
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Optical label encoding using electroabsorption modulators and investigation of chirp
properties

Xu, Lin; Chi, Nan; Oxenløwe, Leif Katsuo; Yvind, Kresten; Mørk, Jesper; Jeppesen, Palle; Hanberg, Peter
Jesper
Published in:
Journal of Lightwave Technology

Link to article, DOI:
10.1109/JLT.2003.815504

Publication date:
2003

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Xu, L., Chi, N., Oxenløwe, L. K., Yvind, K., Mørk, J., Jeppesen, P., & Hanberg, J. (2003). Optical label encoding
using electroabsorption modulators and investigation of chirp properties. Journal of Lightwave Technology,
21(8), 1763-1769. DOI: 10.1109/JLT.2003.815504

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13727146?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/JLT.2003.815504
http://orbit.dtu.dk/en/publications/optical-label-encoding-using-electroabsorption-modulators-and-investigation-of-chirp-properties(11ad409c-992a-4584-842e-a0a67219b0c1).html


JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 21, NO. 8, AUGUST 2003 1763

Optical Label Encoding Using Electroabsorption
Modulators and Investigation of Chirp Properties

L. Xu, N. Chi, L. K. Oxenløwe, K. Yvind, J. Mørk, P. Jeppesen, Member, IEEE, and J. Hanberg

Abstract—A novel scheme of optical label encoding by wave-
length conversion based on electroabsorption modulators (EAMs)
is reported. Based on the experimental observations, the chirp
properties of the wavelength-converted signal are discussed and a
wide dynamic range of the chirp -parameter is found allowed.
Compared with cross-gain modulation (XGM) in a semiconductor
optical amplifier (SOA), the EAM has several advantages, which
make it attractive for optical label encoding or other applications
as a wavelength converter.

Index Terms—Chirp -parameter, cross-absorption modula-
tion, electroabsorption modulator (EAM), optical label encoding.

I. INTRODUCTION

ULTRA-HIGH speed data-centric networks will likely
evolve into an Internet Protocol (IP) network on a wave-

length-division-multiplexing (WDM) physical infrastructure
[1]. With respect to efficiency and cost effectiveness, new
switching technologies are required to route individual packets
without converting the packet from optical to electrical format.
All-optical packet switching is therefore most likely to be the
key technology for the implementation of future IP-over-WDM
networks [2]. In addition to the optical wavelength that can
serve as an optical label in the multiple protocol wavelength
switched (MP S) scheme, a second level of optical label is still
necessary for provisioning, maintaining, and restoring switched
light-paths. This second level optical label can be realized by
subcarrier multiplexing (SCM) [2], [3] or by an orthogonal
modulation format [4]–[8] combining amplitude shift keying
(ASK) and differential phase shift keying (DPSK) of a single
carrier.

Based on the two-level optical label, all-optical processing
may be used to realize the wavelength swapping as well as the
adding and dropping of the second level label. One promising
all-optical processor is the electroabsorption modulator (EAM)
[9], [10], which has proven to be a versatile component in ultra
fast WDM and OTDM systems with its ability to perform sev-
eral different functionalities, yet remaining a simple structure.
Recently, various all-optical functionalities based on cross-ab-
sorption modulation (XAM) [11], [12] have been demonstrated,
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Fig. 1. Experimental setup. TL1: Tuneable laser #1. TL2: Tuneable laser #2.
Label Rx: Label receiver. Payload Rx: Payload receiver.

such as demultiplexing [13]–[15], wavelength conversion [14],
[16]–[18] and all-optical regeneration [19]–[22].

In this paper we report, for the first time to the best of our
knowledge, on a novel optical label encoding scheme employing
EAM-based wavelength conversion. The two-level labeled sig-
nals consist of a 10 Gb/s ASK payload and a 2.5 Gb/s DPSK
label. Through wavelength conversion based on an EAM, the
payload is duplicated on a new wavelength, which in advance
has been phase-modulated with a new DPSK label, while the
old labels, i.e., the original wavelength and the DPSK data on
the original wavelength, are completely dropped off. Our exper-
iment also provides a simple approach to evaluate the phase dis-
tortion and thus the frequency chirp of the converted signal. By
comparing the experimental data with simulated results using a
simple model for the chirp, we arrive at an estimate for the chirp

-parameter. The influence of dynamic changes of the-param-
eter is analyzed.

This paper is organized as follows. Experimental set-up and
results are given in Section II. A chirp model of EAMs is pre-
sented and used to analyze its impact on the phase detection in
Section III. In Section IV, we compare the wavelength conver-
sion characteristics of an EAM and an SOA, and possible ad-
vantages of the EAM are discussed. Conclusions and acknowl-
edgment are given in Section V and VI, respectively.

