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CFAR Edge Detector for Polarimetric SAR Images

Jesper Schou, Henning Skriver, Allan Aasbjerg Nielsen, and Knut Conradsen

Abstract—Finding the edges between different regions in an tected by finding the difference between two mean intensities on
image is one of the fundamental steps of image analysis, andeach side of the central pixel, the ratio edge detector suggested
several edge detectors suitable for the special statistics of synthetlcin [2] and [4] provides a constant false-alarm rate (CFAR) by

aperture radar (SAR) intensity images have previously been . : .
developed. In this paper, a new edge detector for polarimetric taking the ratio of the same two means and this detector has

SAR images is presented using a newly developed test statistic inPeen widely used by the SAR community [5]-[8].
the complex Wishart distribution to test for equality of covariance Edge detection in SAR intensity images is also treated in

matrices. The new edge detector can be applied to a wide range[9], where it is shown that a single test can not fully optimize
of SAR data from single-channel intensity data to multifrequency i herformance criteria, i.e., a single detector can not provide

and/or multitemporal polarimetric SAR data. By simply changing . S . .
the parameters characterizing the test statistic according to the the best edge-location determination and the highest possible

applied SAR data, constant false-alarm rate detection is always Probability of edge detection at the same time. CFAR-likeli-
obtained. An adaptive filtering scheme is presented, and the hood-ratio edge detectors are provided which optimize either of
gqiStri_bUg%fs i(r); ;hgsdedi_%m ;LGRVSQIE%S:JflgeSiBW;r']?Stﬁdaﬁggr; the two criteria and a combined edge detection scheme intended
etric ) .. . . . . .
polarimetric _SAIg, EMISA??, it is_ demon_strated t_hat superior f(l)gogtlmlzllng.both crlterlglshoutlmed.Thg:]work IS eXthde.d::? )
edge detection results are obtained using polarimetric and/or [10]PY including texture in the treatment; hence, an edge is de
multifrequency data compared to using only intensity data. tected bet\Neen.reglonS haVIng dl-ﬁ:erent mean intensity and/or
Index Terms—Complex Wishart distribution, edge detection, po- texture. Also, F]{Z"tOfEt al. [3] C?'e“Ve a. CFAR edge detector
larimetry, synthetic aperture radar (SAR), Wishart likelihood- ~ based on the ratio of exponentially weighted means.
ratio test statistic. Polarimetric SAR data are completely described by the com-
plex covariance matrix (CM) [11]. One approach to edge de-
tection in polarimetric SAR images is to perform the detection
separately for each polarization and subsequently combine the
OR SINGLE-CHANNEL images, an edge is defined agesults using some kind of fusion operator [12], [13]. This ap-
an abrupt change in image intensity between two regiorsroach, however, does not utilize the full polarimetric informa-
Finding the edges in an image provides important informatiqidn, as only the backscattering coefficients of the CM are used.
about the scene, and edge detection is often used as a prepio, the choice of fusion operator affects the final result. The
cessing step in a given image analysis problem. An efficiegétection can also be performed using a standard detector on a
edge detector should match the two criteria suggested in [1], i§ingle image resulting from a combination of channels as it is
it should determine the edge location accurately, and it sho@nein [14].
be robust in the sense that the probability of detecting an edge inn this paper, we describe a new approach to edge detection in
a homogeneous region should be low, while actual edges negfrimetric SAR data using a newly developed test for equality
to be detected. The probability of detecting a nonexisting edgecomplex covariance matrices following a complex Wishart
is normally denoted the probability of false alatfas distribution [15]. By estimating the CMs on each side of the cen-
In order to ensure a high robustness, the edge detector neggispixel, we test whether these two CMs are equal and edges
to be adapted to the image statistics. For intensity syntheife detected when the hypothesis is rejected. The new edge de-
aperture radar (SAR) images, the observed intensity follows thetor is a CFAR detector and it utilizes the full polarimetric
well-known speckle distribution, i.e., the gamma distributionnformation.
Edge detectors suitable for optical images are thus not efficientrhe paper is organized as follows. The complex Wishart dis-
for SAR images, as they resultin the probabilities of false alarmgbution is described in Section Il together with the test for
being influenced by the mean intensities within the homogequality of CMs. This test is used in Section Ill to derive the new
neous regions [2], [3]. While edges in optical images are dgolarimetric edge detector. The applied SAR data are discussed
in Section 1V, and the polarimetric edge detector is evaluated
Manuscript received June 12, 2001; revised October 17, 2002. This work wSing simulated polarimetric SAR data as well as polarimetric
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A. Complex Wishart Distribution is the number of polarimetric datasets acquired at different fre-

A fully polarimetric SAR measures the 522 complex quencies and/or acquisition times, and if the target vector data
scattering matrix at each resolution cell on the ground. € available, the complex target vector is simply redefined as

S;; denotes the complex scattering amplitude for receive afd™ (s ...s)" resulting in the sample CNC
transmit polarization andj (i,j € {h,v}), then reciprocity, C, - Cip
which normally applies to natural targets, gives = Syu (in - ) ] h 3)
the backscattering direction using the backscattering alignment o : g :

convention) [11]. Assuming reciprocity, the scattering matrix Cr1 -+ Gy

is represented by the tf;ree-f:ompone_nt complex target VeGiereC; is the sample CM for acquisition and the elements
s = [Swmn Sw Sw]", with T being transpose, which otihe complexxp matricesC; ;,i # j, depend on the correla-
follows a zero-mean multivariate Gaussian distribution [16{i;n petween the acquisition@l( - = C*.). Again, thekp x kp

