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Quasi-Periodicity and Border-Collision Bifurcations
in a DC–DC Converter With Pulsewidth Modulation

Zhanybai T. Zhusubaliyev, Evgeniy A. Soukhoterin, and Erik Mosekilde

Abstract—The paper considers the dynamics of a dc–dc con-
verter with pulsewidth modulation. The typical scenario for the
transition to chaos in such systems proceeds via quasi-periodicity,
resonance cycles, and torus destruction. Detailed bifurcation anal-
ysis shows that the resonance solutions arise via border-collision bi-
furcations (BCB) on a two-dimensional torus. The arrangement of
the resonance domains within the parameter plane is related to the
Farey series, and their internal structure is described. It is shown
that transitions to chaos mainly occur through finite sequences of
BCB. Some other possible causes of complex dynamics are consid-
ered, including a subcritical Neimark–Sacker (Andronov–Hopf)
bifurcation and the associated hysteretic phenomena.

Index Terms—Border-collision bifurcations (BCB), chaos, dc–dc
converters, piecewise-smooth systems, power electronics, quasi-pe-
riodicity.

I. INTRODUCTION

M ANY problems in engineering and applied science re-
sult in the consideration of piecewise-smooth dynamical

systems. Examples are relay and pulsewidth-modulated control
systems, impact oscillators, power converters, and various elec-
tronic circuits with piecewise-smooth characteristics.

Transitions from periodic to chaotic oscillations in piecewise-
smooth dynamical systems can display a variety of peculiarities
connected with a specific type of bifurcations that cannot occur
in smooth dynamical systems. These are the so-called border-
collision bifurcations (BCB) [1]–[8]. Previous studies by Feigin
[1]–[4], Nusse and Yorke [5], [6], Nusseet al.[7], Banerjeeet al.
[9]–[12], di Bernardoet al. [8], [13], [14], and Zhusubaliyevet
al. [15]–[17], show that BCB cover an extremely broad variety
of bifurcation phenomena and transitions to chaos. A complete
classification of these transitions has not yet been performed.
However, stimulated by possible applications in many fields of
engineering and applied science, the investigation of BCB in
piecewise-smooth differential systems and piecewise-differen-
tiable maps has recently attracted significant interest (see, e.g.,
[18]–[20]).

Since first reported by Hamill [21], bifurcation phenomena
and chaotic oscillations in dc–dc converters with pulsewidth
modulation (PWM) have been studied in numerous works
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[9]–[12], [15]–[20], [22], and [23]. di Bernardo and Tse [20]
provide a collection of main results in the fields of numerical
and experimental investigation of chaotic behavior in dc–dc
converters (see also [24]). Among the earliest works providing
a detailed numerical and analytical investigation of bifurcations
and transitions to chaos in dc–dc converters we should recall the
paper by Baushev and Zhusubaliyev [25] (see also [26]). These
authors showed that such systems can display a situation where
there is a wide range of parameters with many locally stable
limit cycles with different dynamic characteristics, including
regions of coexistence. These cycles arise in hard transitions,
for example, through a saddle node or BCB, and with changing
parameters each of them can undergo either a finite or an
infinite sequence of period-doubling bifurcations, resulting in
the transition to chaos. Similar results were obtained by Fossas
and Olivar [27] using an approach similar to the one described
in the work by Baushev and Zhusubaliyev [25]. Complex be-
havior of switching power converters connecting with BCB and
grazing bifurcations were described by numerous researchers
[9]–[12], [15]–[20].

El Aroudi and Leyva [23] studied quasi-periodic behavior in
a pulsewidth modulated dc–dc boost converter. The observed
phenomena include a subcritical torus birth (Neimark–Sacker
or Andronov–Hopf) bifurcation, the associated hysteretic tran-
sitions, and the onset of chaos via torus destruction. The authors
described two different ways for the destruction of the torus:
local period doubling of resonance cycles, and loss of the torus
smoothness (see also [28]).

