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Abstract 

This paper describes how a translator from a subset of 
C to data $ow graphs has been formally developed using 
the M I S E  method and tools. In contrast to many develop- 
ment examples described in the literature, this development 
is not a case study, but a real one, and it covers d l  devel- 
opment phases, including the code-generation phase. The 
translator is now one of the components of the LYCOS sys- 
tem, which is a software/hardware co-synthesis sqstem un- 
der development at the Technical Universio oJ Denmark. 
The translator together with the other components of LY- 
COS provides a means for moving parts of C programs to 
dedicated hardware and thereby obtaining a better perfor- 
mance. The translator was refined in steps starting with an 
abstract specijication and ending with a concrete specijica- 
tion from which C++ code was then automatically gener- 
ated by the RAISE tools. In addition to illustrating the gen- 
eral methodology of RAISE, the paper also contributes with 
a spec@ method for  refining set comprehensions. 

1. Introduction 

The reliability of software is an increasingly important 
demand in software engineering. One of the techniques pro- 
posed to increase the reliability is the use of formal methods. 
During the last decade several formal methods have been 
developed. However, their industrial usage is still limited. 
RAISE is a formal method which is intended for real indus- 
trial developments, not just toy examples, and it is currently 
being used by a number of companies and taught ;at univer- 
sities. Examples of industrial applications are an automated 
train protection system made by Matra and a tethered satel- 
lite system made by SSI. Some of the industrial experiences 
are described in [ 5 ] .  

This paper presents how a translator from a subset of 

C to data flow graphs has been developed using RAISE', 
and the goal is to illustrate some of the features that make 
RAISE useful for the development of high-assurance sys- 
tems. What makes this development example interesting is 
that it was not done as a case study, but because the author 
actually hacl the task of producing a translator and decided 
to use RAISE to increase the reliability of the translator. 
The paper illustrates the following features of the RAISE 
method: how to structure specifications to allow for sepa- 
rate development, how to refine abstract property-oriented 
specifications into concrete modell-oriented ones, and how 
to handle a combination of manual and automatic translation 
into code. Eielow, the purpose of the translator is explained. 

1.1. The purpose and context of the trans- 
lator 

For many systems it is crucial1 that the performance is 
high. One way to increase the performance of an exist- 
ing softwane system may be to move time-consuming parts 
of the software to dedicated hardware. A commonly used 
method for deciding how a system can be partitioned in an 
optimal way into software and hardware is to translate the 
existing program into a data flow graph representing the 
computation of the program and then analyzing this. As 
many existing applications are written in C, it would be use- 
ful to have a translator from C programs to data flow graphs, 
and we have therefore developed such a tool. As these appli- 
cations may be safety critical the reliability of the translator 
is very important. 

The translator is one of the components of a hard- 
warelsoftware co-synthesis system named LYCQS, which is 
currently being developed at the Department of Information 
Technology at the Technical University of Denmark. (LY- 
COS is an acronym for LYngby CO-Synthesis system.) The 

In this paper some simplifications have been made in order to make the 
presentation more comprehensible. 
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aim of the system is to provide a number of tools for trans- 
lating system specifications’ into data flow graphs, for parti- 
tioning a data flow graph into two communicating data flow 
graphs (for software and for hardware, respectively), and for 
transforming a data flow graph into software and hardware, 
respectively. Several of the tools have already been imple- 
mented and further information on LYCOS can be found 
in [16]. 

1.2. Organization of the paper 

The paper is organized as follows. First, in section 2, a 
survey of RAISE is given. Then, in sections 3-4, the re- 
quirements are stated and an initial specification of the trans- 
lator is given. Next, in section 5,  the specification is devel- 
oped into a form which can be automatically transformed by 
the RAISE C++ code generator. After that, we explain how 
to generate C++ code for the final specification, and finally, 
in section 7, a summary and discussion is given. 

2. RAISE 

RAISE is an acronym for Rigorous Approach to Indus- 
trial Software Engineering and is a product consisting of a 
formal method, an associated formal specification language 
(RSL), support tools and documentation. 

RAISE is the result of two ESPRIT projects carried out 
during 1985 - 1995 by companies from six European coun- 
tries. The starting point for RAISE was the Vienna Devel- 
opment Method, VDM [2, 131, which had had success in 
industry, but lacked a number o f  useful features. Hence, 
the aim was to enhance VDM with structuring facilities, 
algebraic specification, concurrency, formal semantics and 
computer-based tools. Many languages and methods have 
been sources of inspiration for these enhancements, e.g. Z 
[l], ML [15], Clear [4], ASL [19], ACT ONE [6], LARCH 
[8], OBJ [7], CSP [12] and CCS [17]. A comparison of 
RAISE with other formal methods can be found in [9] and 
f201. 

This section gives a short survey of the principles of the 
RAISE method and some of the language features. For more 
details we refer to [21] and [20]. The RAISE tools are de- 
scribed in [ 181. 

2.1. The RAISE method 

and produces a new description which is more detailed. The 
specifications are formulated in RSL. The first specification 
is typically very abstract. After a number of design steps in 
which design decisions are made, one may obtain a specifi- 
cation which is sufficiently concrete to be (perhaps automat- 
ically) translated into a program. 

The exact relationship of the specifications in a devel- 
opment is typically the predefined implementation (refine- 
ment) relation which stands for theory inclusion. 

As a very important feature, the RSL structuring mech- 
anisms, together with the implementation relation allow for 
separate development. For instance, assume that two mod- 
ules, A and B, where B depends on A, are to be developed by 
two different teams. The initial versions of A and B are A0 
and Bo, respectively. One team refines A0 to A, in m im- 
plementation steps, and another team refines Bo to B, in n 
implementation steps, while still assuming the properties of 
Ao, which acts as a contract between the two developments. 
When the developments of the two teams are complete they 
integrate their developments by using A, instead of A0 in 
E, to form B,+l. Then Bn+l implements Bo. Refinement 
is compositional: We can refine components separately and 
then integrate them to get a refinement of the whole specifi- 
cation. 

Verification, or justification as it is called in RAISE, is 
rigorous (as the R in RAISE indicates): the method allows 
the verification to be formal but does not require it. 

