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Abstract-This paper presents an IP address lookup 
algorithm with low memory requirement and fast updates. The 
scheme, which is denoted prefix-tree, uses a combination of a 
trie and a tree search, which is efficient in memory usage 
because the tree contains exactly one node for each prefix in 
the routing table. The time complexity for update operations is 
low for prefix-tree. The lookup operation for the basic binary 
prefix-tree may require that a high number of nodes be 
traversed. This paper presents improvements to decrease 
lookup time, including shortcut tables and multi-bit trees. The 
prefix-tree is compared to a trie and a path compressed trie 
using prefixes from a real routing table. 

Index Terms-Longest prefix match, IP lookup, trie, tree 

A. INTRODUCTION 

IP lookup algorithms have been studied extensively in the 
literature. The introduction of Classless Inter Domain 
Routing (CIDR) has reduced the size of forwarding tables, 
but the lookup procedure is more complex because exact 
matching is replaced by longest prefix matching [2][3]. 

A trie structure [4] is a convenient way to represent the 
prefixes in the forwarding table. The lookup and update 
procedures are simple, but the lookup procedure may 
traverse up to B nodes, if B is the number of address bits. A 
trie will contain a high number of intermediate nodes that 
does not contain any prefixes. Removing any intermediate 
nodes with only one child node can reduce the number of 
intermediate nodes. The resulting trie is called a path 
compressed trie or Patricia trie. Another approach is Level 
Compressed (LC) tries [5] .  They can increase lookup speed 
with the cost of a more time-consuming update procedure. 
The time complexity of the update procedure is important 
because frequent routing updates may occur [6 ] .  

The lookup speed can be improved by having balanced 
trees, e.g. range search trees. If N is the number of prefixes, 
the time complexity of lookup is O(log(N)). The main 
drawback is the update time; to keep the tree balanced it is 
usually necessary to re-construct the whole tree. 

This paper presents a new tree structure for storing the IP 
forwarding table. It is based on an exact match VPINCI 
search algorithm developed in [I]. Minor modifications 
have been introduced to support variable length prefixes. 
The prefix-tree structure uses a combination between a trie 
and a tree; in each node a comparison is performed similar 
to a tree. Branches are performed as in tries based on the 
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address bits. The algorithm is described further in section B. 
Further improvements that can speed up the lookup 
operation is given in section C. The performance of the 
proposed algorithms is compared to trie based approaches in 
section D. Finally, in section E, concluding remarks are 
given. 

B. ALGORITHM 

The IP lookup algorithm organizes the IP prefixes in a 
tree structure. Each node in the tree contains exactly one 
prefix, so the size of the tree is equal to the size of the 
routing table. Consider the routing table given in Table 1. It 
contains seven different prefixes belonging to seven 
different routes. 

Table 1: Routing table example 

R7 
1000* I II 1010* I 

Figure 1 shows the tree structure for the routing table 
given in Table 1. Each node contains a prefix and two 
pointers pointing to successive tree nodes. The prefix size 
must be greater than or equal to the level where the prefix is 
located. E.g. the prefix size of ‘1 1 *’ is two, and the level is 
1 .  in Figure 1. The remainder of this section explains the 
search, insert and delete operations by examples followed 
by a pseudo code description. 
I )  Lookup operation 

The example below explains the lookup operation. 
Assume that “10101010” is used as input to the lookup tree. 
The lookup procedure works as follows: The first step is to 
compare the address with the prefix in the root node. The 
root node prefix does not match the address, so the result of 
the comparison is not stored. The first bit in the address is 
then used to determine the next node in the tree. The first bit 
is a ‘1’ so the next visited node is ‘1 I*’. Again, there is no 
match between the prefix ‘ll*’ and the address 
“10101010”. The search procedure is continued using the 
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1000” 
0 1  1 

next bit in the address, which is a ‘0’. This leads to the tree 
node containing prefix ‘lo*’. Now there is a match between 
the prefix and the address. Since this is the longest prefix 
match until now, the R5 route is stored. The next address bit 
is ‘1’ which implies that the next visited node is ‘1010*’. 
Again there is a match between the address and the prefix. 
This is the longest prefix match until now so the route R7 is 
stored and replaces R5. Since ‘ lOlO*’  is a leaf node, the 
lookup operation has finished. The longest prefix match is 
route R7. 

The time complexity of the lookup operation is O(B) 
where B is the number of address bits. The pseudo code for 
the lookup operation is shown below. Ref means that the 
variable is called by reference. ‘pmax’ is initially set to 0, 
and a match is found if ‘pmax’ is larger than 0 when the call 
returns. The procedure call is as follows: lookup (addr, 0, 

1010” 
0 1  1 

root, &pmax, &route) 
lookup(addr,level,node,ref pmax,ref route) { 

if (node = NULL) 
return 

p = prefix-match-size(addr,prefix(node)) 

if (p > pmax) { 
pmax = p 
route = route(node) 

1 

if (addr[level] == ‘1’) 

else 
lookup(addr,level+ 1 ,right(node),pmax,route) 

