlz form Si,
where i is a number indicating at which development level
the scheme is defined. If entities specified in a module, Si,
are going to be shared by several other modules, A, ..., Z,
this can be achieved by defining an object, OS, which is an

51n the following, when we say mud, we mean read before writing to it.

instance of Si (object OS : Si), and then letting A, ..., Z use
the entities provided by OS. For such objects the name is re-
tained throughout the development.

Clearly, there should at least be one function module: the
system module, SYSTEM, which provides the translation
function, translate.

We now look for a functional decomposition of translate.

4.1.1. Functional decomposition of the translation func-
tion

The task of translating a C progralm into a data flow graph
can be divided into three subtasks:

e parsing the C program (given in external text repre-
sentation) into a parse tree

e translating the parse tree into an internal representa-
tion of data flow graphs

0 unpairsing the internal graph into a graph in the text
representation used in LYCOS

This gives two (internal) data types, Progr and Graph, one
for parse trees and one for graphs, and it gives three func-
tions, parse, tr, unparse, one for each of the three tasks. The
functional decomposition is shown in figure 3. This anal-

Figure 3. Functional deccimposition of trans-
late

ysis leads to the decision to define two data type modules,
PROGRAEol1 and GRAPH1, which provide the data types
Progr and Graph, respectively, and three function modules:
FARSERl, TRANS 1 and UNFAFtSER1, which provide the
functions parse, tr and unparse, respectively.

In order to ensure that PARSER1 and TRANS 1 share the
data type F’rogr, and that TRANS1 and UNPARSERl share
the data type Graph, we define objects, C and G, which are
instances of PROGRAM1 and GIL4PH1, respectively.

A sketch ofthe above mentioned modules is given below:

object C: : PROGRAMl, G : GRAPH 1
scheme
PARSER1 =

clasis

end.
value parse : Unit 2 read any Boo1 x C.Progr ...

93

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 07:47:37 EST from IEEE Xplore. Restrictions apply.

TRANS1 =
class

end,

class

end

class

value tr : C.Progr -+ G.Graph . . .

UNPARSERl =

value unparse : G.Graph + write any Unit ...

object SYSTEM :

object

value
P : PARSER1, TR : TRANS 1, U : UNPARSERl

translate : Unit G write any Unit
translate()

let (ok, p) = P.parse() in
if ok then U.unparse(TR.tr(p))
else 1O.outputCerror") end

end
end

The IO module will be explained in section 4.2.

4.1.2. Decomposition of data types

Env, respectively. In order to ensure that ENVl and PRO-
GRAM1 share Vurld, that GRAPHl and EDGEl share Type,
and ENVl and GRAPHl share Edge, the following objects
are defined:

object V : VAR1, T : TYPE1, E : EDGEl

The modular decomposition made so far for the initial spec-
ification is shown in figure 5.

Figure 5. Modular decomposition of the initial
specification

In order to decide which additional data type modules to de-
fine, we investigate in figure 4 what the various lunds of
data of the system are and what their relationships are. We

4.2. The PARSER and UNPARSER mod-
ules

The parsing is made using the well-known recursive de-
scent parsing technique and the unparsing is straightfor-
ward, so in this paper we will not show the specifications of
the purse and unpurse functions.

Figure 4. Data and their relationships

have already seen that there are programs (parse trees) (type
Progr) and graphs (type Graph). Programs contain vari-
ables (type VurZd). Graphs are built from nodes (type Nude)
and edges (type Edge). Nodes may have associated opera-
tors (type Inj3xOp or PrejixOp), and edges as well as oper-
ators have types (type Type). As mentioned in section 3.2
there is a strong relationship between the variables of a pro-
gram and the edges of the graph into which the program
should be translated, and it turns out that in order to define
the tr function, we need environments (type Env), which
keep track of the relationship between variables and edges.