2.2. The RAISE Specification Language 

The RAISE specification language, RSL, is a wide- 
spectrum language which encompasses and integrates dif- 
ferent specification styles in a common conceptual frame- 
work. RSL enables the formulation of modular, structured 
specifications which are model-oriented or algebraic; ap- 
plicative or imperative; sequential or concurrent. Below we 
give a short summary of some basic language constructs 
used in this paper. A detailed description of RSL can be 
found in [20]. 

2.2.1. Specifications 

An RSL specification consists of module definitions, A 
module may define types, values, variables, channels and 
(sub-)modules, and may also present axioms. 

RAISE is based on the stepwise development paradigm 
according to which the software is developed in a number 2*2*2* vpes 

ification, i.e. as abstract data types for which only a name is 
of steps. Each step starts with a description Of the Software 

2Here “system specification” should be understood in a broad sense: it 
can for example be written in a formal specification language which is not 
particularly aimed at software or hardware, in a programming language, 
like C, or in a hardware specification language, like VHDL. 

Types may be defined as sorts as known from algebraic spec- 

given: 

type Id 
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Sorts are typically used in the initial specification in order to 
defer design decisions about data type representation. 

Alternatively, types may be given a name as well as an 
explicit representation constructed from built-in 'types and 
type constructors as known from model-oriented specifica- 
tion, e.g. 

type Table = Id & Int 

Types may also be defined as subtypes of other types, e.g. 

2.2.5. Modularity 

RSL has two kinds of modules, sc.hemes and objects, as ex- 
plained below. 

Both kinds of modules are built from class expressions, 
where a basic class expression just embraces a set of defi- 
nitions and axioms by the keywords class and end. A class 
expression denotes the set of all models concordant with its 
definitions and axioms (i.e. it has loose semantics). 

type NegInt = {I  i : Int i < 0 I} RSL provides a number of class-building operators for 
renaming and hiding entities, for extending one class expres- 
sion with another, etc. 

A schenze is a (generic) class and an object is an instance 
of a class (i.e. denotes a single model from a class). For ex- 
ample 

RSL additionally provides union and short record type defi- 
nitions similar to those in VDM, and variant type definitions. 
For example the variant type definition 

type Colour == black I white 

defines a type (Colour) containing exactly two values (black 
and white). 

2.2.3. Values 

scheme S = class variable i : Init . . . end 
object Ml : S 
object M2 : S 

declares a scheme S and two objects M1 and M2 which are 

variables provided by M1 and M2 can be referred to as M1 .i 

Values (constants and functions) can be defined i n  a signa- distinct instances of S. In other modules, the two distinct 
ture/axiom style as known from algebraic specific ation: 

value x, y : T 
axiom x # y 

in a pre/post style: 

value 
square-root : Real < Real 
square-root(x) as y 

pre x 2 0.0 
post y * y = x A y 2 0.0 

or in an explicit (signature/body) style as known from 
model-oriented specification: 

value 
update : Id x Int x Table -+ Table 
update(id, i, t) t t [id e+ i ]  

and M2,i, respectively. 
This example illustrates that if two modules use the same 

scheme S, this gives rise to two copies of S. If instead two 
modules M[1 and M2 are going to share entities specified in 
S, this can be achieved by defining an object, OS, which is 
an instance: of S and then letting A41 and M2 use the entities 
(e.g. 0S.i) provided by OS: 

object OS : S 
object hdl : class ... 0S.i ... end 
object h42 : class ... 0S.i ... end 

(The same holds for schemes M1 and M2.) 

3. Requirements 

The overall aim is to produce a translator from a subset, 
SubC, of (1 to the kind of data flow graphs used in the LY- 
COS system. To be more precise, the system should provide 
a function, translate, which takes as input a well-fomed3 

2.2.4. Variables 

In RSL, functions may access, i.e. read or write, declared 
variables, as indicated by read and write clauses in their 
type. For example, 

variable t : Table 
value mk-empty : Unit + write t Unit 

C programi. If the input belongs to the SubC subset of C, it 
should return a data flow graph (in a textual representation), 
which represents the computation of the program, otherwise 

declares a variable t and a function mk-empty, which may 
write in t. Instead of writing names of variables after the 
keywords read and write, one can write any to indicate that 
the function is allowed to read or write any variable. 

The Unit type corresponds to the void type in C and is 
used as argument type for functions without paraineters and 
as result type for functions which do not return ainy result. 

it should produce an error message. The input and output 
should be text files. 

The following two subsections give an informal descrip- 
tion of the SubC subset of C and an informal introduction to 
data flow graphs, respectively. 

3The welll-fomedness can be checked by existing C compilers. 
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3.1. SubC programs 

There are two reasons for only supporting a subset of C. 
The first is that not all C programs are translatable due to 
limits in the expressive power of data flow graphs, and the 
second reason is that we want to solve the problem in stages, 
starting with a small subset of C and then later extending4 
this subset. A SubC program consists of a sequence of dec- 
larations of global integer variables followed by a defini- 
tion of a parameterless main function, which may access the 
global variables and which does not return any value (the re- 
sult type is void). I.e. the form of a program is 

int vl; . .  . ;  int vn; 
main ( ) body 

The body of the function definition is a compoundstatement 
of the form 

( int VI; . . .  ; int vn; 

} 

statement1 . _ _  statementm 

where n 2 0, m 2 0. A statement is an assignment, an if 
statement, a while statement or a compound statement. An 
expression is an integer constant, a variable name, a prefix 
expression or an infix expression. 

3.2. Data flow graphs 

This section provides a short informal introduction to the 
data Bow graph model used in LYCOS and gives an idea 
of how they can represent C programs. Later, in section 4, 
a formal specification of an abstract syntax for data flow 
graphs is given. A more detailed description of the graphs 
and their computational semantics is presented in [3] and 
[ 141, and an informal description of how all SubC constructs 
can be translated is given in [ 111. 

The purpose of data flow graphs is to represent computa- 
tions of programs. 