Zookup(addr,level+ 1 ,left(node),pmax,route) 
1 

2) Insert Operation 
Now the insert procedure will be illustrated by an 

example. The resulting tree is shown in Figure 2 .  It is 
assumed that a new route R8 with prefix ‘1 *’ will be added 

1000* 1010* 
0 1  1 0 1  1 

Figure 2: Prefix-tree after addition of ‘l*’ prefix. 

to the tree. The first step is to examine the root node. The 
level of, the root node is 0, which is smaller than the prefix 
length of 1. for route R8. The first bit of the new prefix is 
used to determine the next node in tree, which is ‘1 1 *’. Now 
the level is 1 ., which is equal to the prefix length of RS. The 
new node must then be inserted at this location since the 
level in the tree must never be higher than the prefix length. 
The second prefix bit of the old prefix ‘1 1 *’ is 1 ., and the 
old node is therefore inserted to the right of ‘l*’. 

The time complexity of the insert procedure is O(B). The 
pseudo code is shown below. The procedure call is as 
follows: insert(prefix,route,O,&root). 

insert(prefix,route,level,ref node) { 

if (node == NULL) { 
node = new node(prefix,route) 
return 

1 
if (length(prefix) == level) { 

pl  = prefix(node) 
r l  = route(node) 
prefix(node) = prefix 
route(node) = route 

if (pl[level] == ‘1’) 

else 
insert(p 1 ,rl ,level+l ,right(node)) 

insert@ 1 ,rl ,level+ 1 ,left(node)) 

1 
else { 

if (prefix[level] == ’1’) 

else 
insert(prefix,route,level+ 1 ,right(node)) 

insert@refix,route,level+ 1 ,left(node)) 
1 
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C. IMPROVEMENTS 

The following section describes a number of 

a) 

improvements that can speed up the lookup operation. The 
first approach shown in Figure 4 uses an additional level 
field in each tree node. The level value determines the next 
bit in the address that is used for searching. A similar 

1100" 

0 I 1 ,  

Figure 3: Prefix-tree after removal of 'l*' prefix. 

3) Delete Operation 
The following example shows how a node is removed. 

The remove operation is shown in Figure 3. The selected 
node is ' I* '  which was just inserted in the previous 
example. A node without child nodes can easily be 
removed. If the node has one or two child nodes it is 
necessary to reconstruct the tree. This can be done by 
finding a leaf node in one of the child trees, and then insert 
this node at the location, which was just removed. The 
selected leaf node is '1000*' which is now inserted as the 
right child of the root node. 

The time complexity of the delete procedure is O(B). The 
pseudo code is shown below. The procedure call is as 
follows: delete(prefix,&root,O). 

delete(prefix,ref node,level) { 

b) 

if (prefix == prefix(node)) { 

0 1  1 1 loo* (2) 
, o  I 1 ,  

leaf-node =find-leaf-node(node) 
if (leaf-node == NULL) { 
delete(node) 
node = NULL 
return 

1 
else { 
right(1eaf-node) = right(node) 
left(1eaf-node) = left(node) 
delete(node) 
node = leaf-node 
return 

} 
1 
else { 
if (prefix[level] = '1') 

else 
delete(prefix,right(node),level+ 1) 

deZete(prefix,left(node),level+ 1) 
> 

1 

1101* 
0 1  1 

technique is utilized for path-compressed tries. 
Figure 4a shows four prefixes stored in a prefix-tree. The 

resulting level-tree is shown in Figure 4b. Note that the root 
node has level = 2 which means that bit number 2 (third bit 
from the left) in the address determines the child node. In 
this example the level-tree has fewer levels ( 3 )  compared to 
the prefix-tree (4) however, in general the worst-case tree 
height is not reduced by the level-tree. 

Introducing a lookup table that provides shortcuts into the 
tree can reduce the maximum number of levels. This is 
suggested for tries in [7], but can be exploited for prefix- 
trees as well. Assume that the number of bits in the address 
is B. The basic tree in Figure 1 has at maximum B levels. 
An example is shown in Figure 5 with B = 8 bits. 

The first B/2 bits of the address are used as index to the 
lookup table. If the entry contains a valid pointer, it will 
point to the sub-tree that will be traversed. If the entry does 
not contain any valid pointer, then the basic tree will be 
used. The basic tree contains prefixes between 0 and B/2. 
With the introduction of a shortcut table, the maximum 
search depth is reduced to Bl2. IPv4 prefixes requires a 
lookup table of size 16 bits giving 65536 locations. 

1110* (3 .-. 
0 I 1 ,  

1111* 
0 1  1 
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b ) w ,  L.1 
Figure 6: Multi-bit node 

1000 

1010 
one prefix. Assume that the highest level in the tree contains 
I nodes, and that the total number of nodes above that level 
is m. It can be shown that m=31+1 for a four child node. 
The total number of prefixes is p=31+m, and the total 
number of nodes is n=l+m, thus p=2.5n-0.5. The smallest 
number of prefixes that always can be stored for a given 
memory space n is thus the integer part of 2.5n-0.5. 