. 5] T 7,07 !
The sample CMC is formed from the target vector as Hermitian matrixZ = L C follows a complex Wishart distribu-
tion havingL number of looks. Often, however, the polarimetric

*t
C =dr (ss"™) SAR data from the&: acquisitions are already in the covariance
Ohh VOhhOhvPhh kv \/ThhOvyPhh vy matrix representation. In this case, the matri€gg cannot be
= | VOuhOhy Py b Thv VOhvOvyPhv,vv formed, andZ does not follow a complex Wishart distribution,
VOO Phn vy VOO Py vy Ovv as some of the elements of the covariance matrix have been set

(1) to zero.

where* denotes complex conjugaig; ; is the complex correla- B. Test for Equality of Complex CM
tion coefficient between channelandj; ando is the backscat-
tering coefficient.

If the p x p sample CM had. number of looks, then we define

Conradseret al. [15] have developed a test statistic in the
complex Wishart distribution, where the likelihood-ratio test is
- . : used for testing the equality of two complex Wishart distributed
the I_-|err_n|t|an matrix = L(.j' Z follows a comple_x Wishart matrices. ForZ, andZ, following the complex Wishart dis-
distributionW¢(p, L, ¥) having a mean CNE [16], i.e., tributions We (p, n, £,) and We(p, m., 3,), respectively, we

|Z|L_pe_tr<g—1z) may examine ifZ,, equ_aIsZy by considering the hull hypoth-
U DT? T(L— ISl 2 eS|s_HO 13, =3, WhICh states that the two matrices are equal
g [Tjm I =5 + DX against the alternative hypothedfs : , # ¥,. The Wishart

where|...| andtr(...) denote the determinant and trace, rellkehhood-rauo test statistic becomes [15]

spectively, and’(...) is the Gamma function. The mean CM (n + m)P(n+m) |Z.|" |Z)|™
provides information on the polarimetric properties of the sur- Q= nPpPm ’ Z. + Z, |n+m (4)
face. If the independent matric&s, . . ., Z,, all follow the com- S T
plex Wishart distribution having mean C® and number of and the asymptotic distribution ef2p log @) is given as
looksLq, ..., L,,, respectively, then the sum of thesenatrices

' P iy P{-2plogQ < =} ~ P {x*(f) < =}

follows the complex Wishart distributioW«(p, L1 + -+ +
Ly, ). It should be mentioned that the distribution of the non- tws [p{xz(f +4) < Z} —P{3() < Z}] (5)
normalized sample CM is presented in (2) rather than the dis-
tribu_tion_of the normglize_:d sample Cf{, since the test statistic i the parameters, p, andw, defined as
applied in the following is based df [15].
The correlation between the copolarized and the cross-polar- f=7p (6a)
ized terms (i.e., the absolute valuespgf, v andpyy ) often
contain little information, and for randomly distributed targets
with azimuthal symmetry the correlation is zero [17]. It is im- 2p2 -1 (1 1 1
portant to notice, however, that if the sample CM is forced into p=1- 6p <_ m ) (6b)
azimuthal symmetry (i.e., if the terms in the sample CM con-
taining eitherpyy v O puy vv are set to zero), then the samplé'Pm

p(Z[%) =

n m n+m

CM no longer follows the complex Wishart distribution [15]. In f 1\2 f(f=1

the following, we will encounter several examples where som& = ~ <1 - ;) T o

of the elements of the sample CM have been set to zero, and we 1 1 1 1

use the terms azimuthally symmetric (sample) CM, or the az- : <ﬁ + o m) X (6¢c)

imuthally symmetric case, for describing the case wipgrg,.

andpyy vy in the sample CM have been set to zero. Likewis&he term—2plog @ is limited by [0, co[, with —2plog @ = 0

the terms diagonal (sample) CM, or the diagonal case, is udedZ, = Z, andn = m.

for describing the case where the off-diagonal components ofAs discussed in Section II-A, the sample CM is not complex

the sample CM have been set to zero. Wishart distributed when one or more of the elements of the
Multifrequency and/or multitemporal polarimetric data casample CM are set to zero. The test statistic described above is

also be described using the complex Wishart distributioi. If still applicable in these cases, however, when it is applied to the
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resulting submatrices [15]. In the following, this is demonstratexhd

for the case of forced azimuthal symmetry, and the extension 5

to the general case of multiple acquisitions is explained. The _ i <1 _ l) L h (i-1D)+/f2(fa—1)
complex target vector can be redefined as 4 24

P
1 1 1 1
S = [Shh SVV Sh\,]T . (ﬁ + —2 — 7) ﬁ (11d)

m (n+m)?

