

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

IP lookup with low memory requirement and fast update

Berger, Michael Stübert

Published in:
Workshop on High Performance Switching and Routing, 2003, HPSR.

Link to article, DOI:
10.1109/HPSR.2003.1226720

Publication date:
2003

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Berger, M. S. (2003). IP lookup with low memory requirement and fast update. In Workshop on High
Performance Switching and Routing, 2003, HPSR. IEEE. DOI: 10.1109/HPSR.2003.1226720

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13727125?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/HPSR.2003.1226720
http://orbit.dtu.dk/en/publications/ip-lookup-with-low-memory-requirement-and-fast-update(9dcc048b-4998-4905-b0ba-9641fb801ce6).html

IP lookup with low memory requirement and fast update
Michael Berger

COM, Technical University Of Denmark
Building 345v, DK-2800 Kgs. Lyngby, Denmark

Phone: +45 45 25 38 53 Fax: +45 45 93 65 81
E-mail: msb@com.dtu.dk

Abstract-This paper presents an IP address lookup
algorithm with low memory requirement and fast updates. The
scheme, which is denoted prefix-tree, uses a combination of a
trie and a tree search, which is efficient in memory usage
because the tree contains exactly one node for each prefix in
the routing table. The time complexity for update operations is
low for prefix-tree. The lookup operation for the basic binary
prefix-tree may require that a high number of nodes be
traversed. This paper presents improvements to decrease
lookup time, including shortcut tables and multi-bit trees. The
prefix-tree is compared to a trie and a path compressed trie
using prefixes from a real routing table.

Index Terms-Longest prefix match, IP lookup, trie, tree

A. INTRODUCTION

IP lookup algorithms have been studied extensively in the
literature. The introduction of Classless Inter Domain
Routing (CIDR) has reduced the size of forwarding tables,
but the lookup procedure is more complex because exact
matching is replaced by longest prefix matching [2][3].

A trie structure [4] is a convenient way to represent the
prefixes in the forwarding table. The lookup and update
procedures are simple, but the lookup procedure may
traverse up to B nodes, if B is the number of address bits. A
trie will contain a high number of intermediate nodes that
does not contain any prefixes. Removing any intermediate
nodes with only one child node can reduce the number of
intermediate nodes. The resulting trie is called a path
compressed trie or Patricia trie. Another approach is Level
Compressed (LC) tries [5] . They can increase lookup speed
with the cost of a more time-consuming update procedure.
The time complexity of the update procedure is important
because frequent routing updates may occur [6] .

The lookup speed can be improved by having balanced
trees, e.g. range search trees. If N is the number of prefixes,
the time complexity of lookup is O(log(N)). The main
drawback is the update time; to keep the tree balanced it is
usually necessary to re-construct the whole tree.

This paper presents a new tree structure for storing the IP
forwarding table. It is based on an exact match VPINCI
search algorithm developed in [I]. Minor modifications
have been introduced to support variable length prefixes.
The prefix-tree structure uses a combination between a trie
and a tree; in each node a comparison is performed similar
to a tree. Branches are performed as in tries based on the

0-7803-7710-9/03/$17.00 0 2003 IEEE.

address bits. The algorithm is described further in section B.
Further improvements that can speed up the lookup
operation is given in section C. The performance of the
proposed algorithms is compared to trie based approaches in
section D. Finally, in section E, concluding remarks are
given.

B. ALGORITHM

The IP lookup algorithm organizes the IP prefixes in a
tree structure. Each node in the tree contains exactly one
prefix, so the size of the tree is equal to the size of the
routing table. Consider the routing table given in Table 1. It
contains seven different prefixes belonging to seven
different routes.

Table 1: Routing table example

R7
1000* I II 1010* I

Figure 1 shows the tree structure for the routing table
given in Table 1. Each node contains a prefix and two
pointers pointing to successive tree nodes. The prefix size
must be greater than or equal to the level where the prefix is
located. E.g. the prefix size of ‘1 1 *’ is two, and the level is
1 . in Figure 1. The remainder of this section explains the
search, insert and delete operations by examples followed
by a pseudo code description.
I) Lookup operation