II. EXPERIMENTAL PROCEDURES ANDRESULTS

The experimental set-up is shown in Fig. 1. A contin-
uous-wave (CW) light beam generated by tuneable laser
#1 (TL1) working at 1550 nm is intensity-modulated by a
Mach–Zehnder (MZ) interferometer with a PRBS pattern
length of forming a nonreturn-to-zero (NRZ) signal at

0733-8724/03$17.00 © 2003 IEEE
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Fig. 2. Eye diagrams of the ASK payload at 10 Gb/s of (a) the original signal
and (b) the converted signal.

10 Gb/s that serves as the pump, hereafter referred to as an
amplitude shift keyed (ASK) signal. Wavelength conversion
is performed through cross-absorption modulation (XAM)
induced by the pump beam on a probe signal. The probe beam
is generated by tuneable laser #2 (TL2) working at 1555 nm
and is phase-modulated at 2.5 Gb/s with a pseudorandom bit
sequence (PRBS) pattern length of , hereafter referred
to as a differential-phase-shift-keyed (DPSK) signal. Parasitic
phase modulation in the EAM, due to refractive index changes
induced by the ASK-pump signal, will thus affect the quality
of the DPSK signal. The optical power of the pump and probe
beams are 20 and 10 dBm, respectively. The reverse bias of
the EAM is 2.4 V. After wavelength conversion, the probe
beam is filtered out through an optical filter with a bandwidth
of 1.6 nm. In the case of conversion to the same wavelength,
counterpropagation of the pump and probe can be used to
separate the original and the converted signals. Using a 3 dB
coupler, the converted signal is divided into two arms, one for
intensity detection and the other for phase detection. The phase
detector is a fiber-based delay interferometer (DI) consisting
of two 3-dB couplers, which converts the DPSK modulation as
well as the frequency chirp into intensity variation. One arm of
the interferometer is 8 cm longer than the other, corresponding
to an extra time delay of 400 ps. The transmission loss differ-

Fig. 3. Eye diagrams of the DPSK label at 2.5 Gb/s of (a) the original signal
and (b) the converted signal.

ence between the two arms is very small (0.17 dB), therefore
no loss imbalance effect is observed on the DPSK detection.

The EAMs used in this paper are multiple-quantum-well
(MQW) devices with 10–15 quantum wells. The fiber-to-fiber
loss at zero bias is about 16 dB for an uncoated device.

Fig. 2 depicts the ASK eye diagrams of the original signal
and the converted signal, clearly showing that the ASK infor-
mation is successfully duplicated onto the probe beam. Since
both mark bits and space bits of the wavelength converted signal
carry phase information, the power level of space bits should not
be too low to facilitate detection of the phase variation. There-
fore a relatively low extinction ratio (ER) of the converted signal
is required. Theoretically, an ER up to 9.5 dB is allowed for
DPSK detection. In our experiment, however, we adjust the ER
to be about 3.5 dB because the fiber-based DI is temperature and
polarization sensitive and therefore difficult to optimize. Com-
pared to a normal ASK signal with an ER of 10 dB, the power
penalty due to low ER is measured to be6 dB. The ER of the
ASK signal can be improved by using a high-stability DPSK
detector and/or a balanced receiver.

The DPSK eye diagrams before and after wavelength
conversion are shown in Fig. 3; open eyes of the converted
signal are observed. As expected, however, the upper eyelids
are broadened considerably while the lower eyelids get only
slightly thicker. This can be attributed to the 256 different
combinations of ASK bits in one DPSK bit-time of the two
arms of the DI, as will be discussed in the following section.

BER measurements as shown in Fig. 4 confirm that the ASK
and DPSK components of the converted signal can both have
BERs as low as , and optical label encoding/recognition is
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Fig. 4. BER of the payload and the label before and after wavelength
conversion.

thus successfully realized. The converted signal is then trans-
mitted over either 50-km SMF or 80-km NZDSF; in both cases
error-free operation was obtained for the payload as well as the
label.

III. PULSE CHIRP ANALYSIS

In this section the influence of the frequency chirp of the
wavelength converted signal on the DPSK demodulation will
be discussed. Following this discussion, our experimental re-
sults will be used to evaluate the chirp.

In the delay interferometer one arm provides an extra delay of
400 ps to the signal, i.e. one bit-time of the DPSK signal, before
it is combined with the other arm at the output. The interference
between the two arms is generally governed by

(1)

(2)

where denotes the output electric field, the compound op-
tical power, and the optical angular frequency. and are
the optical power and the phase of one arm,and of the
other arm. is the phase difference between the two arms
induced by the original DPSK modulation and is the
phase difference caused by chirp originating from wavelength
conversion (i.e., XAM in the EAM).