without ir?troducing any constraints. The sample CN_I Wm&rom (7)—(11d), it is seen that this approach can be extended
forced azimuthal symmetry then becomes the block d'ago'?ﬁlectly to a wide combination of SAR data, and this demon-

matrix strates a very important characteristic of the Wishart likelihood-
Ohh VOhhOvvPhhyy O ratio test statistic and the associated asymptotic distribution of
C = | V/ounov Phn vy Oyy 0 —2plog Q. The test statistic can, for example, be applied di-
0 0 Ohv rectly to multiple acquisitions having different kind of infor-
C, 0 mation (some containing the fullX83 sample CM, some con-
= |:0T Cz] (7) taining the azimuthally symmetric sample CM, and some con-

taining a single backscattering coefficient), and still the proper
with 0 being the 2x 1 null matrix,C; the 2x 2 sample CM for distribution of the test statistic can be derived. In the following
hh, andvv andC, the 1x 1 sample CM fohv. Using the same notation, we always usé, andZ, rather than writing the in-
concepts as previously, we introduce the four mutually indepediividual submatrices (€.0Z.1, Z2, Z,1, andZ,, for the az-
dent matrice,1, Z.2, Z,1, andZ,; following the complex imuthally symmetric case).
Wishart distributions

I1l. EDGE DETECTION
Zzl = nCzl S WC (plvnvzzrl)

Z,1 =mCy1 € We (p1,m,Xy1) _ In th_|s section, the hypothess test described in the Se_ctlon Il
7 = nC W > is applied by the polarimetric edge detector. Also, the ratio edge

=2 = nCa2 € We (p2, 1, B2) detector is extended to utilize all three backscattering coeffi-
Zy> =mCys € We (p2,m, Zy2) (8) cients.

with p; andp, being the dimension &1 (Z,1) andZ,.» (Z,»),

i.e.,p1 = 2 andp, = 1. The test for equality of the complexA' Polarimetric CFAR Edge Detector

Wishart distributed matrices becomes [15] The edge detection is performed by visiting each pixel in the
image in succession and, for each pixel, applying a set of fil-

Hy: X1 =% ters having different orientation. The filters estimate the mean
Y=, (9) covariance matrices on each side of the central pixel, and the

_ _ o _ ~ test of equality of these two mean covariance matrices deter-
against all alternatives. The likelihood-ratio test statisti;ines whether an edge is detected by the current filter or not.
becomes [15] This scheme corresponds to the scanning-window, center-edge
(n 4 m)P1 B+ (1 4 g ypa(ntm) (SWC_E) conflgura_non in [_9], which in the case of intensity

. SAR images provides optimum edge detection performance.

Q:

&pminZlm ™ |anzn|T|p;m ™ To ensure the greatest amount of flexibility, the edge detection
el U1n+m . _1aw2 ?/Z’Hm filters are defined according to Fig. 1. A filter configuration
Zo1 + Zy1| | Zo2 + Zyo| K; = {ls,wys,ds, Av} is described by the length, the width,
f frWf,af, y g

_ (ngmptm) 2, |Z,]" 10)
nPRmpm |Z,. +Z,]" "™

the spacing of the filter, and the angular increméntbetween
two orientations ¥y = «/Aw filters exist for each configu-

S o _ ration). The adaptive filtering scheme can now be described as
which is identical to the test statistic for the full covariance mag||ows.

trix (4). The asymptotic distribution of 2plog @ is still given 1) Select first filter configuration
by (5), where the parametessf, p, andw, are now defined as 2) For N, filters .

p? = p? + pl (11a) a) EstimateZ, andZ, for filter <.
b) Calculateq) ;) using (4).

9 9 2 3) Find the minimumQ ;y, Qmin, Of the N; values.Q nin
f=r=prtrn=L+th (11b) corresponds to th((e) maximum valufe ef2plog Q,
(=2plog Q) max-
p= h (1 - 2p7 — 1 <l + 1 )) 4) If (—2plog Q)max is larger than threshold an edge is de-
fit f2 6p1 noom.o n4m tected. Save the orientation and strength of the edge; move
L (1 2p3-1 (l 1 1 >) to next pixel; and continue from Step 1).
i+ fe 6p2 n m n+m 5) Apply the next filter configuration, and continue from
_ ﬁ . é (11c) Step 2); or move to the next pixel, and continue from Step
f P1 f P2 1) if no more filter configurations are available.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on February 24,2010 at 07:14:04 EST from IEEE Xplore. Restrictions apply.
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ables.Q,,;, corresponds to the maximum value-e®p log Q;
hence, the distribution df-2p log Q) max iS given by [18]

P{(—2p10g Q)max < 2} = (P{—2plogQ < z})N7  (13)

assuming independent variabl@g;). Combining (5), (12), and
(13), we obtain the probability of false alarm for thg filters
Pfa,Nf as

P{(—2ﬂ10gQ)Hlax < Tf} =~ <P {X2(f) < Tf}

s [P{Xz(f-l-‘l) <13}

- P{x*(f) < Tf}DNf

= (1= PN
Fig. 1. Edge detection filter configuratiok’; = {i;,wy,ds, Av} is &
characterized by the following parameteirs. length of the filter;w : width =1- Pun,- (14)
of the edge regionsi;: spacing between the edge regions; dxd;: angular
increments between orientations and v, ,. Ny = n/Auw filters exist for . . . . . .
each configuration. For a given filter configuration an&:, x,, (14) is solved with

regard tol'y, providing the specific threshold. Fig. 2 shows the
relation betwee, ; and’; for the three cases of fully polari-