The example below explains the lookup operation.
Assume that “10101010” is used as input to the lookup tree.
The lookup procedure works as follows: The first step is to
compare the address with the prefix in the root node. The
root node prefix does not match the address, so the result of
the comparison is not stored. The first bit in the address is
then used to determine the next node in the tree. The first bit
is a ‘1’ so the next visited node is ‘1 I*’. Again, there is no
match between the prefix ‘ll*’ and the address
“10101010”. The search procedure is continued using the

287

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on February 24,2010 at 07:25:11 EST from IEEE Xplore. Restrictions apply.

r
01* 11”

, o I 1 , o 1 1

1000”
0 1 1

next bit in the address, which is a ‘0’. This leads to the tree
node containing prefix ‘lo*’. Now there is a match between
the prefix and the address. Since this is the longest prefix
match until now, the R5 route is stored. The next address bit
is ‘1’ which implies that the next visited node is ‘1010*’.
Again there is a match between the address and the prefix.
This is the longest prefix match until now so the route R7 is
stored and replaces R5. Since ‘ lOlO*’ is a leaf node, the
lookup operation has finished. The longest prefix match is
route R7.

The time complexity of the lookup operation is O(B)
where B is the number of address bits. The pseudo code for
the lookup operation is shown below. Ref means that the
variable is called by reference. ‘pmax’ is initially set to 0,
and a match is found if ‘pmax’ is larger than 0 when the call
returns. The procedure call is as follows: lookup (addr, 0,

1010”
0 1 1

root, &pmax, &route)
lookup(addr,level,node,ref pmax,ref route) {

if (node = NULL)
return

p = prefix-match-size(addr,prefix(node))

if (p > pmax) {
pmax = p
route = route(node)

1

if (addr[level] == ‘1’)

else
lookup(addr,level+ 1 ,right(node),pmax,route)

Zookup(addr,level+ 1 ,left(node),pmax,route)
1

2) Insert Operation
Now the insert procedure will be illustrated by an

example. The resulting tree is shown in Figure 2 . It is
assumed that a new route R8 with prefix ‘1 *’ will be added

1000* 1010*
0 1 1 0 1 1

Figure 2: Prefix-tree after addition of ‘l*’ prefix.

to the tree. The first step is to examine the root node. The
level of, the root node is 0, which is smaller than the prefix
length of 1. for route R8. The first bit of the new prefix is
used to determine the next node in tree, which is ‘1 1 *’. Now
the level is 1 ., which is equal to the prefix length of RS. The
new node must then be inserted at this location since the
level in the tree must never be higher than the prefix length.
The second prefix bit of the old prefix ‘1 1 *’ is 1 ., and the
old node is therefore inserted to the right of ‘l*’.

The time complexity of the insert procedure is O(B). The
pseudo code is shown below. The procedure call is as
follows: insert(prefix,route,O,&root).

insert(prefix,route,level,ref node) {

if (node == NULL) {
node = new node(prefix,route)
return

1
if (length(prefix) == level) {

pl = prefix(node)
r l = route(node)
prefix(node) = prefix
route(node) = route

if (pl[level] == ‘1’)

else
insert(p 1 ,rl ,level+l ,right(node))

insert@ 1 ,rl ,level+ 1 ,left(node))

1
else {

if (prefix[level] == ’1’)

else
insert(prefix,route,level+ 1 ,right(node))

insert@refix,route,level+ 1 ,left(node))
1

288

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on February 24,2010 at 07:25:11 EST from IEEE Xplore. Restrictions apply.

C. IMPROVEMENTS

The following section describes a number of

a)

improvements that can speed up the lookup operation. The
first approach shown in Figure 4 uses an additional level
field in each tree node. The level value determines the next
bit in the address that is used for searching. A similar

1100"

0 I 1 ,

Figure 3: Prefix-tree after removal of 'l*' prefix.

3) Delete Operation
The following example shows how a node is removed.

The remove operation is shown in Figure 3. The selected
node is ' I* ' which was just inserted in the previous
example. A node without child nodes can easily be
removed. If the node has one or two child nodes it is
necessary to reconstruct the tree. This can be done by
finding a leaf node in one of the child trees, and then insert
this node at the location, which was just removed. The
selected leaf node is '1000*' which is now inserted as the
right child of the root node.