This analysis leads to the decision to define four ad-
ditional data type modules, VARI, EDGE1, TYPE1 and
ENVl, which provide the data types Vurld, Edge, Type and

The only difficulty in writing the parser and unparser is
that RSL does not provide IO functions. Therefore we spec-
ify input and output functions which should model IO func-
tions in the programming language we are going to translate
the final specification into (in our case C++). The functions
can only be given signatures and must be translated by hand.
They are therefore defined in a separate global object, IO:

object IO :
class

value
input : Unit read any Char,
output : Text + write any Unit

end

4.3. The PROGRAM and VAR modules

A specification of variables and parse trees (abstract syn-
tax trees) for SubC programs is given below:

94

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 07:47:37 EST from IEEE Xplore. Restrictions apply.

scheme PROGRAM1 =
class

type
Progr :: globals : Decls id : Text body : S,
Decls = Decl" ,
Decl :: var : V.VarId type-of : Type,
S == mkAsg(var : V.VarId, expr : Expr) I

mklf(cond : Expr, then-sen : S, else-sen : S) I
mk-While(test : Expr, body : S) I
mkBlock(dec1s : Decls, sens : S*),

Expr == mk-Const(va1 : Int) I
mk-VarRef(id : V.VarId) I
mkPrefixExpr(prefix-op : PrefixOp, expr : Expr) I
.'.)

PrefixOp == not I ..., InfixOp == add I ...,
Type == integer

end

scheme VARl = class type VarId = Text ... end

/I* PrefixOp and InfixOp observers */
arg-type-of : PrefixOp -+ T.vpe

arg-type-of(op) = . . . ,
...

end

scheme TYPE1 =
class type Type == integer I boolean I ... end

scheme EDGE1 =
class

typ'e Edge
value /* edge observer */ type-of : Edge -+ T.Type

end

The type Graph of graphs is chosen to be a sort. In this
way the decision on how graphs should be represented has
been deferred to a later stage of the development. A num-
ber of observer functions have been defined. They implic-
itly state that graphs are entities, which have nodes, edges,
input edges and output edges. We also define the condi-
tions unde:r which a graph is well-formed: (0) it does not

4.4. ~h~ GRAPH, EDGE and TYPE mod-
d e s

An abstract property-oriented specification of graphs and
edges, and a concrete specification of types are given below:

scheme GRAPH1 =
hide is-wff in class

type Graph = {I g : Graph' is-wff(g) I}, Graph'
value

/* Graph observers */
nodes : Graph' -+ Node-set,
edges : Graph' -+ E.Edge-set,
out-edges : Graph' -+ E.Edge-set,
in-edges : Graph' -+ E-Edge-set
in-edges(g) 2 edges-with-no-source(g),
is-wff : Graph' -+ Bool
is-wff(g)

no-illegal-cycles(g) A
(V n : Node n E nodes(g)
(V ed : E.Edge ed E edges(g) +

card sources(ed, g) 5 1) A
edges-of-nodes(g) C edges(g) A
out-edges(g) C edges(g) A
out-edges(g) 2 edges-with-no-sink(g),

is-wff(n)) A

...
type

Node ==
Prefixnode(PrefixOp, E.Edge, E.Edge) I
Infixnode(InfixOp, E.Edge, E.Edge, E.Edge) I
Nopnode(E.Edge, E.Edge) I Voidnode(E.Edge) I

contain illegal cycles, (1) all its nodes are well-formed, (2)
all its edges have at most one source, (3) the set of edges
which have a sink or a source node is a subset of the edges
of the graph, and (4) the output edges is a subset of the
edges of tlhe graph and a supersat of those edges which do
not have a sink. Some of these observers are derived, be-
cause thely can be expressed in terms of the other func-
tions. The only non-derived Graph observers are nodes,
edges and out-edges. Note, that [out-edges(g) cannot be de-
rived as edges-withnosink(g), since there may be output
edges which have a sink, cf. the (a edge in figure 2.

The Node type is defined as a variant type with one vari-
ant for ealch kind of node. Each variant has a constructor
which prolduces a node of that kind. For instance, Prefixn-
ode(op, i, 0) is a prefix node with associated prefix operator
op, input edge i and output edge 0. The is-wff function de-
fines under which conditions a node is well-formed.

The Injixixop and PrejixOp types are defined as variant
types with one constant variant for each kind of infix oper-
ator and prefix operator, respectively. Operators are charac-
terized by having certain argument and result types. A num-
ber of observer functions define these.

The Ty,pe type is defined as variant type with one constant
variant for each kind of type.

The Edge type is defined as a sort having an observer
which gives the type of the edge:.

...,
4.5. Thle ENV module PrefixOp == not 1 ..., InfixOp == add 1 ...

/* Node observers */
is-wff : Node -+ Bool
is-wff(n) = ...,

value

When translating a SubC program, each assignment, v
= e, should cause a new edge fior v in the graph, and when

9'

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 07:47:37 EST from IEEE Xplore. Restrictions apply.

translating a SubC value expression which reads a variable,
v, we need to know what the current edge of v is. There-
fore, in the translation process, we need environments to
keep track of (1) what the current edge of each variable is
and (2) which edges have been used (so that we can generate
new edges which have not been used before). The relation-
ship between variables and their current edges is one-to-one
as two different variables cannot have the same edge.