When an edge is detected in Step 4) of the adaptive filsotric cM data, forced azimuthally symmetric CM data, and

tering scheme, the orientation (if needed) and edge stren%n:ed diagonal CM datafdi; = 3andL; = 13. Itis seen that

(=2p lo,g Q?max of_the specific fiIt(_ar are stored, and thePfa_l is strongly dependent aii; for the fully polarimetric case,
next pixel is examined. If no edge is detected, the next filter, :

, - . While only minor differences between the curvesfigr= 3 and
configuration is applied. It should be noted that only the '_ 3510 ohserved for the other two cases. This is due to the

most significant edge is obtained from Step 4), since oni. iy, approaches zero quickly; for the diagonal sample
(=2plog Q)max is compared to the threshold; the individuaiy itig practically zero fot. ; = 3; hence, the distribution (14)
Qi) values should be compared to the threshold if the strengiigm 1y 5 2-distribution havingf = 3 degrees of freedom.
and orientations of less significant edges are desired. In Fig. 2, itis seen that the thresholds are approximately iden-
In Step 4) of the adaptive filtering scheme, itis tested whethgg| for L; = 3andL; = 13 (at least for the azimuthally sym-
(—2plog Q)max is larger than a given threshold, and if this is thenetric and diagonal case), but the test statistic is strongly de-
case, an edge is detected. The threshold depends on the nurgBgent on the equivalent number of looks. This can be demon-
of looks for the two matrices, on the type of SAR data appliegirated using, = k,Z. andm = n (i.e., the same equivalent
(e.g., fully polarimetric or azimuthally symmetric SAR data)humber of looks for the two matrices), in which case the Wishart

and on the user-specified probability of false alafim. The |ikelihood-ratio test statistic (4) becomes
equivalent number of looks fdZ, andZ, are equal, as they

for a specific filter configuration are estimated from the same \Zo| |y Zo | " pn
number of pixels, and in the following this number is denoted @ = 2" ( B A ) = 2”"%. (15)
asLy. If the pixels are independent, théry = (wyl;)L, but I( (1+ky)

as this is generally not the case, we need to estithateThis . .

is done by averaging the backscatter images with;ax I; Fig. 3 shows two plots of-2plog Q using (15) as a function
window [2] and findingZ; as the average number of looks off 7 and usingk, equal to two and five, respectively. From the
the three polarizations. Having estimateg, the threshold for plots, itis seen thatincreasingvalues and increasing, values

the specific filter configuratiofl’; is found. Detecting an edge both result in increasing values &2 log (. This means that
corresponds to rejecting the null hypothesis, as the two melprge test statistic is obtamgd (i.e., an edge' is detect_ed) from
covariance matrices are equal under the null hypothesis. THE Sample covariance matricés, andZ,, which are either

probability of rejecting the null hypothesis for a homogeneoﬂgniﬁcan“y different or less different but representing a high

region corresponds to the probability of false alarm; thus, vigluivalent number of looks. _
have This procedure assumes independ@pt variables, but the

variables are not independent, as the neighborhoods from which
Z, andZ, are estimated are overlapping between filters [2]. In
P{-2plogQ < Ty} =1— P, (12) Section V-A, itis shown how changing the number of variables
in (14), N provides a reasonable match between the theoretical
where Py, 1 corresponds to the probability of false alarm for @istribution and the observations.
single( value (i.e.. Ny = 1). In Step 3) of the adaptive filtering  The asymptotic distribution 6f2plog @ in (5) only depends
scheme, the minimur® is found from theN; stochastic vari- on the dimension of the CM and the number of looks for the two

1+ k) Z.|?
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1 = Ty, T T T T
+

XX 4y
0.9 1y X K FUlCM (L=3) + -
X X i Azimuthally Symmetric CM (L=3)  x
Lo . Diagonal CM (L=3)  x
0.8 - % \ + .
kY * Full OM (1L=13) ——
x X ¥ Azimuthally Symmetric CM (L.=13) -------
07 1\ + Diagonal CM (L=13) -------- i
0.6
&
= 05|
~y
0.4
0.3
02
0.1

Fig. 2. Probability of false alarm as a function of the threshold for the case of full CM data, azimuthally symmetric CM data, and diagonal CNl dataXor
andL; = 13.

' ' ' ' ' A, =2%A4, edges based on the ratio of these intensities. If the estimated
nr Ay =54, ++7 intensities are denoteld and/,, the ratior is defined as
60 N +++++ -
+
sl +t 4 I, I
S AT r = min <— l) (16)
40 | 4T § Iy L
9 +F
S +++++
o — — . . .
| %0 T resulting in small values of for edges having a large contrast.
++
20 N +++++ 4 A direct comparison between the ratio detector and the polari-
++F 7 metric detector is difficult, as the ratio detector only applies to
10
——1—"‘.".’_‘.‘—’.’7—’7’_—[/ single polarization images. Using a fusion operator in combina-
0 4 6 s 10 12 14 16 18 50 tion with the ratio detector makes it possible to apply multiple
n intensity images, allowing for a better comparison with the po-

larimetric detector using diagonal CM data. In the following,
Fig.3. Teststatistie-2p log ( as afunction of: (equivalent number of looks) the min(...) operator is applied, and the filtering scheme fol-
usingrn = n andZ, = k,Z., k, = 2,and 5, respectively. lows the scheme from the polarimetric detector described in