The time complexity of the delete procedure is O(B). The
pseudo code is shown below. The procedure call is as
follows: delete(prefix,&root,O).

delete(prefix,ref node,level) {

b)

if (prefix == prefix(node)) {

0 1 1 1 loo* (2)
, o I 1 ,

leaf-node =find-leaf-node(node)
if (leaf-node == NULL) {
delete(node)
node = NULL
return

1
else {
right(1eaf-node) = right(node)
left(1eaf-node) = left(node)
delete(node)
node = leaf-node
return

}
1
else {
if (prefix[level] = '1')

else
delete(prefix,right(node),level+ 1)

deZete(prefix,left(node),level+ 1)
>

1

1101*
0 1 1

technique is utilized for path-compressed tries.
Figure 4a shows four prefixes stored in a prefix-tree. The

resulting level-tree is shown in Figure 4b. Note that the root
node has level = 2 which means that bit number 2 (third bit
from the left) in the address determines the child node. In
this example the level-tree has fewer levels (3) compared to
the prefix-tree (4) however, in general the worst-case tree
height is not reduced by the level-tree.

Introducing a lookup table that provides shortcuts into the
tree can reduce the maximum number of levels. This is
suggested for tries in [7], but can be exploited for prefix-
trees as well. Assume that the number of bits in the address
is B. The basic tree in Figure 1 has at maximum B levels.
An example is shown in Figure 5 with B = 8 bits.

The first B/2 bits of the address are used as index to the
lookup table. If the entry contains a valid pointer, it will
point to the sub-tree that will be traversed. If the entry does
not contain any valid pointer, then the basic tree will be
used. The basic tree contains prefixes between 0 and B/2.
With the introduction of a shortcut table, the maximum
search depth is reduced to Bl2. IPv4 prefixes requires a
lookup table of size 16 bits giving 65536 locations.

1110* (3 .-.
0 I 1 ,

1111*
0 1 1

289

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on February 24,2010 at 07:25:11 EST from IEEE Xplore. Restrictions apply.

b) w , L.1
Figure 6: Multi-bit node

1000

1010
one prefix. Assume that the highest level in the tree contains
I nodes, and that the total number of nodes above that level
is m. It can be shown that m=31+1 for a four child node.
The total number of prefixes is p=31+m, and the total
number of nodes is n=l+m, thus p=2.5n-0.5. The smallest
number of prefixes that always can be stored for a given
memory space n is thus the integer part of 2.5n-0.5.

Using both three shortcut-lookup tables and larger 2 level
nodes the lookup operation can be performed in 4-5
memory cycles. Using synchronous SRAh4 with 10 ns
access time, the lookup time will be in the range 40-50 ns.
This is sufficient for 10 Gigabit Ethernet with minimum
packet duration Of

Figure 5: Prefix-tree with shortcut table

The lookup time can be further improved by increasing
the number of lookup tables. In case of Ipv4 the address
space of 32 bits can be subdivided into 4 regions with 8 bit

examine the first 8 address bits, the second table will use the
first 16 bits and the third table will use the first 24 bits. The This section compares the Performance in krms of tree
maximum depth of each sub-tree will then become 8 levels. size of the prefix tree and level tree with a basic trie and a
The main drawback is the size of the third lookup table with Path compressed trie (Patricia). The routing table is from the
24 address bits. However, the number of prefixes with Mae-West router 03/15/02 [SI. It,contains 29587 Prefixes.
length above 24 is very limited according to Table 2, and it Table 2 shows the number of Prefixes at each level of the
is therefore more efficient to store the prefixes in a CAM trie/tree. The prefix distribution is depicted graphically in
(Content Addressable Memory). Figure 7.

Search speed can be further improved by increasing the
number of leaf nodes. With four leaf nodes it is necessary to
examine two address bits to find the next node in the tree.
Each node must now store more than one prefix. E.g. the
prefixes ‘*’, ‘O*’ and ‘1 *’ must be stored in the same node
because nodes at a higher level will contain at least two bits
more in the prefixes. Figure 6a shows a new node. The size
of the new node is at least twice as big because it contains 3
prefixes and 4 pointers. If he node is too big for a single
memory line, it can easily be split into two consecutive
memory lines. The content of the two memory lines is
shown in Figure 6b. The first bit among the two bits used
for searching is then used to determine the memory line.
Note that the prefix ‘*’ must be repeated in both lines
because it matches addresses starting with both ‘ 1 ’ and ‘0’.