An abstract property-oriented specification of a data type
Env of environments is given below:

scheme ENVl =
hide map, used-edges, is-one-to-one, inverse-of in class

type
Env,
Relation =

{I m : V.VarId & E.Edge is-one-to-one(m) I }
value

/* non-derived Env observers */
map : Env + Relation,
used-edges : Env -+ E.Edge-set,
/+ derived Env observers */
varids-of : Env -+ V.VarId-set

edge-of : V.VarId x Env

edges : Env -+ E.Edge-set

varid-of : E.Edge x Env 7 V.VarId

varids-of@) dom map(p),

edge-of(v, p) = (map(p))(v) pre v E varids-of(p),
E.Edge

edges(p) E mg map@),

varid-of(ed, p) = (inverse-of(map(p)))(ed)
pre ed E edges@),

...t

/* Env constructors */
p 0 : Env ...,

new-edge : V.VarId x Env 7 E.Edge x Env
new-edge(v, pl) as (ed2, p2)
post

...

let edl = edge-of(v, pl) in
ed2 used-edges(p1) A
used-edges(p2) = used-edges(p1) U (ed2) A
E.type-of(ed2) = E.type-of(ed1) A
map(p2) = map(p1) t [v +-+ ed2]

end
pre v E varids-of(p1)

end

The type Env of environments is chosen to be a sort, in or-
der to defer any decision of what their representation should
be. A number of observer functions have been defined. As
there is no representation for environments, the construc-
tors are defined implicitly by predicates or post conditions.
The post condition for an Env constructor, op, states for each
non-derived Env observer, obs, what happens when obs is
applied to an environment returned by the operation op. If
op also returns values of other types (e.g. E.Edge) the post
condition also comprises similar conditions for these values.

4.6. The GRAPH-WITH-OPS module

When defining the translation functions in the TRANS
module, it will be convenient to define these in terms of
semantic operations on graphs (i.e. functions which take
graphs as arguments and combine these into new graphs).
We therefore define an extension, GRAPH-WITH-OPS 1, of
the GRAPH1 module with such operations, and replace our
original definition of the object G with the following

object G : GRAPH-WITH-OPSI

This change of G illustrates how the process of creating the
initial specification of a system typically consists of iter-
ations. The revised modular decomposition of the initial
specification is shown in figure 6.

Figure 6. Revised decomposition of initial
specification

GRAPH-WITH-OPS 1 is defined as follows6 :

scheme GRAPH-WITH-OPS 1 =
extend GRAPH1 with extend ENVl with class
value

/* semantic operations */
sequence : Graph x Env x Graph x Env
sequence(g1, pl , 82, p2) as g
post

Graph

let
nsl = nodes(gl), ns2 = nodes(g2),
i2 = in_edges(g2),
01 = out-edges(gl), 02 = out-edges(g2),
writtenin-both =

writtenin(g1, pl) n writtenin(g2, p2),
vs = writtenjn-both \ read-in(g2, pl),
xx = edges-of(writtenin-both, pl)

nodes(g) =
nsl U ns2 U

in

6The rest of this section can be skipped by readers who are not inter-
ested in the specific translation problem, but only in the RAISE develop-
ment process.

96

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 07:47:37 EST from IEEE Xplore. Restrictions apply.

{Voidnode(edge-of(v,pl)) I v : V.VarId v E vs} A
edges(g) = edges(g1) U edges(g2) A
out-edges(g) = 02 U (01 \ xx)

end
pre out-edges(g1) U in-edges(g2)

out-edges(g2) 5 edges(p2),
edges(p1) A

assign : E.Edge x Graph x E.Edge ? Graph
assign(v-ed, g l , res-ed) as g
post nodes(g) = nodes(g1) U {Nopnode(res-c:d, v-ed)} A

edgedg) = edges(g1) U {v-ed} A
out-edges(g) = {v-ed}

pre {res-ed} = out-edges(g1) A v-ed edge:;(gl),

variable~ef : E.Edge -+ Graph
variable_ref(ed) as g
post nodes(g) = {} A

edges(g) = {ed} A out-edges(g) = {ed},

convert-type-ifneeded :
Graph x E.Edge x T.Type x Env 7

Graph x E.Edge x Env ...,
...

value
/* auxiliary functions */
readin : Graph x Env ? V.VarId-set

read-in(g, p) . . . ,
writtenin : Graph x Env 5 V.VarId-set

written-in(g, p) ...,
edges-of : V.VarId-set x Env ? E.Edge-set ...

end

As there are no constructor functions for graphs, each of the
semantic operations is defined implicitly by a po!jt condition.
The post condition for an operation, up, states for each non-
derived graph observer, obs, what happens whe:n obs is ap-
plied to a graph returned by the operation op. The operations
sequence, assign and variable-ref will be explained in con-
nection with their use in the TRANS 1 module.