An example of a graph representing the computation of 
the C program 

int x, y ,  z; 
main() ( z = x + x * y ;  } 

is given in figure 1. 
A data flow graph is a directed graph consisting of nodes 

and edges. The semantics is based on a token passing mech- 
anism, similar to colored petri nets. The edges are entities on 
which tokens (i.e. values) can flow between nodes. Nodes 
can remove tokens from their input edges and place tokens 
on their output edges according to certainfiring rules. There 
are different kinds of nodes, and they each have their own 

41n [ l l ]  it is already explained how extensions to the SubC subset can 
be translated. 

J 

Figure 1. Data flow graph for z = x + x t y 

firing rules. The only kind of nodes shown in figure 1 are in- 
fi nodes, which have two input edges, one output edge and 
an associated infix operator. When an infix node, op, has to- 
kens, say V I  and v2, on its input edges and no token on its 
output edge, it can fire by placing the token, V I  op v2, on its 
output edge, and removing VI and v2 from its input edges. 
Other kinds of nodes are prefix nodes, constant nodes, con- 
trol nodes to express conditionals and loops, void nodes to 
absorb tokens from edges etc. For more details on these, see 
[3] and [ 141. A graph is executed by placing tokens on its in- 
put edges and letting the nodes fire until no more firing rules 
are satisfied. 

Note that an edge can have more than one sink node. This 
is for instance the case for the x edge in figure 1, because its 
value is needed by the Add node as well as the Mult node. If 
an edge, ed, has several sink nodes, the edge can be consid- 
ered as split into several arrows, one for each sink. When a 
token is placed on the edge, each arrow gets a copy of that 
token, and it will not be considered empty until each of the 
sinks has removed its copy. 

The graph in figure 2 represents the following C program 

i n t  a, x, y, z; 
main0 i a = x * y; z = x + a; 1 

J' 1 
Figure 2. Data flow graph for a = x*y; z = x+a 
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If we compare this graph with the graph in figure 1, we 
note how the a edge now also appears as an output edge, 
even though it has a sink. That is because a is a global vari- 
able which has been written to, and we want to know its con- 
tents after the execution of the graphlprogram. 

A SubC program should be translated into a data flow 
graph representing the computation of the program, i.e. the 
graph should have an input edge for each variable that it 
might read5 before writing (i.e. making an assignment) to 
it, and an output edge for each global variable that it writes 
to. For any given values on the input edges, “execution” of 
the graph leads to values on the output edges, which are the 
same as the values the corresponding variables would have 
had after a call of the function, if the variables had the input 
values before the call. 

There is a strong relationship between variables in the 
program and edges in the graph. At any point in the pro- 
gram, any variable in scope has a corresponding edge in the 
graph. When the graph is executed, the value transferred on 
that edge is the same as the value of the variable at ithat point 
in the program. 

In LYCOS, there is also a textual representation of 
graphs. It is not presented here, as it is sufficient to know 
the graphical representation in order to read this paper. 

4. Initial formulation 

In this section the initial RSL specification of the trans- 
lation system is created. A modular decomposition of the 
system into modules is made in the first subsection, then 
these modules are defined in the following subsections, and 
finally, in subsection 4.8, the correctness of the iniitial spec- 
ification wrt. the requirements is discussed. 

4.1. Modular decomposition 

We aim at making a modular decomposition of the initial 
specification which can provide a good base for separate de- 
velopment. 

We do this by investigating which functions the system 
should provide and which kind of data the functions should 
manipulate. The idea is then to have afunction module 
for each collection of functions which conceptuallly belong 
together and a data type module for each main #data type. 
These modules will typically be defined as schemes, because 
they allow for more reuse than objects do. Schemes are sub- 
ject to refinement and we give them names of thlz form Si, 
where i is a number indicating at which development level 
the scheme is defined. If entities specified in a module, Si,  
are going to be shared by several other modules, A, ..., Z, 
this can be achieved by defining an object, OS, which is an 

51n the following, when we say mud, we mean read before writing to it. 

instance of Si (object OS : Si), and then letting A, ..., Z use 
the entities provided by OS. For such objects the name is re- 
tained throughout the development. 

Clearly, there should at least be one function module: the 
system module, SYSTEM, which provides the translation 
function, translate. 

We now look for a functional decomposition of translate. 

4.1.1. Functional decomposition of the translation func- 
tion 

The task of translating a C progralm into a data flow graph 
can be divided into three subtasks: 

e parsing the C program (given in external text repre- 
sentation) into a parse tree 

e translating the parse tree into an internal representa- 
tion of data flow graphs 

0 unpairsing the internal graph into a graph in the text 
representation used in LYCOS 

This gives two (internal) data types, Progr and Graph, one 
for parse trees and one for graphs, and it gives three func- 
tions, parse, tr, unparse, one for each of the three tasks. The 
functional decomposition is shown in figure 3. This anal- 

Figure 3. Functional deccimposition of trans- 
late 

ysis leads to the decision to define two data type modules, 
PROGRAEol1 and GRAPH1, which provide the data types 
Progr and Graph, respectively, and three function modules: 
FARSERl, TRANS 1 and UNFAFtSER1, which provide the 
functions parse, tr and unparse, respectively. 

In order to ensure that PARSER1 and TRANS 1 share the 
data type F’rogr, and that TRANS1 and UNPARSERl share 
the data type Graph, we define objects, C and G, which are 
instances of PROGRAM1 and GIL4PH1, respectively. 

A sketch ofthe above mentioned modules is given below: 

object C: : PROGRAMl, G : GRAPH 1 
scheme 
PARSER1 = 

clasis 

end. 
value parse : Unit 2 read any Boo1 x C.Progr ... 
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TRANS1 = 
class 

end, 

class 

end 

class 

value tr : C.Progr -+ G.Graph . . . 

UNPARSERl = 

value unparse : G.Graph + write any Unit ... 

object SYSTEM : 

object 

value 
P : PARSER1, TR : TRANS 1, U : UNPARSERl 

translate : Unit G write any Unit 
translate() 

let (ok, p) = P.parse() in 
if ok then U.unparse(TR.tr(p)) 
else 1O.outputCerror") end 

end 
end 

The IO module will be explained in section 4.2. 