Section lI-A, except it is the ratio;) for filter i that is cal-

matricesZ, andZ,, as seen in (6a)—(6c) for the standard polarkulated in Step 2). Alsay filters are applied for each of the
metric case and (11a)—(11d) for the azimuthally symmetric cad®ages ¢ = 3 when the three backscatter images are applied).
In (14), it is shown that the asymptotic distribution is directly Step 3) of the scheme, the minimumy), 7.nix, is chosen, and
related toP, v, , i.e., the probability of false alarm is indepenf this valge is smaller thap a glven.threshold, then an edge is
dent of the content of the CM (e.g., the backscattering level§ftected in Step 4). Applying the ratio detectontbackscatter
and hence a constant false-alarm rate is obtained for all honf§29es results in an effective number of filters equal to.Ny;
geneous regions in the scene by using the same threghold hence, the distribution ofy;, is [18]

Therefore, the new polarimetric detector belongs to the group

of CFAR detectors, which also includes the standard ratio edge P{rmm <z} =1—(1—P{r < z})™Ns (17)
detector [2], [4].

assuming independent variableg;). The threshold corre-
B. Ratio Edge Detector sponding to a given filter configuration and probability of false
alarm is found using the procedure in [2]. However, as for the
Using an edge detection scheme similar to the one descrilperdarimetric edge detector, the variables are correlated; hence,
in Section 1lI-A, the ratio edge detector [2], [4] estimates ththe number of independent variables in (17) is smaller, as
mean intensities on each side of the central pixel and detediscussed in Section V-B.
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: ! v e y
4 - : #

Fig. 4. EMISAR Span-image of test area, L-band May 20. The four fields are (A) winter wheat, (B) spring barley, (C) oats, and (D) peas.

The ratio detector, using single or multiple polarization imm. The datasets are geometrically rectified resulting in subpixel
ages, results in values in the interval 10, 1] with small values camot mean-square accuracy [20]. Fig. 4 shows a Span-image,
responding to strong edges. In the figures shown in Sectioni¥., oy, + 201, + oy, Of the test area near Research Centre
the ratio values are inverted to appear like the results from tReulum, Denmark, containing a number of agricultural fields,
polarimetric detector; hence, an edge appears bright in the efiens, hedges, and forest areas.
detection results (the edge maps) from both detectors.

B. Simulated SAR Data
IV. SAR DATA Applying simulated data provides an efficient way of evalu-
. ating image analysis algorithms. In the case of edge detection,

We apply L- and C-banq EMISAR data as well as simulate mulated images provide information of the exact location of
L- and C-band SAR data in this paper. the edges, as well as information of the different classes within

the images. The Potts model [21] is used for generating a test
A. EMISAR Data image having seven classes, as seen in Fig. 5(a), and in the fol-

The Danish airborne EMISAR system is a fully polarimetritowing, this test image is denoted as the “cartoon image.” Scat-
SAR operating at L- and C-band (1.25 and 5.3 GHz, respdering matrix data are generated from the cartoon image using
tively) [19]. EMISAR is developed and operated at the Sethe approach suggested in [22], although we generate homoge-
tion of Electromagnetic Systems, @rsted Department, Technicglous data rather than apply tRedistribution. The scattering
University of Denmark (DTU) and flown on board a Gulfstreanmatrix data are transformed to 13-look covariance matrix data
G-3 aircraft from the Royal Danish Air Force at an altitude afising the same processing scheme applied to real EMISAR data,
typically 12.5 km. The images applied in this paper are L- arick., a cosine-squared weighted D filter. To ensure the highest
C-band 13-look covariance matrix data at & 5 m ground degree of consistency with actual EMISAR data, the covariance
pixel spacing, having a spatial resolution of approximately Batrix parameters for the seven classes reflect the parameters
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(b)

Fig. 5. Cartoon image and simulated SAR image. (a) Cartoon image (edges overlaid) having seven classes. The seven classes reflect the foffoovmg crops
black to white and numbered 1-7): oats, peas, rye, spring barley, winter barley, winter rape, and winter wheat. (b) Simulated polarimetric Sfaimmage (
representation) reflecting the cartoon image and using the parameters from Table | (L-band).

TABLE |
AVERAGE COVARIANCE MATRIX PARAMETERS FORSEVEN CROPS INL- AND C-BAND EMISAR AcCQUISITIONS FROM MAY 20

Frequency Crop onn[dB]  04u[dB]  04u[dB]  |Phhwe]  ZLPhhwe [deg.]
Oats -22.6 -32.7 -22.2 0.344 -161.03
Peas -21.8 -34.9 -21.9 0.688 54.07
Rye -16.8 -26.7 -14.8 0.602 -3.10

L-band Spring barley -19.7 -29.1 -19.8 0.425 96.78
Winter barley -14.1 -28.8 -14.9 0.697 10.79
Winter rape  -10.8 -14.9 -11.6 0.280 30.79
Winter wheat -17.9 -29.4 -18.3 0.611 -72.75