In graphs, but not in C programs, there is a distinction
between Booleans and integers. Therefore, when translat-
ing C programs to graphs, it is sometimes necessary to add
some operator nodes which convert the result from an inte-
ger edge to a result on a Boolean edge, and vice: versa. con-
vert-type-ifneeded is used for that purpose.

4.7. The TRANS module

Using the semantic operations provided by the GRAPH--
WITH-OPS 1 module, it is now possible to give explicit def-
initions of the tr functions which translate parse trees (ab-
stract syntax trees for SubC constructs) into graphs. The
specification is given below?:

7The rest of this section can be skipped by readers who are not inter-
ested in the specific translation problem, but only in the RAISE develop-
ment process.

scheme TRANS 1 =
class

value
/* translation of programs */
tr : C.Progr 7 G.Graph
tr(p) z

let pl = tr-d(C.globals(p), G.pO),
(gl, p2) = tr-s(Cl.body(p), p l)

in .._ end,
/* translation of declarations */
tr-d : C.Decls x G.Env 5 G.Env

/* translation of expressions */
tr-e : C.Expr x G.Env -? G.Graph x E.Edge x G.Env
tr-e(e, p)

tr-d(dls, p) f ...,

case e of
C.mk-Const(i) -+ ...,
C.mk-VarRef(v) -+

let ed = G.edge-of(v, p)
in (G.variable_ref(ed), ed, p) end,

C.mlF’refixExpr(op, el) + ...,
C.mklnfixExpr(op, el , e2) + ...

end,
/* translation of statements */
tr-s : C.S x G.Env
tr.s(s, p)

(;.Graph x G.Env

case s of
C.mk-Asg(v, e) -+

let (g, res-ed, pl) = tr-e(e, p),
(g‘, res-ed’, p2) =

G.coinvert-typeAfneeded
(g, res-ed, Tinteger, pl),

(v-ed, p ? ~) = G.new-edge(v, p2)
in (G.assign(v-ed, g’, res-ed‘), p3) end,

C.mklf(e, S I , s2) -+ ...,
C.mk-While(e, s) -+ ...,
C.mk_Block(dls, sl) -+ ...

end,
/* translation of statement lists */
tr-sl : C.S* x C.Env ?. G.Graph x G.Env
tr-sl(sl, p)

if sl = () then ...
else

let (gl, p l) = tr-s(hd sl, p).
(g2, p2) = tr-sl(t1 SI, p l)

in (G.sequence(g1, p l , 82, p2), p2) end end,
/* translation of operators */
tr-po : CPrefixOp + CkPrefixOp
tr-po(op) case op of C.not -+ G.not, ... end,
trio : ChfixOp -+ G.l[nfixOp
trio(op) E case op of Cadd -+ G.add, .. . end,
/* translation of types */
tr-t : C.vpe + T.Type
tr-t(t) case t of Cinteger -+ T.integer end

end

A program is translated by translating its body statement in
an environment which is obtained by translating its global

97

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 07:47:37 EST from IEEE Xplore. Restrictions apply.

declarations in the initial environment. The translation of
a list of declarations in an environment updates the envi-
ronment such that each declared variable get an associated
edge, which has not been used before. Statements and ex-
pressions are translated in an environment into a possibly
updated environment and a graph, g, representing the state-
ment/expression. Expressions additionally translate into an
edge, the result edge, which is that output edge of g on which
the value of e is to be found. (When expressions do not have
side effects, as it is the case in SubC, the result edge will be
the only output edge of the graph.)

A value expression which is a variable reference, mk--
VarRef(v), is translated to the graph consisting of no nodes
and only one edge, ed, which is the edge of v in the current
environment. The result edge is ed.