In this paper, we present the results of an investigation of a
number of new phenomena that can arise in piecewise-smooth
dynamical systems, whose motion involves two (or more) pe-
riodic components. When two self-oscillatory systems interact
(or a self-oscillatory system is subjected to an external periodic
forcing), the total motion can be viewed as occurring on the sur-
face of a two-dimensional (2-D) torus and, in the absence of res-
onances, the motion is said to be quasi-periodic. The problem
that we are interested in, is associated with the role that BCB
play in the synchronization of the two modes and in the transi-
tion to chaos when the torus finally breaks down.

To examine these phenomena, we shall consider a three-di-
mensional (3-D) model of a dc–dc buck converter with PWM
whose behavior is described by a 3-D piecewise-smooth system
of nonautonomous differential equations.

It is well known that resonance phenomena, which always
precede the appearance of chaos, play an important role in the
quasi-periodic scenario for the transition to chaos via torus de-
struction. For smooth dynamical systems, the basic theorem for
the destruction of a 2-D torus was proved and the possible ways
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Fig. 1. Coupling diagram for a dc–dc converter.

for the appearance of chaotic dynamics were described in the
important work of Afraimovich and Shil’nikov [29].

The generic character of the Afraimovich and Shil’nikov
analysis has been confirmed numerically as well as experi-
mentally for a wide class of discrete time and flow systems
[30]–[34], clearly demonstrating the possible routes to disinte-
gration for a 2-D torus in smooth systems.

One of the main aims of our investigation is to show that the
transitions to chaos through two-frequency quasi-periodicity in
piecewise-smooth systems can differ fundamentally from the
mechanisms described in the existing literature (see also [16]).
At the same time we show that the boundaries of the Arnol’d
tongues for nonsmooth systems are formed by BCB, rather than
by the saddle-node bifurcations known from smooth systems.
Moreover, the internal organization of the tongues is also quite
different from the case of smooth systems.

II. M ATHEMATICAL MODEL AND METHODS OF

BIFURCATION ANALYSIS

Fig. 1 shows the coupling diagram for a dc–dc buck converter
with proportional-plus-integrating (PI) feedback regulation.
Such converters are well known in power electronics, where
they are used to convert a dc voltage into a dc voltage of
another value (e.g., buck converters, buck–boost converters,
boost converters, etc.). Typical applications are power supplies
for industrial and aerospace equipment as well as for domestic
electronic appliances and computer equipment [35]–[37].

DC–DC converters are often controlled through some kind of
PWM. There is no generally accepted classification of the dif-
ferent types of PWM. However, most specialists in the fields of
power engineering and control theory seem to follow the classi-
fication suggested by Tsypkin [38] (see also [39], [40]). In this
paper, we will also follow this classification.

In Fig. 1, TC is the transistor converter, and PWM is the
modulator which operates in accordance with the algorithm for
two-sided PWM of the first kind. This implies that the transistor
converter is forcedly turned on in the beginning of each clock
interval and turns off when the sawtooth signal exceeds
the value of the feedback signal in the beginning of the clock
interval. The converter is off as long as the sawtooth voltage re-
mains larger than the feedback signal in the beginning of the

Fig. 2. Generation of control pulses for a dc–dc converter.

clock interval and then turns on. This leads to two symmet-
rical control pulses during the clock interval [40]. FILTER is
a standard low-pass filter, VS is the voltage sensor, and COR-
RECTOR represents a PI-feedback link.is the transfer con-
stant of the voltage sensor,

is the output signal of the PI corrector, and is
the external periodic action that has the form of a sawtooth
voltage, see Fig. 2. and are the amplification and transfer
constants of the corrector, and is the output signal of the
pulsewidth modulator. During the time interval ,

, the expression for takes the form

Here, is the amplitude of the external periodic action and
is the action period (modulation period). Square brackets mean
that one has to take the integer part of the argument. Only the
front of the external action is used to determine the
switching instant (see. Fig. 2). Hence, we only need the expres-
sion describing the front, i.e., .