4.1.2. Decomposition of data types 

Env, respectively. In order to ensure that ENVl and PRO- 
GRAM1 share Vurld, that GRAPHl and EDGEl share Type, 
and ENVl and GRAPHl share Edge, the following objects 
are defined: 

object V : VAR1, T : TYPE1, E : EDGEl 

The modular decomposition made so far for the initial spec- 
ification is shown in figure 5. 

Figure 5. Modular decomposition of the initial 
specification 

In order to decide which additional data type modules to de- 
fine, we investigate in figure 4 what the various lunds of 
data of the system are and what their relationships are. We 

4.2. The PARSER and UNPARSER mod- 
ules 

The parsing is made using the well-known recursive de- 
scent parsing technique and the unparsing is straightfor- 
ward, so in this paper we will not show the specifications of 
the purse and unpurse functions. 

Figure 4. Data and their relationships 

have already seen that there are programs (parse trees) (type 
Progr) and graphs (type Graph). Programs contain vari- 
ables (type VurZd). Graphs are built from nodes (type Nude) 
and edges (type Edge). Nodes may have associated opera- 
tors (type Inj3xOp or PrejixOp), and edges as well as oper- 
ators have types (type Type). As mentioned in section 3.2 
there is a strong relationship between the variables of a pro- 
gram and the edges of the graph into which the program 
should be translated, and it turns out that in order to define 
the tr function, we need environments (type Env), which 
keep track of the relationship between variables and edges. 

This analysis leads to the decision to define four ad- 
ditional data type modules, VARI, EDGE1, TYPE1 and 
ENVl, which provide the data types Vurld, Edge, Type and 

The only difficulty in writing the parser and unparser is 
that RSL does not provide IO functions. Therefore we spec- 
ify input and output functions which should model IO func- 
tions in the programming language we are going to translate 
the final specification into (in our case C++). The functions 
can only be given signatures and must be translated by hand. 
They are therefore defined in a separate global object, IO: 

object IO : 
class 

value 
input : Unit read any Char, 
output : Text + write any Unit 

end 

4.3. The PROGRAM and VAR modules 

A specification of variables and parse trees (abstract syn- 
tax trees) for SubC programs is given below: 
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scheme PROGRAM1 = 
class 

type 
Progr :: globals : Decls id : Text body : S, 
Decls = Decl" , 
Decl :: var : V.VarId type-of : Type, 
S == mkAsg(var : V.VarId, expr : Expr) I 

mklf(cond : Expr, then-sen : S, else-sen : S) I 
mk-While(test : Expr, body : S) I 
mkBlock(dec1s : Decls, sens : S*), 

Expr == mk-Const(va1 : Int) I 
mk-VarRef(id : V.VarId) I 
mkPrefixExpr(prefix-op : PrefixOp, expr : Expr) I 
.'.) 

PrefixOp == not I ..., InfixOp == add I ..., 
Type == integer 

end 

scheme VARl = class type VarId = Text ... end 

/I* PrefixOp and InfixOp observers */ 
arg-type-of : PrefixOp -+ T.vpe 

arg-type-of(op) = . . . , 
... 

end 

scheme TYPE1 = 
class type Type == integer I boolean I ... end 

scheme EDGE1 = 
class 

typ'e Edge 
value /* edge observer */ type-of : Edge -+ T.Type 

end 

The type Graph of graphs is chosen to be a sort. In this 
way the decision on how graphs should be represented has 
been deferred to a later stage of the development. A num- 
ber of observer functions have been defined. They implic- 
itly state that graphs are entities, which have nodes, edges, 
input edges and output edges. We also define the condi- 
tions unde:r which a graph is well-formed: (0) it does not 

4.4. ~h~ GRAPH, EDGE and TYPE mod- 
d e s  

An abstract property-oriented specification of graphs and 
edges, and a concrete specification of types are given below: 

scheme GRAPH1 = 
hide is-wff in class 

type Graph = {I g : Graph' is-wff(g) I}, Graph' 
value 

/* Graph observers */ 
nodes : Graph' -+ Node-set, 
edges : Graph' -+ E.Edge-set, 
out-edges : Graph' -+ E.Edge-set, 
in-edges : Graph' -+ E-Edge-set 
in-edges(g) 2 edges-with-no-source(g), 
is-wff : Graph' -+ Bool 
is-wff(g) 

no-illegal-cycles(g) A 
(V n : Node n E nodes(g) 
(V ed : E.Edge ed E edges(g) + 

card sources(ed, g) 5 1) A 
edges-of-nodes(g) C edges(g) A 
out-edges(g) C edges(g) A 
out-edges(g) 2 edges-with-no-sink(g), 

is-wff(n)) A 

... 
type 

Node == 
Prefixnode(PrefixOp, E.Edge, E.Edge) I 
Infixnode(InfixOp, E.Edge, E.Edge, E.Edge) I 
Nopnode(E.Edge, E.Edge) I Voidnode(E.Edge) I 

contain illegal cycles, (1) all its nodes are well-formed, (2) 
all its edges have at most one source, (3) the set of edges 
which have a sink or a source node is a subset of the edges 
of the graph, and (4) the output edges is a subset of the 
edges of tlhe graph and a supersat of those edges which do 
not have a sink. Some of these observers are derived, be- 
cause thely can be expressed in terms of the other func- 
tions. The only non-derived Graph observers are nodes, 
edges and out-edges. Note, that [out-edges(g) cannot be de- 
rived as edges-withnosink(g), since there may be output 
edges which have a sink, cf. the (a edge in figure 2. 

The Node type is defined as a variant type with one vari- 
ant for ealch kind of node. Each variant has a constructor 
which prolduces a node of that kind. For instance, Prefixn- 
ode(op, i, 0) is a prefix node with associated prefix operator 
op, input edge i and output edge 0. The is-wff function de- 
fines under which conditions a node is well-formed. 

The Injixixop and PrejixOp types are defined as variant 
types with one constant variant for each kind of infix oper- 
ator and prefix operator, respectively. Operators are charac- 
terized by having certain argument and result types. A num- 
ber of observer functions define these. 