Oats -10.7 -18.9 -13.4 0.404 -4.23
Peas -10.0 -16.7 -10.6 0.408 26.87
Rye -11.6 -20.3 -14.5 0.349 -1.42
C-band Spring barley -10.5 -17.0 -11.0 0.496 6.16
Winter barley -12.1 -23.1 -17.3 0.241 12.07
Winter rape -84 -13.1 -8.0 0.288 -8.73

Winter wheat -12.8 -21.8 -18:4 0.237 10.22

estimated from a number of fields in an L- and C-band EMISAR ; = {9,3,1,7} (i.e., a single orientation) resulting in
acquisition, and the seven classes in the two simulated SAR iy = 90. Sets of theoretical and observed cdfs are shown
ages (denoted the L-band and C-band simulated images) fare the four cases of fully polarimetric data, azimuthally
listed in Table I. A Span-image of the L-band simulated SABymmetric data, diagonal data, and two simultaneous images of

image is shown in Fig. 5(b). azimuthally symmetric data. The observed cdfs are shown as
points, and an excellent agreement exists between predictions
V. RESULTS AND DISCUSSION and observations for all four cases.

. . . . . n Fig. 6(b), we have applied the filter configuration
The polarimetric edge detector is evaluated using simulat g. 6(b) bp 9

) ) ! i = {9,3,1,7/4} (i.e., four orientations). Following the
polarimetric SAR data as well as polarimetric EMISAR datqiltJ;ring {schemg/fr{)r; Section 1I-A. the )maximumg edge

The rgtio edge detector usi_ng single and multiple intensity "Efrength(—2p 10 Q)max from the four filters is saved at each
ages is applied for comparison. pixel. These observed values are compared with the theoretical
o o distribution given by (13). However, the theoretical distribution
A. Distribution of the Test Statistic assumes tha@ ;) from the four filters are independent, which
Simulated images ensure totally homogeneous compliexot the case as discussed in Section llI-A; hence, we apply a
Wishart distributed data, and we apply two simulated polantalue of N resulting in the best match with the observations.
metric images having a single class (winter barley at L-barithe four theoretical distributions in Fig. 6(b) representing
and C-band, respectively) for testing the distribution of thilly polarimetric data, the azimuthally symmetric case, the
test statistic for the polarimetric edge detector. Fig. 6(a) shodiggonal case, and two simultaneous sets of forced azimuthally
the theoretical and observed cumulative distribution functiosymmetric data are all made usifgy = 1.8, resulting in a
(cdf) of —2plog@ as given by (5) for filter configuration good match between the theoretical and observed distributions
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Fig. 6. CDF of the theoretical and observed distribution of{&p log,(Q) and (b)(—2plog(Q))max, Using filter configurationsk'; = {9,3,1,~} and

Ky ={9,3,1,n/4}, respectively. The four sets of theoretical and observed cdfs (the observations are the points) accounts for fully polarimetric CM data, forced
azimuthally symmetric CM data, forced diagonal CM data, and forced azimuthally symmetric CM data for two images.

for cdf((—2plog @)max) > 0.7, which is normally the region for the diagonal and azimuthally symmetric case, respectively,

we are interested in when applying the test statistic. using the simulated L-band SAR image from Fig. 5(b). Com-
] ] ] paring the edge map in Fig. 7(a) with the cartoon image in
B. Edge Detection Using Simulated SAR Data Fig. 5(a) we find that the detector using diagonal sample CM

The two simulated polarimetric SAR images using L-bandata is unable to fully distinguish between the following sets of
and C-band CM information are now used for testing the polagtasses at the specific probability of false alarm: oats and peas,
metric edge detector in two cases: the case of diagonal sangbel spring barley and winter wheat. Comparing these combi-
CM data and the case of azimuthally symmetric sample Civations with the L-band parameters in Table |, it is verified that
data. Fig. 7(a) and (b) shows the edge maps when applyiing backscattering coefficients are quite similar for oats and peas
the filter configurationK'y = {9,3,1,7/4} and P, v, = 1% and for spring barley and winter wheat; hence, we need to apply

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on February 24,2010 at 07:14:04 EST from IEEE Xplore. Restrictions apply.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 1, JANUARY 2003

Fig. 7. Edge maps of simulated polarimetric SAR images u$lagv, = 1%. (a) Polarimetric detector using diagonal CM data (L-band), (b) polarimetric
detector using azimuthally symmetric CM data (L-band), (c) ratio detector usin¢l-band), (d) ratio detector using.i., o1, ando., (L-band), (e) polarimetric
detector using diagonal CM data ¢ C-band), and (f) polarimetric detector using azimuthally symmetric CM data @-band).

a larger probability of false alarm (a lower threshold) to be able The edge map in Fig. 7(b) using the azimuthally symmetric
to distinguish these classes satisfactorily. sample CM data appears visually better than when using diag-
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TABLE I
FIGURE-OFMERIT RATING FACTORS FOREDGE MAPS BASED ON SIMULATED DATA FOR THE POLARIMETRIC EDGE DETECTOR(AZIMUTHALLY SYMMETRIC
SAMPLE CM DATA AND DIAGONAL SAMPLE CM DATA) AND THE RATIO DETECTOR(SINGLE AND MULTIPLE BACKSCATTER IMAGES) USING Pfa,Nf =1%