An assignment statement, mkAsg(v, e) , is translated by
first translating e and making any necessary type conver-
sions on the result edge. In this way a graph, g', with result
edge, res-ed', is obtained. Then a new edge, v-ed, for v is
created and the environment is updated accordingly. Finally,
the G.assign operation (specified in GRAPH-WITH-OPS 1)
is used to combine g' with a nop node whose input edge is
res-ed' and whose output edge is v-ed. A nop node is like a
prefix node, whose associated function is the identity func-
tion. The nop node was added to combine the result edge
res-ed' with the new current edge of v. Later, a graph op-
timizer could remove the nop node by identifying the two
edges. This has for instance been done in the graphs shown
in figures 1 and 2 in section 3.

A non-empty sequence of sentences is translated by first
translating the first sentence of the sequence obtaining a
graph, g l , and a new environment, p l , and then translat-
ing the remaining sentences obtaining a graph, 82, and a
new environment, p2. After that G.sequence (specified in
GRAPH-WITH-OPS 1) is used to make a sequentially com-
position of g l and g 2 to obtain the resulting graph, g. g con-
sists of the union of the nodes and edges of g l and g 2 and
some additional void nodes. The output edges of g consists
of the output edges of 82 and some of the output edges of
g l . The output edges of g l can be divided into three groups:
(1) those which are also input edges of g2 (i.e. belong to
variables which are read in 82) and hence connect the two
graphs, (2) those which belong to variables, which are nei-
ther read nor written in 82, and (3) those which belong to
variables which are not read but written in g2. The edges
from group (2) are the additional output edges, and edges
from group (3) are those which the additional void nodes are
voiding. An example of a translation of a sequence is shown
in figure 7.

Other kinds of expressions and statements are translated
in a similar way.

Figure 7. Translation of x = y ; x = z

4.8. Correctness of the initial specification

Having developed the initial specification, the question is
whether it satisfies the informally stated requirement in sec-
tion 3 that a program should be translated into a graph rep-
resenting the computation of the program. If there had been
a common formal semantics for C programs and data flow
graphs, i.e. functions seml and sem2 mapping values of type
Progr and Graph, respectively, into some semantic domain
Sem, then we could have formalized our proof obligation as

V p : Progr sem2(tr(p)) = seml(p)

and formally verified that this was true. However, for a non-
trivial language, like C, it would be an enormous task to de-
fine its semantics, and we decided just to argue informally
for the correctness.

5. Development

In this section we aim at developing the initial RSL spec-
ification into a new RSL specification which is sufficiently
concrete so that almost all of it can be automatically trans-
lated into C++ by the RAISE C++ code generator.

If there are parts of the specification which need to be
translated by hand, these must be localized in separate mod-
ules. (This is a requirement by the C++ code generator.)

In the initial specification the following non-translatable
RSL constructs appear:

1. sorts and/or implicit value definitions (in EDGEI,

2. set comprehensions (in GRAPH-WITH-OPS 1)
3. class extensions (in GRAPH-WITH-OPS 1)

ENV1, GRAF'HI, GRAPH-WITH-OPS1)

We remove these constructs step by step in the given order.

5.1. Removing sorts and implicit value def-
initions

5.1.1. Development of the EDGE module

We develop the EDGEl module by replacing the sort defini-
tion of Edge and its observer in EDGEl with a short record
type obtaining a new module EDGE2:

98

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 07:47:37 EST from IEEE Xplore. Restrictions apply.

scheme EDGE2 =
class type Edge :: num-of : Nat type-of : T.Type end

The RAISE tools have been used to justify that EDGE2 im-
plements EDGEl. We now replace EDGEl with EDGE2 in
the definition of E:

object E : EDGE2

As EDGE2 implements EDGEl replacing EDlGEl with
EDGE2 will not affect the modules referring to E!.

5.1.2. Development of the ENV module

We now develop the ENVl module into a new module,
ENV2, by replacing the sort Env with a concrete type and
replacing the implicit value definitions with explicit value
definitions in such a way that ENV2 implements ENVl. The
principles for doing this are the same as for the develop-
ment of the GRAPH and GRAPH-WITH-OPS modules (de-
scribed below) and we will not show the details here.