The Ty,pe type is defined as variant type with one constant 
variant for each kind of type. 

The Edge type is defined as a sort having an observer 
which gives the type of the edge:. 

..., 
4.5. Thle ENV module PrefixOp == not 1 ..., InfixOp == add 1 ... 

/*  Node observers */ 
is-wff : Node -+ Bool 
is-wff(n) = ..., 

value 

When translating a SubC program, each assignment, v 
= e, should cause a new edge fior v in the graph, and when 

9' 
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translating a SubC value expression which reads a variable, 
v, we need to know what the current edge of v is. There- 
fore, in the translation process, we need environments to 
keep track of (1) what the current edge of each variable is 
and (2) which edges have been used (so that we can generate 
new edges which have not been used before). The relation- 
ship between variables and their current edges is one-to-one 
as two different variables cannot have the same edge. 

An abstract property-oriented specification of a data type 
Env of environments is given below: 

scheme ENVl = 
hide map, used-edges, is-one-to-one, inverse-of in class 

type 
Env, 
Relation = 

{I m : V.VarId & E.Edge is-one-to-one(m) I }  
value 

/* non-derived Env observers */ 
map : Env + Relation, 
used-edges : Env -+ E.Edge-set, 
/+ derived Env observers */ 
varids-of : Env -+ V.VarId-set 

edge-of : V.VarId x Env 

edges : Env -+ E.Edge-set 

varid-of : E.Edge x Env 7 V.VarId 

varids-of@) dom map(p), 

edge-of(v, p) = (map(p))(v) pre v E varids-of(p), 
E.Edge 

edges(p) E mg map@), 

varid-of(ed, p )  = (inverse-of(map(p)))(ed) 
pre ed E edges@), 

...t 

/* Env constructors */ 
p 0  : Env ..., 

new-edge : V.VarId x Env 7 E.Edge x Env 
new-edge(v, pl)  as (ed2, p2) 
post 

... 

let edl = edge-of(v, pl )  in 
ed2 used-edges(p1) A 
used-edges(p2) = used-edges(p1) U (ed2) A 
E.type-of(ed2) = E.type-of(ed1) A 
map(p2) = map(p1) t [ v +-+ ed2] 

end 
pre v E varids-of(p1) 

end 

The type Env of environments is chosen to be a sort, in or- 
der to defer any decision of what their representation should 
be. A number of observer functions have been defined. As 
there is no representation for environments, the construc- 
tors are defined implicitly by predicates or post conditions. 
The post condition for an Env constructor, op, states for each 
non-derived Env observer, obs, what happens when obs is 
applied to an environment returned by the operation op. If 
op also returns values of other types (e.g. E.Edge) the post 
condition also comprises similar conditions for these values. 

4.6. The GRAPH-WITH-OPS module 

When defining the translation functions in the TRANS 
module, it will be convenient to define these in terms of 
semantic operations on graphs (i.e. functions which take 
graphs as arguments and combine these into new graphs). 
We therefore define an extension, GRAPH-WITH-OPS 1, of 
the GRAPH1 module with such operations, and replace our 
original definition of the object G with the following 

object G : GRAPH-WITH-OPSI 

This change of G illustrates how the process of creating the 
initial specification of a system typically consists of iter- 
ations. The revised modular decomposition of the initial 
specification is shown in figure 6. 

Figure 6. Revised decomposition of initial 
specification 

GRAPH-WITH-OPS 1 is defined as follows6 : 

scheme GRAPH-WITH-OPS 1 = 
extend GRAPH1 with extend ENVl with class 
value 

/* semantic operations */ 
sequence : Graph x Env x Graph x Env 
sequence(g1, pl ,  82, p2) as g 
post 

Graph 

let 
nsl = nodes(gl), ns2 = nodes(g2), 
i2 = in_edges(g2), 
01 = out-edges(gl), 02 = out-edges(g2), 
writtenin-both = 

writtenin(g1, pl)  n writtenin(g2, p2), 
vs = writtenjn-both \ read-in(g2, pl), 
xx = edges-of(writtenin-both, pl)  

nodes(g) = 
nsl U ns2 U 

in 

6The rest of this section can be skipped by readers who are not inter- 
ested in the specific translation problem, but only in the RAISE develop- 
ment process. 
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{Voidnode(edge-of(v,pl)) I v : V.VarId v E vs} A 
edges(g) = edges(g1) U edges(g2) A 
out-edges(g) = 02 U (01 \ xx) 

end 
pre out-edges(g1) U in-edges(g2) 

out-edges(g2) 5 edges(p2), 
edges(p1) A 

assign : E.Edge x Graph x E.Edge ? Graph 
assign(v-ed, g l ,  res-ed) as g 
post nodes(g) = nodes(g1) U {Nopnode(res-c:d, v-ed)} A 

edgedg) = edges(g1) U {v-ed} A 
out-edges(g) = {v-ed} 

pre {res-ed} = out-edges(g1) A v-ed edge:;(gl), 

variable~ef : E.Edge -+ Graph 
variable_ref(ed) as g 
post nodes(g) = {} A 

edges(g) = {ed} A out-edges(g) = {ed}, 

convert-type-ifneeded : 
Graph x E.Edge x T.Type x Env 7 

Graph x E.Edge x Env ..., 
... 

value 
/* auxiliary functions */ 
readin : Graph x Env ? V.VarId-set 

read-in(g, p )  . . . , 
writtenin : Graph x Env 5 V.VarId-set 

written-in(g, p) ..., 
edges-of : V.VarId-set x Env ? E.Edge-set ... 

end 

As there are no constructor functions for graphs, each of the 
semantic operations is defined implicitly by a po!jt condition. 
The post condition for an operation, up, states for each non- 
derived graph observer, obs, what happens whe:n obs is ap- 
plied to a graph returned by the operation op. The operations 
sequence, assign and variable-ref will be explained in con- 
nection with their use in the TRANS 1 module. 

In graphs, but not in C programs, there is a distinction 
between Booleans and integers. Therefore, when translat- 
ing C programs to graphs, it is sometimes necessary to add 
some operator nodes which convert the result from an inte- 
ger edge to a result on a Boolean edge, and vice: versa. con- 
vert-type-ifneeded is used for that purpose. 