Edge detector L-band C-band L+C-band
Polarimetric detector (forced azimuthal symmetric)  0.845 0.601 0.873
Polarimetric detector (forced diagonal) 0.763 0.639 0.851
Ratio detector (opn, Ohy, Ouw) 0.726 0.607

Ratio detector (onn) 0.595 0.215

Ratio detector (op,) 0.608  0.538

Ratio detector (oy,) 0.590 0.599

onal CM data, and all of the actual edges between classes thedistance map [24]. The ideal edge map consists of all pixels
detected. For both of the edge maps in Fig. 7(a) and (b), it is fwaving a Euclidean distance to the boundary between two dif-
ticed that several of the edges are quite wide, due to the fact theaent regions smaller than or equal to five; this set of ideal
Z, andZ, are estimated in a neighborhood around the centedge pixels is chosen, since an edge may be detected five pixels
pixel. If thin edges are required, one of the many edge-thinniagvay from the actual edge using the applied filter configuration
algorithms suggested in the literature may be applied to the edge = {9, 3,1, 7/4}. The rating factor belongs to the interval
map subsequently. [0, 1], with R = 1 corresponding to the ideally detected edge

Fig. 7(c) and (d) shows the edge maps when applying theap.
ratio detector to a single backscatter imagg and to all three  Table 1l shows the rating factors for the polarimetric detector
backscatter images using the approach outlined in Section liWBen applying azimuthally symmetric CM data and diagonal
and using the same filter configuration and probability of falS€M data, respectively, from the L- and C-band simulated
alarm as for the polarimetric detector (using two and six effegnages. Also, the results for the ratio detector when applying
tive filters, respectively, in (17) leading to a very good corresingle intensity images as well as all three intensity images are
spondence between predicted and observed cdfs). Clearly, ushgwn. The rating factors for the L-band test image supports
only thehh polarization results in an edge map where only sontee previous discussion, i.e., the polarimetric detector using
of the actual edges are detected, whereas the result usingaalinuthally symmetric sample CM data provides the overall
three backscatter images resembles the result from the polagst edge map. For the C-band test image, the diagonal case
metric detector using only the diagonal elements. actually performs better than the azimuthally symmetric case;

The test statistic is also valid in the case of multiple SAk Table I, it is seen that the argument and phase of the complex
images as discussed in Section II-B. Using the L- and C-baaodrrelation coefficient has smaller differences between the
simulated images and the same filter configuration and protiasses in C-band than in L-band; hence, the addition of this
ability of false alarm as for a single test image, the edge mé&rm in the CM is less useful for edge detection in C-band. The
for the multifrequency diagonal case is shown in Fig. 7(e). It mverall best rating factors are obtained using multifrequency
observed that the combination of L-band and C-band data ipnlarimetric edge detection with the azimuthally symmetric
proves the result for the edges causing problems in the L-barabse performing slightly better than the diagonal case.
diagonal case (i.e., between oats and peas and spring barley anflonly the diagonal terms of the CM are available, the po-
winter wheat). This is due to the fact that the fields have differelatrimetric detector and the ratio detector (using all three terms)
scattering mechanisms at L- and C-band; hence, the probabifitpvides results in the approximately same range. The ratio de-
of observing an edge between neighboring fields is generally tector using a single backscatter image is more sensitive to the
creased when applying multiple datasets in the detection. For #pplied images, resulting in very variable performance. This ef-
azimuthally symmetric case, the edge map using only L-bafett is especially noticeably far,;,, where the low contrast be-
appeared visually very good, and only a small improvementtiseen classes for the C-band image results in a very low rating
seen in Fig. 7(f). factor compared to the L-band image.

Like Fjgrtoft et al. [3], we apply the figure-of-merit rating
factor R suggested in [23] for a more quantitative evaluation ¢¢. Edge Detection Using EMISAR Images

the edge maps. Denoting the number of ideal and detected edgehe polarimetric edge detector is applied to the test area
map points asV; and N4, respectivelyR is given as shown in Fig. 4 for the case of L-band azimuthally symmetric
and diagonal sample CM data. A single filter configuration
1 Na 1 K; = {9,3,1,7/4} has been used, and the edge maps are
R = Z (18) shown in Fig. 8(a) and (b), respectively. The edge maps have
max (N;, Ng) 1+ ad? 9 :
been scaled between the threshold valliegorresponding to
Pra,n, = 1% and 3xTy. It is observed that two significant
wherex is a scaling parameter (set to one in this paper)dansl  edges are missing or appear very weak in the diagonal case,
the minimum distance of detected edge pgiim an ideal edge i.e., between a winter wheat and a spring barley field (denoted
point. The distanceg; are obtained by applying a Chamfer-1-A and B, respectively, in Fig. 4) and between an oat field and
1.3507 distance transformation to the ideal edge map providiagpea field (denoted C and D, respectively, in Fig. 4). Both

j=1
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Fig. 8. Scaled edge maps of test area from Fig. 4 using filter configurafior= {9,3,1, 7/4}. (a) Polarimetric detector using diagonal CM data (L-band),
(b) polarimetric detector using azimuthally symmetric CM data (L-band), (c) polarimetric detector using diagonal CM-daat{and), and (d) ratio detector
usingon, (L-band).