A multi-bit node may contain between 1 and 3 prefixes,
so the total number of prefixes that can be stored is not
directly given by the total amount of memory measured in
number of nodes, which is the case for the basic prefix tree.
The worst case can however be determined. It occurs when
the tree is balanced and when all leaf nodes contain only

.2 ns.

in each. Having three lookup tables, the first table will D. PERF o m AN c E

Table 2: Prefix distribution

290

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on February 24,2010 at 07:25:11 EST from IEEE Xplore. Restrictions apply.

4175 4234 ll 16 2339 1 3262 I 2932 I 11 17 I 531 I 4030 1 3424 1
18 887 4397 3638 3501
19 2248 4309 3426 2550
20 204 1 3487 2893 1451

-
-~~~

21 1399 2568 2324 7 1) Dummy j 8 x 6 0 j 26708 j 0 i o II

Table 3

ITREE 1

1
11 NODE I TRIE I PATRICIA I PREFIX I LEVEL 11

23

AV. 22.0 17.7 17.4

Max 32 25 24
height

30 2 0 0 0
0 0 0 0 I ’3: 1 0 0 0

22 1971 1334 1679
2253 337 1057
15627 4 346 0

0
25 I 15 1 1 1 0 11 26 I 2 l o I o

J

27 2 0 0 0
1 0 0 0
1 0 0 0

Table 3 shows the total number of nodes and the number
of dummy nodes. A dummy node is an intermediate node
that does not contain any routing information. The average
and maximum height does not differ much for the Patricia
trie and prefix tree, however the number of nodes is almost
twice as high for the Patricia trie. Note that the Level-tree
gives a small reduction in the average and maximum height
compared to the prefix-tree. However, it is expected that the
advantage of level-tree is larger for a more hierarchically
organised prefix database e.g. in combination with lPv6.

1.5104

I i o 4

j s
d

5000

0
0 4 8 12 16 20 24 28 32

level

Figure 7: Prefix distribution

E. CONCLUSION .

Trie-based IP lookup schemes have several advantages
including simple procedures for update and lookup. The
time complexity of the lookup operation is however
proportional to the number of address-bits so a basic trie
structure is not scalable to gigabit speed. Using multi-bit
tries and shortcut lookup tables can increase the lookup
speed. In terms of memory usage, the main drawback of the
trie approach is the high number of intermediate nodes.
Even for the Patricia trie the number of intermediate nodes
is almost as high as the number of entries in the forwarding
table.

The proposed prefix-tree overcomes this drawback by
combining a tree and a trie such that each node contains
exactly one prefix. The memory requirement for the prefix-
tree is therefore exactly given by the size of the forwarding
table. This paper also proposes the level-tree that has
slightly better performance than the prefix tree, but in order
to increase the lookup speed significantly, shortcut lookup
tables and multi-bit nodes can be introduced. Using both
three shortcut-lookup tables and larger two-bit nodes the
lookup operation can be performed in 4-5 memory cycles.

F. REFERENCES

Andreas Magnussen, “ATM Switching Systems”, COM, Technical
University ofDenmark, Ph.D Thesis.

M. A. Ruiz-Sbnches, E. W. Biersack, W.Dabbous, “Survey and
Taxonomy of IP Address Lookup Algorithms”, IEEE Network,
MarchiApril 2001

M. Zitterbart, “High-performance routing-table lookup”, Phil.
Trans., Royal Soc. London A (2000) 258 p 2217-223 1.

R. Sedgewick, “Algorithms in C++”, Addison Wesley, 1990
S. Nilsson, G. Karlsson, “IP-address Lookup Using LC-tries”,

IEEE JSAC, June 1999, vol. 17 no.6, p 1083-92
C. Labovitz, G. malan, F.Jahanian, “Intemet routing instability”,

ACMSIGCOMM 97, September 1997
M. Uga, K. Shiomoto, “A Fast and Compact Longest Prefix

Lookup Method using Pointer Cache for very long Network
Address”,proc. IEEE ICCCN 1999, Boston MA, Oct 1999.

Mae-West routing database, “The Intemet performance
Measurement and Analysis (IPMA) project”, hrfp:
i/w.merit.eduiipmu/routing-tublei, 10 Oct. 2002

291

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on February 24,2010 at 07:25:11 EST from IEEE Xplore. Restrictions apply.