4.7. The TRANS module 

Using the semantic operations provided by the GRAPH-- 
WITH-OPS 1 module, it is now possible to give explicit def- 
initions of the tr functions which translate parse trees (ab- 
stract syntax trees for SubC constructs) into graphs. The 
specification is given below?: 

7The rest of this section can be skipped by readers who are not inter- 
ested in the specific translation problem, but only in the RAISE develop- 
ment process. 

scheme TRANS 1 = 
class 

value 
/* translation of programs */ 
tr : C.Progr 7 G.Graph 
tr(p) z 

let pl  = tr-d(C.globals(p), G.pO), 
(gl, p2) = tr-s(Cl.body(p), p l )  

in .._ end, 
/* translation of declarations */ 
tr-d : C.Decls x G.Env 5 G.Env 

/* translation of expressions */ 
tr-e : C.Expr x G.Env -? G.Graph x E.Edge x G.Env 
tr-e(e, p)  

tr-d(dls, p) f ..., 

case e of 
C.mk-Const(i) -+ ..., 
C.mk-VarRef(v) -+ 

let ed = G.edge-of(v, p) 
in (G.variable_ref(ed), ed, p) end, 

C.mlF’refixExpr(op, el) + ..., 
C.mklnfixExpr(op, el ,  e2) + ... 

end, 
/* translation of statements */ 
tr-s : C.S x G.Env 
tr.s(s, p) 

(;.Graph x G.Env 

case s of 
C.mk-Asg(v, e) -+ 

let (g, res-ed, pl)  = tr-e(e, p), 
(g‘, res-ed’, p2) = 

G.coinvert-typeAfneeded 
(g, res-ed, Tinteger, pl), 

(v-ed, p ? ~ )  = G.new-edge(v, p2) 
in (G.assign(v-ed, g’, res-ed‘), p3) end, 

C.mklf(e, S I ,  s2) -+ ..., 
C.mk-While(e, s) -+ ..., 
C.mk_Block(dls, sl) -+ ... 

end, 
/* translation of statement lists */ 
tr-sl : C.S* x C.Env ?. G.Graph x G.Env 
tr-sl(sl, p )  

if sl = () then ... 
else 

let (gl, p l )  = tr-s(hd sl, p). 
(g2, p2) = tr-sl(t1 SI, p l )  

in (G.sequence(g1, p l ,  82, p2), p2) end end, 
/* translation of operators */ 
tr-po : CPrefixOp + CkPrefixOp 
tr-po(op) case op of C.not -+ G.not, ... end, 
trio : ChfixOp -+ G.l[nfixOp 
trio(op) E case op of Cadd -+ G.add, .. . end, 
/* translation of types */ 
tr-t : C.vpe + T.Type 
tr-t(t) case t of Cinteger -+ T.integer end 

end 

A program is translated by translating its body statement in 
an environment which is obtained by translating its global 
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declarations in the initial environment. The translation of 
a list of declarations in an environment updates the envi- 
ronment such that each declared variable get an associated 
edge, which has not been used before. Statements and ex- 
pressions are translated in an environment into a possibly 
updated environment and a graph, g, representing the state- 
ment/expression. Expressions additionally translate into an 
edge, the result edge, which is that output edge of g on which 
the value of e is to be found. (When expressions do not have 
side effects, as it is the case in SubC, the result edge will be 
the only output edge of the graph.) 

A value expression which is a variable reference, mk-- 
VarRef(v), is translated to the graph consisting of no nodes 
and only one edge, ed, which is the edge of v in the current 
environment. The result edge is ed. 

An assignment statement, mkAsg(v, e ) ,  is translated by 
first translating e and making any necessary type conver- 
sions on the result edge. In this way a graph, g', with result 
edge, res-ed', is obtained. Then a new edge, v-ed, for v is 
created and the environment is updated accordingly. Finally, 
the G.assign operation (specified in GRAPH-WITH-OPS 1) 
is used to combine g' with a nop node whose input edge is 
res-ed' and whose output edge is v-ed. A nop node is like a 
prefix node, whose associated function is the identity func- 
tion. The nop node was added to combine the result edge 
res-ed' with the new current edge of v. Later, a graph op- 
timizer could remove the nop node by identifying the two 
edges. This has for instance been done in the graphs shown 
in figures 1 and 2 in section 3. 

A non-empty sequence of sentences is translated by first 
translating the first sentence of the sequence obtaining a 
graph, g l ,  and a new environment, p l ,  and then translat- 
ing the remaining sentences obtaining a graph, 82, and a 
new environment, p2. After that G.sequence (specified in 
GRAPH-WITH-OPS 1) is used to make a sequentially com- 
position of g l  and g 2  to obtain the resulting graph, g. g con- 
sists of the union of the nodes and edges of g l  and g 2  and 
some additional void nodes. The output edges of g consists 
of the output edges of 82 and some of the output edges of 
g l .  The output edges of g l  can be divided into three groups: 
(1) those which are also input edges of g2 (i.e. belong to 
variables which are read in 82) and hence connect the two 
graphs, (2) those which belong to variables, which are nei- 
ther read nor written in 82, and (3) those which belong to 
variables which are not read but written in g2. The edges 
from group (2) are the additional output edges, and edges 
from group (3) are those which the additional void nodes are 
voiding. An example of a translation of a sequence is shown 
in figure 7. 

Other kinds of expressions and statements are translated 
in a similar way. 

Figure 7.  Translation of x = y ; x = z 

4.8. Correctness of the initial specification 

Having developed the initial specification, the question is 
whether it satisfies the informally stated requirement in sec- 
tion 3 that a program should be translated into a graph rep- 
resenting the computation of the program. If there had been 
a common formal semantics for C programs and data flow 
graphs, i.e. functions seml and sem2 mapping values of type 
Progr and Graph, respectively, into some semantic domain 
Sem, then we could have formalized our proof obligation as 

V p : Progr sem2(tr(p)) = seml(p) 

and formally verified that this was true. However, for a non- 
trivial language, like C, it would be an enormous task to de- 
fine its semantics, and we decided just to argue informally 
for the correctness. 