5.1.3. Development of the GRAPH module

We now develop the GRAPHl module by replacing the def-
initions

type Graph = { 1 g : Graph’ is-wff(g) I), Graph’
value

nodes : Graph’ -+ Node-set,
edges : Graph’ -+ E.Edge-set,
out-edges : Graph’ -+ E.Edge-set,
in-edges : Graph‘ + E.Edge-set

in-edges(g) edges-withmo-source(g),

in GRAPHl with

type Graph = {I g : Graph’ is-wff(g) I},
Graph’ =

{I g : Graph”
in-edges(g) = edges-withno-source(g)I},

Graph” ::
nodes : Node-set edges : E.Edge-set
in-edges : E.Edge-set out-edges : E.Edge-set

obtaining a new module GRAPH2.
As the input edges of a graph can be derived by in-

specting the nodes and edges of the graph, it is not neces-
sary to include the k e d g e s component in the representa-
tion. However, we decided to include it, as the unparser
needs this component (since the LYCOS textual represen-
tation of graphs has redundant information concerning the
input edges), and it is more efficient to calculate it on the fly
in the translation process, where the graph is built by com-
bining sub-graphs, than calculating it afterwards. Note how
the inclusion of the in-edges component in the representa-
tion implies the need for an additional subtype.

Instead of using sets to represent collections of nodes etc.,
one could have used lists:

Graph” ::
nodes : Node* edges : E.Edge*
in-edges : E.Edge* out-edges : E.Edge*

However, there is no reason for)using lists rather than sets.
The RAISE C++ code generator is able to translate lists as
well as sets, and the produced code would not be more ef-
ficient for lists than for sets as they are both translated into
linked lists. There is actually a good reason for using sets
and not lists. Using lists would require more work than us-
ing sets, as one then would have had to define additional op-
erations like union and intersection, which are built-in for
sets.

The RAISE tools have been used to generate and jus-
tify conditions which ensure tlhat GRAPH2 implements
GRAPHl For example the following condition was gener-
ated and iimmediately reduced to true by a simplifier:

LV g : Graph’ in-edges(g)
simplify :

Ltrue,

edges-withmo-source(g)J

qed

5.1.4. Development of the GRAPH-WITH-OPS module

If we in the GRAPH-WITH-OPSl module re-
place GR4PH1 with GRAPH2 we can then also replace the
implicit definitions of the semantic operations with explicit
definitions. Furthermore, we integrate the development of
the ENV module by replacing 13NV1 with ENV2. In this
way we obtain the following new module.

scheme GRAPH-WITH-OPS2 =
extend ENV2 with extend GRAPH2 with class
value

f * semantic operations * f
sequence : Graph x Env x Graph x Env ? Graph
sequence(g1, pl , 82, p2) z

let
nsl = nodes(gl), ns2 = nodes(g2),
il = in-edges(gl), i2 = in_edges(g2),
01 = out-edges(gl), 02 = out-edges(g2),
connected = 01 n i2,
writtenin-both =

writtenin(g1, pl) r-1 writtenin(g2, p2),
vs = writtenin-both \L read-in(g2, pl),
xx = edges-of(writtenm-both, pl)
in
&-Graph”(

nsl U ns2 U
{Voidnode(edge-of(v,pl)) I v : V.VarId v E vs},
edges(g1) U edges(g2),
il U (i2 \ connected),
02 U (01 \ xx))

end
pre ...,

...
end

99

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 07:47:37 EST from IEEE Xplore. Restrictions apply.

The RAISE tools have been used to justify that GRAPH--
WITH-OPS2 implements GRAPH-WITH-OPS 1.

As GRAPH-WITH-OPS2 implements GRAPH-WITH--
OPSl we can now replace GRAPH-WITH-OPS1 with
GRAPH-WITH-OPS2 in the definition of G:

object G : GRAPH-WITH-OPS2

5.2. Removing set comprehensions

Set comprehensions have been used extensively in the
specification because they provide an elegant and short way
of constructing sets based on properties of their elements,
but they are not in the translatable subset of RSL. Therefore
we must refine them into other RSL constructs that are trans-
latable. No advice on how to do this is offered by the RAISE
method book [21]. Here we propose a systematic approach
to refining set comprehensions.

5.2.1. General method

A set comprehension of the form

{ f(x, y l , _.., yn) I x : X x E xset }

where X is some type, xset is an expression of type X-set,
f has type X x Y l x ... x Yn -+ Y, and y l , ..., yn are free
names, may be replaced by a function application

comprehend(xset, yl, ..., yn)

if the following definitions are added:

value
comprehend : X-set x Y l x ... x Yn + Y-set
comprehend(xset, y l , ..., yn)

if xset = {} then {}
else let x = pick(xset) in

{f(x, ~ 1 , ..., yn)} U
comprehend(xset\{x}, yl, ..., yn)

end end,
pick : X-set 7 X
pick(xs) 5 let x : X x E xs in x end
Pre xs # {I

pick is a function which takes a set as argument and returns
non-deterministically one of its elements.