In one DPSK bit-time, four ASK bits of one arm overlap
with their counterpart in the other arm, resulting in a total of
256 combinations. This is understandable because each arm has

combinations of ASK bits and a direct calculation
leads to . However, some combinations have the
same consequence, e.g., (1100:0011) and (0011:1100) make no
difference, this leads to a dividing factor of 2. Since the DPSK
modulation results in a zero orphase difference between the
two arms, they may interfere constructively or destructively, re-
sulting in a multiplicative factor of 2. These two factors coun-
teract each other leading to a total number of 256.

If a photodiode with a bandwidth of 2.5 GHz is used for
the detection of the DPSK label, power levels averaged within

TABLE I
THE POWER LEVELS FORMED IN DPSK EYE DIAGRAMS DUE TO

ASK PULSE INTERFERENCE

one DPSK bit-time will be shown due to the slow response, in-
stead of the subtle ASK structure. The averaged power levels
depend on the number of the mark bits involved in the interfer-
ence of the two arms, but different combinations may have dif-
ferent consequences even with the same number of mark bits.
For instance, considering the case of 4 mark bits under con-
structive interference, three different average power levels re-
sult from (1111:0000), (1110:1000) and (1100:1100) according
to (2), while all other possibilities of combinations do not gen-
erate any new levels. This corresponds to the number of different
unordered possibilities for filling slots by different elements.
The solution for this problem is shown in (3)

(3)

In our case, is the number of ASK bits in one DPSK bit-time
and equals 4, and is the number of levels within one ASK
bit-time. As will be shown in Table I, equals 3 for constructive
interference and 2 for destructive interference. It is thus found
that power levels result from constructive interfer-
ence and power levels from destructive interference.

For the purpose of chirp investigation, however, it is conve-
nient to express the interference on the basis of a single ASK
bit. The identification of the various signal levels and the cor-
responding power are given in Table I. Hereand denote
the optical power of “1” b and “0” b of the ASK signal, respec-
tively. The three higher levels form the upper eyelids and the
two smaller levels form the lower eyelid. As seen in Table I only
level 2 and level 4 are influenced by chirp-induced phase distor-
tion.

The calculated internal structure of DPSK eyes under zero
chirp is shown in Fig. 5 (left), where four ASK bit-times within
one DPSK bit-time are depicted. The measured DPSK eye dia-
grams (right) are also given for a direct comparison. Here, the
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Fig. 5. Simulated DPSK internal structure under zero chirp (left) and experimental results (right).

ER of the ASK signal is taken from experimental data recorded
when the DPSK eyes were measured.

As indicated in Table I, five distinct power levels result due
to the interference between the two arms of the DPSK demod-
ulator. However, as seen in the right part of Fig. 5, level 2 of
the measured DPSK eyes is not distinguished. This is well un-
derstood and happens because the DPSK and ASK signals are
not synchronized in our set-up. Therefore, only level 4, as one
of the chirp-sensitive levels, can be investigated for comparison
purposes. A later discussion will reveal that, compared to level
2, the impact of level 4 on the DPSK eyes is more important due
to its immediate contribution to the closure of the DPSK eyes.
Fig. 5 also indicates certain disagreement in level 4 between the
left and right parts, suggesting the existence of frequency chirp.

A. Constant Chirp -Parameter

To gain a basic understanding of how the frequency chirp in-
fluences the DPSK demodulation we first employ the assump-
tion of a constant value for the chirp-parameter during an ASK
pulse. Equation (4) defines the chirp-parameter according to
[23], as follows:

(4)

where and denote the instantaneous phase and intensity of
the output light, respectively.

Since this definition, initially defined for electrical modula-
tion of an EAM, expresses the frequency chirp in terms of op-
tical pulse characteristics (intensity and phase), it can also be
used for optical modulation occurring in an EAM, e.g., wave-
length conversion.

The simulation results under various constant chirpvalues
are shown in Fig. 6. It is found that in the presence of chirp, level
4 increases and level 2 decreases, corresponding to an “attrac-
tion” of the two chirp-sensitive levels. From this observation it
becomes apparent that the change of level 4 is dominant in de-
grading the DPSK eyes, especially under small frequency chirp
[Fig. 6(a)] when level 2 has no contribution at all. From Fig. 6
we find that the DPSK eyes tend to close as the chirp-pa-
rameter increases. If the absolute value ofreaches 0.68, the
DPSK eyes become completely closed, as shown in (b). Then it
becomes evident that chirp-induced phase distortion is naturally

Fig. 6. Simulated DPSK internal structure for different values of the chirp-�

parameter: (a) 0.26 and (b) 0.68. The upper and lower dashed lines indicate
levels 2 and 4 in case of no chirp, respectively.

detrimental to DPSK demodulation and will ultimately make the
DPSK signal levels indistinguishable; this also means the chirp
must be reasonably small if the DPSK eyes are to
be clearly open.
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Fig. 7. Measured chirp� versus reverse bias for o/o modulation of EAM.