5. Development 

In this section we aim at developing the initial RSL spec- 
ification into a new RSL specification which is sufficiently 
concrete so that almost all of it can be automatically trans- 
lated into C++ by the RAISE C++ code generator. 

If there are parts of the specification which need to be 
translated by hand, these must be localized in separate mod- 
ules. (This is a requirement by the C++ code generator.) 

In the initial specification the following non-translatable 
RSL constructs appear: 

1. sorts and/or implicit value definitions (in EDGEI, 

2. set comprehensions (in GRAPH-WITH-OPS 1) 
3. class extensions (in GRAPH-WITH-OPS 1) 

ENV1, GRAF'HI, GRAPH-WITH-OPS1) 

We remove these constructs step by step in the given order. 

5.1. Removing sorts and implicit value def- 
initions 

5.1.1. Development of the EDGE module 

We develop the EDGEl module by replacing the sort defini- 
tion of Edge and its observer in EDGEl with a short record 
type obtaining a new module EDGE2: 
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scheme EDGE2 = 
class type Edge :: num-of : Nat type-of : T.Type end 

The RAISE tools have been used to justify that EDGE2 im- 
plements EDGEl. We now replace EDGEl with EDGE2 in 
the definition of E: 

object E : EDGE2 

As EDGE2 implements EDGEl replacing EDlGEl with 
EDGE2 will not affect the modules referring to E!. 

5.1.2. Development of the ENV module 

We now develop the ENVl module into a new module, 
ENV2, by replacing the sort Env with a concrete type and 
replacing the implicit value definitions with explicit value 
definitions in such a way that ENV2 implements ENVl. The 
principles for doing this are the same as for the develop- 
ment of the GRAPH and GRAPH-WITH-OPS modules (de- 
scribed below) and we will not show the details here. 

5.1.3. Development of the GRAPH module 

We now develop the GRAPHl module by replacing the def- 
initions 

type Graph = { 1 g : Graph’ is-wff(g) I), Graph’ 
value 

nodes : Graph’ -+ Node-set, 
edges : Graph’ -+ E.Edge-set, 
out-edges : Graph’ -+ E.Edge-set, 
in-edges : Graph‘ + E.Edge-set 

in-edges(g) edges-withmo-source(g), 

in GRAPHl with 

type Graph = {I g : Graph’ is-wff(g) I}, 
Graph’ = 

{I  g : Graph” 
in-edges(g) = edges-withno-source(g)I}, 

Graph” :: 
nodes : Node-set edges : E.Edge-set 
in-edges : E.Edge-set out-edges : E.Edge-set 

obtaining a new module GRAPH2. 
As the input edges of a graph can be derived by in- 

specting the nodes and edges of the graph, it is not neces- 
sary to include the k e d g e s  component in the representa- 
tion. However, we decided to include it, as the unparser 
needs this component (since the LYCOS textual represen- 
tation of graphs has redundant information concerning the 
input edges), and it is more efficient to calculate it on the fly 
in the translation process, where the graph is built by com- 
bining sub-graphs, than calculating it afterwards. Note how 
the inclusion of the in-edges component in the representa- 
tion implies the need for an additional subtype. 

Instead of using sets to represent collections of nodes etc., 
one could have used lists: 

Graph” :: 
nodes : Node* edges : E.Edge* 
in-edges : E.Edge* out-edges : E.Edge* 

However, there is no reason for )using lists rather than sets. 
The RAISE C++ code generator is able to translate lists as 
well as sets, and the produced code would not be more ef- 
ficient for lists than for sets as they are both translated into 
linked lists. There is actually a good reason for using sets 
and not lists. Using lists would require more work than us- 
ing sets, as one then would have had to define additional op- 
erations like union and intersection, which are built-in for 
sets. 

The RAISE tools have been used to generate and jus- 
tify conditions which ensure tlhat GRAPH2 implements 
GRAPHl For example the following condition was gener- 
ated and iimmediately reduced to true by a simplifier: 

LV g : Graph’ in-edges(g) 
simplify : 

Ltrue, 

edges-withmo-source(g)J 

qed 

5.1.4. Development of the GRAPH-WITH-OPS module 

If we in the GRAPH-WITH-OPSl module re- 
place GR4PH1 with GRAPH2 we can then also replace the 
implicit definitions of the semantic operations with explicit 
definitions. Furthermore, we integrate the development of 
the ENV module by replacing 13NV1 with ENV2. In this 
way we obtain the following new module. 

scheme GRAPH-WITH-OPS2 = 
extend ENV2 with extend GRAPH2 with class 
value 

f * semantic operations * f 
sequence : Graph x Env x Graph x Env ? Graph 
sequence(g1, pl ,  82, p2) z 

let 
nsl = nodes(gl), ns2 = nodes(g2), 
il = in-edges(gl), i2 = in_edges(g2), 
01 = out-edges(gl), 02 = out-edges(g2), 
connected = 01 n i2, 
writtenin-both = 

writtenin(g1, pl) r-1 writtenin(g2, p2), 
vs = writtenin-both \L read-in(g2, pl), 
xx = edges-of(writtenm-both, pl) 
in 
&-Graph”( 

nsl U ns2 U 
{Voidnode(edge-of(v,pl)) I v : V.VarId v E vs}, 
edges(g1) U edges(g2), 
il  U (i2 \ connected), 
02 U (01 \ xx)) 

end 
pre ..., 

... 
end 
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The RAISE tools have been used to justify that GRAPH-- 
WITH-OPS2 implements GRAPH-WITH-OPS 1. 

As GRAPH-WITH-OPS2 implements GRAPH-WITH-- 
OPSl we can now replace GRAPH-WITH-OPS1 with 
GRAPH-WITH-OPS2 in the definition of G: 

object G : GRAPH-WITH-OPS2 

5.2. Removing set comprehensions 

Set comprehensions have been used extensively in the 
specification because they provide an elegant and short way 
of constructing sets based on properties of their elements, 
but they are not in the translatable subset of RSL. Therefore 
we must refine them into other RSL constructs that are trans- 
latable. No advice on how to do this is offered by the RAISE 
method book [21]. Here we propose a systematic approach 
to refining set comprehensions. 