In [lo] it is proven that this development step is an im-
plementation, when xset is convergent and of type X-set.

The comprehend function is translatable by the RAISE
code generators, butpick is not. However, pick can easily be
translated by hand, since the C++ class which X-set is trans-
lated into, provides a function, which given a set returns one
of its elements.

5.2.2. Development of the GRAPH-WITH-OPS module

An example of a set comprehension in module
GRAPH-WITH-OPS2 is

{ Voidnode(edge-of(v, pl)) I v : V.VarId v E vs)

This can be replaced by Voidnodes(vs, p l) if the following
definition is added to the module

Voidnodes : V.VarId-set x Env -+ Node-set
Voidnodes(vs, p) 3

if vs = {} then {}
else let v = PICK.pick(vs) in

{ Voidnode(edge-of(v, p))} U
Voidnodes(vs \ {v}, p)

end end

and PICK is a module defined as follows

object PICK :
class

value
pick : V.VarId-set 7 V.VarId
pick(vs) f let v : V.VarId v E vs in v end
Pre vs # {I

end

All other set comprehensions in the GRAPH-WITH-OPS2
module should be refined in a similar way. In this way
we obtain a new module, GRAPH-WITH-OPS3, which is
an implementation of GRAPH-WITH-OPS2. The RAISE
tools can be used to justify that.

As GRAPH-WITH-OPS3 implements GRAPH-WITH--
OPS2 we can now replace GRAPH-WITH-OPS2 with
GRAPH-WITH-OPS3 in the definition of G:

object G : GRAPH-WITH-OPS3

The configuration of the specification at this point is shown
in figure 8.

Figure 8. Intermediate specification

100

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 07:47:37 EST from IEEE Xplore. Restrictions apply.

5.3. Removing class extensions

Current limitations of the C++ code generator ineans that
class extensions must be removed before translation. There-
fore we must do a step in which we expand the !right-hand
side of GRAPH-WITH-OPS3 to a basic class expression ob-
taining a new module GRAPH-WITH-OPS4 wlhich obvi-
ously implements GRAPH-WITH-OPS3,

As GRAPH-WITH-OPS4 implements GRAPH-WITH--
OPS3 we can now replace GRAPH-WITH-OPS3 with
GRAPH-WITH-OPS4 in the definition of G:

object G : GRAPH-WITH-OPS4

5.4. The final configuration

The configuration of the final specification is shown in
figure 9.

I PROGRAM1 1 I GRAPH-WlTH-OPS4 1

Figure 9. Final specification

6. Generating C++ code

Having developed the specification as far a;$ explained
above, it can now be translated to C++. This is done by
translating the IO and PICK modules by hand to C++ mod-
ules 1O.h and PICK.h, while the remaining modlules can be
translated automatically by the RAISE C++ code generator.

In order to get a running C-to-data-flow-graph translator,
one now only has to write a trivial C++ main function that
calls the C++ function, SYSTEMlranslate, which the RSL
SYSTEM. translate function was translated to.

7. Summary

It has been illustrated how a translator from C programs
CO data flow graphs can be developed stepwise and sepa-
rately from an abstract property-oriented specifi'cation into a

concrete model-oriented one using the RAISE method. The
RAISE tools have been used to syntax and type check the
specifications, to generate and justify the conditions that the
development steps are implementations, and to translate the
final Specification into a C++ program.

In addition to illustrating the general methodology of
RAISE, a specific method for refining set comprehensions
has been proposed.

My experiences from this development example was that
the following features of RAISE were useful:

The module concept which made it possible to decom-
pose the specification int'o small manageable units
whiich I could develop separately.

The stepwise development principle together with
good abstraction facilities, which made it possible to
cope with details one at a time. For instance, in the
initial specification I could use abstract data types (for
edges, graphs and environments) and first in later de-
velopment steps make a dlesign decision on the data
type representations.

The: formal basis, which made the meaning of specifi-
cations unambiguous and allowed formal ver$cation
of the development steps.

The rigour, which allowed me to use informal argu-
ments in the verification, whenever I found that suf-
ficient. (To have formally verified everything would
have been too time-consuming.)

The tools support, which I used to

.- eliminate syntax and type errors in specifica-

.- justify (verify) the development steps faster and
with more confidence than possible by hand

- generate C++ code

tions

Thle C++ code generator would have been even more
useful if it had been able to handle a larger subset of
RSL. For instance, it should have been able to handle
class extensions such tha.t the last development step
would not have been necessary.