Using both three shortcut-lookup tables and larger 2 level 
nodes the lookup operation can be performed in 4-5 
memory cycles. Using synchronous SRAh4 with 10 ns 
access time, the lookup time will be in the range 40-50 ns. 
This is sufficient for 10 Gigabit Ethernet with minimum 
packet duration Of 

Figure 5: Prefix-tree with shortcut table 

The lookup time can be further improved by increasing 
the number of lookup tables. In case of Ipv4 the address 
space of 32 bits can be subdivided into 4 regions with 8 bit 

examine the first 8 address bits, the second table will use the 
first 16 bits and the third table will use the first 24 bits. The This section compares the Performance in krms of tree 
maximum depth of each sub-tree will then become 8 levels. size of the prefix tree and level tree with a basic trie and a 
The main drawback is the size of the third lookup table with Path compressed trie (Patricia). The routing table is from the 
24 address bits. However, the number of prefixes with Mae-West router 03/15/02 [SI. It,contains 29587 Prefixes. 
length above 24 is very limited according to Table 2, and it Table 2 shows the number of Prefixes at each level of the 
is therefore more efficient to store the prefixes in a CAM trie/tree. The prefix distribution is depicted graphically in 
(Content Addressable Memory). Figure 7. 

Search speed can be further improved by increasing the 
number of leaf nodes. With four leaf nodes it is necessary to 
examine two address bits to find the next node in the tree. 
Each node must now store more than one prefix. E.g. the 
prefixes ‘*’, ‘O*’ and ‘1 *’ must be stored in the same node 
because nodes at a higher level will contain at least two bits 
more in the prefixes. Figure 6a shows a new node. The size 
of the new node is at least twice as big because it contains 3 
prefixes and 4 pointers. If he node is too big for a single 
memory line, it can easily be split into two consecutive 
memory lines. The content of the two memory lines is 
shown in Figure 6b. The first bit among the two bits used 
for searching is then used to determine the memory line. 
Note that the prefix ‘*’ must be repeated in both lines 
because it matches addresses starting with both ‘ 1 ’ and ‘0’. 

A multi-bit node may contain between 1 and 3 prefixes, 
so the total number of prefixes that can be stored is not 
directly given by the total amount of memory measured in 
number of nodes, which is the case for the basic prefix tree. 
The worst case can however be determined. It occurs when 
the tree is balanced and when all leaf nodes contain only 

.2 ns. 

in each. Having three lookup tables, the first table will D. PERF o m AN c E 

Table 2: Prefix distribution 
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4175 4234 ll 16 2339 1 3262 I 2932 I 11 17 I 531 I 4030 1 3424 1 
18 887 4397 3638 3501 
19 2248 4309 3426 2550 
20 204 1 3487 2893 1451 

- 
-~~~ 

21 1399 2568 2324 7 1) Dummy j 8 x 6 0  j 26708 j 0 i o  II 

Table 3 

ITREE 1 

1 
11 NODE I TRIE I PATRICIA I PREFIX I LEVEL 11 

23 

AV. 22.0 17.7 17.4 

Max 32 25 24 
height 

30 2 0 0 0 
0 0 0 0 I ’3: 1 0 0 0 

22 1971 1334 1679 
2253 337 1057 
15627 4 346 0 

0 
25 I 15 1 1  1 0  11 26 I 2 l o  I o  

J 

27 2 0 0 0 
1 0 0 0 
1 0 0 0 

Table 3 shows the total number of nodes and the number 
of dummy nodes. A dummy node is an intermediate node 
that does not contain any routing information. The average 
and maximum height does not differ much for the Patricia 
trie and prefix tree, however the number of nodes is almost 
twice as high for the Patricia trie. Note that the Level-tree 
gives a small reduction in the average and maximum height 
compared to the prefix-tree. However, it is expected that the 
advantage of level-tree is larger for a more hierarchically 
organised prefix database e.g. in combination with lPv6. 

1.5104 

I i o 4  

j s 
d 

5000 

0 
0 4 8 12 16 20 24 28 32 

level 

Figure 7: Prefix distribution 

E. CONCLUSION . 

Trie-based IP lookup schemes have several advantages 
including simple procedures for update and lookup. The 
time complexity of the lookup operation is however 
proportional to the number of address-bits so a basic trie 
structure is not scalable to gigabit speed. Using multi-bit 
tries and shortcut lookup tables can increase the lookup 
speed. In terms of memory usage, the main drawback of the 
trie approach is the high number of intermediate nodes. 
Even for the Patricia trie the number of intermediate nodes 
is almost as high as the number of entries in the forwarding 
table. 

The proposed prefix-tree overcomes this drawback by 
combining a tree and a trie such that each node contains 
exactly one prefix. The memory requirement for the prefix- 
tree is therefore exactly given by the size of the forwarding 
table. This paper also proposes the level-tree that has 
slightly better performance than the prefix tree, but in order 
to increase the lookup speed significantly, shortcut lookup 
tables and multi-bit nodes can be introduced. Using both 
three shortcut-lookup tables and larger two-bit nodes the 
lookup operation can be performed in 4-5 memory cycles. 
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