of these missing edges are expected when comparing watlarm. It is clearly observed how several of the edges between
Fig. 7(a), where the same two combinations of fields caus#tk fields are missing in the resulting edge map.
problems as well. On the other hand, both edges are clearlyThe results in Fig. 8 using real SAR data illustrate that the
detected in the case of azimuthally symmetric sample CM dafmlarimetric information in the complex correlation coefficient
as we also expect from Fig. 7(b). can, in fact, improve the edge maps. Also, the application of
Fig. 8(c) shows the edge map when applying L- and C-bangultifrequency (and multitemporal) SAR data may improve the
diagonal sample CM data using the same filter configuration agége detection results.
probability of false alarm. The edge between the winter wheat
and spring barley field is now clearly detected, primarily due to
the large difference between,, ando,. for the two crops at
C-band, as seen in Table I. The edge between the oat field an# this paper, a new edge detector for polarimetric SAR data is
the pea field is still not detected:; this is not unexpected whéfesented. Based on a test for equality of covariance matrices,
comparing with Fig. 7(e), where the edge between the two cropéges are detected by comparing covariance matrices on each
is less significant than the other edges in the edge map. Alsogigle of the pixel of interest. Using an associated asymptotic dis-
Table | shows that the backscattering coefficients for the twebution of the test statistic, the edge detection can be performed
crops are in the same range at C-band as well as L-band. at a given probability of false alarm, and as the asymptotic dis-
Finally, Fig. 8(d) shows the edge map when applying tHeibution is independent of the parameters contained in the CM,
standard ratio detector to a single intensity imaggat L-band the edge detector belongs to the class of constant CFAR detec-
using the same filter configuration and probability of falséors, making it suitable for SAR images.

VI. CONCLUSION
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An important property of the polarimetric edge detector iS[13] R. G. Caves, I. McConnell, R. Cook, and S. Quegan, “Multi-channel

that it can be applied to a wide range of SAR data, i.e., full SAR segmentation: Algorithms and applicationiE5E Collog. Image
. . . . . Processing for Remote Sensimg. 5, pp. 2/1-2/6, 1996.
covariance matrix data, forced azimuthally symmetric covariyyy ;s |ee, M. R. Grunes, and G. de Grandi, “Polarimetric SAR speckle

ance matrix data, and forced diagonal covariance matrix data, filtering and its implication for classification/EEE Trans. Geosci. Re-
but also single-channel backscattering images and multitem-  mote Sensing/ol. 37, pp. 2363-2372, Sept. 1999.

ral and/or multifr n larimetric data. This enabl thélS] K. Conradsen, A. A. Nielsen, J. Schou, and H. Skriver, “A test statistic in
poral and/o ulutrequency polanmetric data. S enables the complex Wishart distribution and its application to change detection

simultaneous processing of, for example, fully polarimetric air- i polarimetric SAR data,1EEE Trans. Geosci. Remote Sensingl.
borne SAR data and spaceborne single-channel SAR data. E%/G | 41, Jan. 2003, to be published.

. . . T . N. R. Goodman, “Statistical analysis based on a certain multivariate
simply changing the parameters in the asymptotic distributio complex gaussian distribution (an introductiordyin. Math. Stat.vol.

accordingly, CFAR detection is obtained for all of these data. 34, pp. 152-177, 1963.
An adaptive filtering scheme is outlined, and a procedure fof17] M. R. Borgeaud, T. Shin, and J. A. Kong, “Theoretical models for po-

obtaining the thresholds associated with a given probability of '{’ggemc radar clutter,J. Electromagn. Waves Applol. 1, pp. 73-89,

false alarm is described. When applying filters oriented at morig] k. Conradsen,En Introduktion Til Statistik Lyngby, Denmark:
than one orientation, an approximate relation between the ob-  IMSOR, Tech. Univ. Denmark, 1984.

: bt 4 iotin ; 19] E. L. Christensen, N. Skou, J. Dall, K. W. Woelders, J. H. Jrgensen,
served and predicted distributions of the test statistic is provided! J. Granholm. and S. N. Madsen, “EMISAR: An absolutely calibrated

The relation behaves as expected when applied to simulated po-  polarimetric L- and C-band SAR|EEE Trans. Geosci. Remote Sensing
larimetric data. vol. 36, pp. 1852-1865, Nov. 1998.

Applying the polarimetric edge detector to a simulated test?® W- Dierking, J. Schou, and H. Skriver, "Change detection of small ob-
jects and linear features in multi-temporal polarimetric image$?roc.

image results in improved edge maps when using azimuthally  jGaRSS2000, pp. 1693-1696.
symmetric CM data compared to using only diagonal CM datal21] J. Besag, “On the statistical analysis of dirty picturek,R. Stat. Sog.
e ; ; ; ser. B, vol. 48, no. 3, pp. 259-302, 1986.
This improvement is also observed for polarimetric EMISAR[ZZ] L. M. Novak and M. C. Burl, “Optimal speckle reduction in polari-
data. metric SAR imagery,|IEEE Trans. Aerosp. Electron. Systol. 26, pp.
293-305, Mar. 1990.
[23] W. K. Pratt,Digital Image Processing New York: Wiley, 1978.
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