These features are not only beneficial for the presented
development example, but are general features that make
RAISE useful for the development of high-assurance sys-
tems. In particular, the use of formal (and thereby unam-
biguous) specifications and the use of formal verification in
the development process increase the reliability of the pro-
duced software.

101

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 07:47:37 EST from IEEE Xplore. Restrictions apply.

7.1. Acknowledgements

The author would like to thank Chris George, Bo
Stig Hansen, Jan Madsen, Jan Storbank Pedersen, Jgrgen
Staunstrup and the anonymous referees for valuable com-
ments to a draft of this paper.

The work described in this paper has been supported by
the Danish Technical Research Council under the “Code-
sign” programme.

References

J. Abrial. The Specification Language Z. Syntax and Seman-
tics. Technical report, Oxford University Computing Labo-
ratory, Programming Research Group, April 1980.
D. Bjamer and C. Jones. Formal Specz9cution & Software
Development. Prentice-Hall Series in Computer Science.
Prentice-Hall International, 1982.
J. Brage. Foundations of a High-Level Synthesis System,
PhD thesis, Department of Computer Science, the Technical
University of Denmark, 1994.
R. Burstall and J. A. Goguen. The Semantics of Clear, a
Specification Language. In Advanced Course on Abstract
Software Specz&xztions, number 86 in LNCS. Springer-
Verlag, 1980.
B. Dandanell, J. Gortz, J. S. Pedersen, and E. Zierau. Ex-
periences from Applications of RAISE, Report 3. Technical
Report LACOS/SYPRO/CONS/24/V 1, CAP Programmator
A / S , 1994.
H. Ehrig and B. Mahr. Fundamentals of Algebraic Spec$
cation I , Equations and Initial Semantics. EATCS Mono-
graphs on Theoretical Computer Science, vol. 6. Springer-
Verlag, 1985.
K. Futatsugi, J. Goguen, J. Jouannaud, and J. Meseguer.
Principles of OBJ2. In 12th Symposium on POPL. Associ-
ation for Computing Machinery, 1985.
J. Guttag, J. Homing, and J. Wing. Larch in five easy pieces.
Technical report, Digital, Palo Alto, California, 1985.
M. D. Harper. RAISE - Rigorous Approach to Industrial
Software Engineering. Available at World Wide Web: URL:
http:/dream.dai.ed.ac.uk/raise, 1995.
A. E. Haxthausen. Refinement of set comprehensions. Tech-
nical note, 1995.
A. E. Haxthausen. Translation from C to Quenya. Techni-
cal report, Department of Computer Science, the Technical
University of Denmark, 1995.
C. Hoare. Communicating Sequential Processes. Prentice-
Hall Series in Computer Science. Prentice-Hall Intema-
tional, 1985.
C. Jones. Systematic Software Development Using VDM.
Prentice-Hall Series in Computer Science. Prentice-Hall In-
ternational, 1986.
Z. Liu, M. Hansen, J. Madsen, and J. Brage. Real-Time Se-
mantics for Data Flow Graphs. Technical report, Department
of Computer Science, the Technical University of Denmark,
1995.
D. MacQueen. Modules for Standard ML. Polymorphism,
I1(2), 1985.

[16] J. Madsen, J. Grode, A. Haxthausen, and P. V. Knud-
sen. LYCOS. Available at World Wide Web: URL:
http://www.it.dtu.dW-lycos, 1995.

[I71 R. Milner. A calculus of communicating systems. Num-
ber 92 in LNCS. Springer-Verlag, 1980.

[181 P.M. Bruun et al. RAISE Tools Reference Manual. Technical
Report LACOS/CRL/DOC/13/ON3, CRI A / S , 1994.

[19] D. Sannella and M. Wirsing. A Kernel Language for Alge-
braic Specification and Implementation. Technical report,
Department of Computer Science, University of Edinburgh,
1985.

[20] The RAISE Language Group. The RAISE SpeciJication Lan-
guage. The BCS Practitioners Series. Prentice Hall Int.,
1992.

The RAISE Development
Method. The BCS Practitioners Series. Prentice Hall Int.,
1995.

[21] The RAISE Method Group.

102

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 07:47:37 EST from IEEE Xplore. Restrictions apply.

http:/dream.dai.ed.ac.uk/raise
http://www.it.dtu.dW-lycos