The equations of motion for the pulsewidth-modulated con-
verter constitute a set of three ordinary differential equations
with discontinuous right-hand sides

(1)

with

Here, and are the current in the inductance coil and the
voltage on the capacitor of theLC filter, respectively, and
is the voltage of the corrector’s integrator. The superscript
denotes the operation of transposition. is the load resis-
tance, and is the time constant of the corrector. is the input
voltage, , and is the reference
voltage (see Fig. 1).
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Within the clock interval , the
output signal of the pulsewidth modulator is given by
(see Fig. 2)

The modulator switching instants and are determined
according to the algorithm of PWM of the first kind [38]–[40]

Here, is the pulse duration
( ). In the first case, (see the range

in Fig. 2) and in the third case (see the
range in Fig. 2).

In this analysis, we have assumed the following parameter
values. , , , ,

, , , , ,
and . These parameter values correspond to the
parameters of an actual dc–dc converter [40]. We will consider
the amplification and transfer constants of the corrector
and as the control parameters.

With the assumed parameter values, the eigenvalues, ,
and of the matrix are real and negative

with

Therefore, in order to make the analysis easier, we can replace
(1) by the following simpler system [17], [25]:

(2)
with

The variables ( ) are connected with the original
variables ( ) through the linear transformation

where

By virtue of the periodic forcing, the dynamical system (2)
may be reduced to the 3-D stroboscopic mapping

(3)

(4)

with

(5)

where the root of the equation is

Here, is the relative pulse duration for the
control pulse ( ).

The period of the periodic motion of the dynamical system
(1) is multiple to the external action period, i.e., ,

Here and hereinafter, we denote the motion with such a
period as an cycle [17], [25], and [26].

Using the recurrence relations (3) as did Baushev and
Zhusubaliyev [17] and [25], and the periodicity conditions

, one obtains the expression for

(6)

Substituting into (5) for , we find
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where

Using (4), one obtains the system of transcendental equations
with respect to , [17], [25]

(7)

The above algorithm allows us to evaluate not only the stable
cycles but the unstable ones as well. Ifand are

the solutions of the (7), then, cycle , can be
evaluated according to (6).

The local stability of an cycle is determined by the eigen-
values of the basic matrix which are the roots of

where the basic matrix can be determined by the recurrent for-
mula

Here, , where is the root of (7), and is the zero
matrix.

III. B IFURCATION PHENOMENA IN DYNAMICS

OF THE DC–DC CONVERTER

A. Subcritical Torus Bifurcation and Hysteretic Phenomena

As previously noted, we choose the amplification constant,
and transfer constant of the corrector as control parameters.
Fig. 3 shows the arrangement of the domains of existence of
various stable cycles of the map (3), (4) in the plane (). Let
us examine how the dynamics of the map (3) and (4) change if
the parameters and are varied within the limits indicated in
the diagram (Fig. 3).

Fig. 3. Domains of existence for various dynamical modes of the maps (3) and
(4) within the plane of control parameters (�; �).� and� are the amplification
and transfer constants of the PI corrector, respectively.

Fig. 4. Subcritical bifurcation of birth of a 2-D torus, where sfp is the stable
fixed point, ut is the unstable torus, st is the stable torus, and ufp is the unstable
fixed point.

When is small enough, the system displays a globally stable
period-1 cycle (the operating mode). Its domain of existence is
denoted as in Fig. 3. With increasing , the period-1 cycle
loses its stability through a subcritical Andronov–Hopf (or torus
birth) bifurcation along the dashed curve (which is the right
boundary of ). A sketch of this transition is presented in
Fig. 4. Two 2-D tori appear at the point , one of which
is attracting, while the other is repelling. The latter merges with
the fixed point in the point and disappears as the fixed
point turns into an unstable focus. Thus, in the domain between

and (i.e., between the curves and ), the stable
fixed point coexists with attracting and repelling tori (see Fig. 5).
Hard transitions take place at the boundaries of the domain be-
tween the curves and , from quasi-periodic oscillations
to the fixed point when , and from the fixed point to
quasi-periodic oscillations when .

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on February 24,2010 at 04:13:52 EST from IEEE Xplore.  Restrictions apply. 
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Fig. 5. Phase portraits of the Poincaré map within the domain between the curvesN andN . (a) Results of numerical experiments for� = 0:35 and values
of � increasing from� = � to� = � (� � 31:0615 and� � 31:40688). The situation of the unstable torus whose diameter decreases toward zero with
increasing� is easily seen on the diagrams. (b) Sketch of the phase portrait for� < � < � , where sfp is the stable fixed point, ut is the unstable torus, and st
is the stable torus. (c) Sketch of the phase portrait for� > � , where ufp is the unstable focus point.