Fig. 8. Chirp� profile for ASK signal.

B. Varying Chirp -Parameter

Now we consider a more realistic case with the chirp-pa-
rameter varying along the ASK pulses. Our earlier measurement
of the chirp induced by optical-to-optical (o/o) modulation in an
EAM [24], as shown in Fig. 7, suggests a linear variation of the

-parameter for reverse voltages lower than 3 V. In this mea-
surement we modified the fiber response method proposed by
Devaux [25] by inserting an EAM-based wavelength converter
into the transmission line; then the chirp-parameter of the con-
verted signal can be measured with the same principle designed
for electrical-to-optical modulation.

If we assume that the change of the effective field seen by the
probe beam instantaneously follows the power change of the
pump beam, due to the screening effect of pump-photon-gener-
ated carriers, then the small signalwill have a profile similar
to the pump pulse. This is illustrated in Fig. 8, where the nor-
malized pulse is given for reference.

Fig. 9. Internal structure of DPSK eye diagrams, with maximum� of (a) 1.6,
(b) 3.6. The upper and lower dashed lines indicate levels 2 and 4 in case of no
chirp.

We set the start value of corresponding to the highest elec-
trical field, i.e., lowest pump power, to be0.1. Then with the
maximum chirp as a variable parameter, we calculate the in-
ternal structure of the DPSK eye diagrams as shown in Fig. 9.
It is found that a much wider dynamic range of chirpis al-
lowed than for the case of constantparameter. Thus, as seen
in Fig. 9(b), the DPSK eyes completely close for a maximum

of 3.6, whereas in the case of constantwe obtained 0.68.
In case of PRBS where successive “1”s or “0”s may occur with
various pattern length, the chirp-parameters have more com-
plex profiles depending on the patterns. The leading and trailing
edges of various patterns still follow the model presented in
this sub-section while the flat top regions resulting from more
than one mark bit acquire constant chirpvalues. However, ac-
cording to (4), the flat top regions have negligible contribution
to the phase change due to the zero amplitude vari-
ation . Therefore only the two edges of different
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patterns need to be considered, as addressed in the previous dis-
cussion.

Our experimental results are compared to this varying chirp
-parameter model which applies to an EAM. The fairly good

agreement between Fig. 9(a) and the measured DPSK eye dia-
grams (Fig. 5, right-hand side) suggests an approximate range
of chirp from 0.1 to 1.6 for EAM-based wavelength conver-
sion.

Based on the above discussion, we conclude that phase dis-
tortion induced by wavelength conversion may be very harmful
to DPSK detection of the converted signal. For a constant value
of a restrictedly small value is required. However, in the case
of using an EAM, where varies dynamically along the wave-
length converted pulse, the requirements are relaxed and may be
met by a carefully designed EAM.

In addition, when using an EAM as a label encoder (wave-
length converter in our scheme), operational parameters like
wavelength and reverse bias play an important role in practical
cases. With reference to our previous investigation [26], higher
pump power (up to 20 dBm) and larger reverse bias (up to

2.5 V) are generally desirable in terms of conversion effi-
ciency and frequency chirp. Longer probe wavelengths lead to
high conversion efficiency (high extinction ratio) in contrast to
shorter wavelengths, while the latter is preferred for low-chirp
operation.

IV. DISCUSSION

Compared to SOAs, which have been used extensively for
wavelength conversion through cross gain modulation in the
single pass configuration [27], EAMs have several advantages.

First, an EAM allows wavelength conversion with direct data
mapping from the pump to the probe beam without any data
inversion.

Second, an EAM offers low chirp operation. In our optical
label encoding/recognition experiment where attempts were
also made to use an SOA for label encoding, we found that
wavelength conversion based on an SOA distorted the phase of
the probe beam to the extent that it was impossible to detect
the DPSK signal.

V. CONCLUSION

We have reported on a novel optical label encoding/recogni-
tion scheme using EAM-based wavelength conversion, where
an orthogonal modulation method is employed for generating
the optical packets. We also investigate the chirp properties of
the converted signal and analyze its influence on the phase de-
tection. In case of using an EAM as a wavelength converter, we
found the phase distortion due to chirp to be relatively small.
This is attributed to the variation of with voltage, allowing
relatively high values for the maximum value of.
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