5.2.1. General method 

A set comprehension of the form 

{ f(x, y l ,  _.., yn) I x : X x E xset } 

where X is some type, xset is an expression of type X-set, 
f has type X x Y l  x ... x Yn -+ Y,  and y l ,  ..., yn are free 
names, may be replaced by a function application 

comprehend(xset, yl, ..., yn) 

if the following definitions are added: 

value 
comprehend : X-set x Y l  x ... x Yn + Y-set 
comprehend(xset, y l ,  ..., yn) 

if xset = {}  then {} 
else let x = pick(xset) in 

{f(x, ~ 1 ,  ..., yn)} U 
comprehend(xset\{x}, yl, ..., yn) 

end end, 
pick : X-set 7 X 
pick(xs) 5 let x : X x E xs in x end 
Pre xs # {I 

pick is a function which takes a set as argument and returns 
non-deterministically one of its elements. 

In [ lo] it is proven that this development step is an im- 
plementation, when xset is convergent and of type X-set. 

The comprehend function is translatable by the RAISE 
code generators, butpick is not. However, pick can easily be 
translated by hand, since the C++ class which X-set is trans- 
lated into, provides a function, which given a set returns one 
of its elements. 

5.2.2. Development of the GRAPH-WITH-OPS module 

An example of a set comprehension in module 
GRAPH-WITH-OPS2 is 

{ Voidnode(edge-of(v, pl)) I v : V.VarId v E vs ) 

This can be replaced by Voidnodes(vs, p l )  if the following 
definition is added to the module 

Voidnodes : V.VarId-set x Env -+ Node-set 
Voidnodes(vs, p )  3 

if vs = {} then {} 
else let v = PICK.pick(vs) in 

{ Voidnode(edge-of(v, p))}  U 
Voidnodes(vs \ {v}, p) 

end end 

and PICK is a module defined as follows 

object PICK : 
class 

value 
pick : V.VarId-set 7 V.VarId 
pick(vs) f let v : V.VarId v E vs in v end 
Pre vs # {I 

end 

All other set comprehensions in the GRAPH-WITH-OPS2 
module should be refined in a similar way. In this way 
we obtain a new module, GRAPH-WITH-OPS3, which is 
an implementation of GRAPH-WITH-OPS2. The RAISE 
tools can be used to justify that. 

As GRAPH-WITH-OPS3 implements GRAPH-WITH-- 
OPS2 we can now replace GRAPH-WITH-OPS2 with 
GRAPH-WITH-OPS3 in the definition of G: 

object G : GRAPH-WITH-OPS3 

The configuration of the specification at this point is shown 
in figure 8. 

Figure 8. Intermediate specification 

100 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 07:47:37 EST from IEEE Xplore.  Restrictions apply. 



5.3. Removing class extensions 

Current limitations of the C++ code generator ineans that 
class extensions must be removed before translation. There- 
fore we must do a step in which we expand the !right-hand 
side of GRAPH-WITH-OPS3 to a basic class expression ob- 
taining a new module GRAPH-WITH-OPS4 wlhich obvi- 
ously implements GRAPH-WITH-OPS3, 

As GRAPH-WITH-OPS4 implements GRAPH-WITH-- 
OPS3 we can now replace GRAPH-WITH-OPS3 with 
GRAPH-WITH-OPS4 in the definition of G: 

object G : GRAPH-WITH-OPS4 

5.4. The final configuration 

The configuration of the final specification is shown in 
figure 9. 

I PROGRAM1 1 I GRAPH-WlTH-OPS4 1 

Figure 9. Final specification 

6. Generating C++ code 

Having developed the specification as far a;$ explained 
above, it can now be translated to C++. This is done by 
translating the IO and PICK modules by hand to C++ mod- 
ules 1O.h and PICK.h, while the remaining modlules can be 
translated automatically by the RAISE C++ code generator. 

In order to get a running C-to-data-flow-graph translator, 
one now only has to write a trivial C++ main function that 
calls the C++ function, SYSTEMlranslate, which the RSL 
SYSTEM. translate function was translated to. 

7. Summary 

It has been illustrated how a translator from C programs 
CO data flow graphs can be developed stepwise and sepa- 
rately from an abstract property-oriented specifi'cation into a 

concrete model-oriented one using the RAISE method. The 
RAISE tools have been used to syntax and type check the 
specifications, to generate and justify the conditions that the 
development steps are implementations, and to translate the 
final Specification into a C++ program. 

In addition to illustrating the general methodology of 
RAISE, a specific method for refining set comprehensions 
has been proposed. 

My experiences from this development example was that 
the following features of RAISE were useful: 

The module concept which made it possible to decom- 
pose the specification int'o small manageable units 
whiich I could develop separately. 

The stepwise development principle together with 
good abstraction facilities, which made it possible to 
cope with details one at a time. For instance, in the 
initial specification I could use abstract data types (for 
edges, graphs and environments) and first in later de- 
velopment steps make a dlesign decision on the data 
type representations. 

The: formal basis, which made the meaning of specifi- 
cations unambiguous and allowed formal ver$cation 
of the development steps. 

The rigour, which allowed me to use informal argu- 
ments in the verification, whenever I found that suf- 
ficient. (To have formally verified everything would 
have been too time-consuming.) 

The tools support, which I used to 

.- eliminate syntax and type errors in specifica- 

.- justify (verify) the development steps faster and 
with more confidence than possible by hand 

- generate C++ code 

tions 

Thle C++ code generator would have been even more 
useful if it had been able to handle a larger subset of 
RSL. For instance, it should have been able to handle 
class extensions such tha.t the last development step 
would not have been necessary. 

These features are not only beneficial for the presented 
development example, but are general features that make 
RAISE useful for the development of high-assurance sys- 
tems. In particular, the use of formal (and thereby unam- 
biguous) specifications and the use of formal verification in 
the development process increase the reliability of the pro- 
duced software. 
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