Within the range [ ] (i.e., between the curves and
) external disturbances, that are always present in operating

systems, may lead to hard transitions from the quasi-periodic
mode to the period-1 cycle and vice versa, depending on the
basin of attraction that contains the trajectory after the distur-
bance has acted. The boundary between the basins of the quasi-
periodic mode and of the fixed point is formed by the repelling
torus (see Fig. 5(a) and (b)). Whenincreases from to ,
the diameter of the repelling torus decreases from some initial
value to zero. Thus, if we consider the period-1 cycle as the op-
erating mode and the transition to quasi-periodic oscillations as
a catastrophe, then the probability of such a catastrophe is equal
to zero at (to the left of ), equal to one at
(to the right of ), and smoothly increases from 0 to 1, as
increases from to (moves between and ).

Intersection of domains of existence for different modes leads
to the appearance of hysteretic phenomena in the dynamics.
Fig. 6 shows bifurcation diagrams for the interval [ ] for
different scanning directions of the parameter: Fig. 6(a) for
increasing and Fig. 6(b) for decreasing value of.

We conclude that the system can operate in different modes
with the same values of the parameters depending on the tra-
jectory of deformation that leads to this point in the parameter
plane.

With further increase of , resonances on the 2-D torus occur.
The nature of the boundaries of resonance domains and the bi-
furcations within these domains are discussed in the next sec-
tion.

Fig. 6. Transitions near the Andronov–Hopf bifurcation point� and the
point� , where the stable and unstable tori merge: (a) when� increases; (b)
when� decreases.

B. BCB on a 2-D Torus and Transitions to Chaos

In our previous work [16], [17], we described the detailed
inner structure of the resonance domains and the nature of the bi-
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furcation boundaries for a dc–dc converter with one-sided PWM
of the first kind. We will briefly review these results, because
they remain valid for the system under consideration.

Within the parameter plane we discovered do-
mains of existence of resonance cycles on a 2-D torus (domains
of synchronization) which have a peculiar shape. These domains
are similar to the Arnol’d tongues described in numerous works
for maps as well as for flow systems [30]–[34]. Domains of syn-
chronization for piecewise-smooth systems, however, exhibit
important differences with respect to their inner structure and
bifurcational transitions.

Our numerical analysis shows that the tongues of synchro-
nization are located everywhere dense within the parameter
plane. Nevertheless, their measure close to the curve where
the 2-D torus arises from a period-1 cycle can be very small.
To the right of this curve, the total width first increases, but
nonmonotonically, and then decreases, also nonmonotonically.
Moreover, the resonance tongues are bounded not by the curves
of saddle-node bifurcation, like for smooth dynamical systems
(see, e.g., [30]–[34]), but by lines where BCB occur. Between
the synchronization tongues there are domains of quasi-period-
icity and chaos. Within the individual tongue, a finite sequence
of BCB of resonance cycles is observed, leading at the end to
chaotic dynamics.

Let us denote the simply connected domains of existence
of cycles within the plane of control parametersas ,

; where is the period of cycle and indexserves
to distinguish domains with the same.

The synchronization domains may be divided into two
groups. The criterion for this division is the difference in their
inner structure and the bifurcations of the resonance cycles.
The first group comprises such tongues within which
there is a finite number of simply connected domains ,

where two stable resonance cycles of different
type coexist. When intersecting the boundaries of the domains

within such tongues one can observe hard hysteretic tran-
sitions from one stable cycle to another. The second group
includes such where, when the parameters change within

, the transitions from one type of a stable resonance
cycle to another take place in a smooth way via BCB involving
a simple change of the type of solution. Tongues of the first
group are the domains where the period of the resonance cycle
is odd, while those of the second group have even periods.

Figs. 7 and 8 show the shape and the boundary structures
for two synchronization tongues taken as an example. These
are the domains of existence for the stable resonance period-11
cycle (shown in Fig. 7) and for the stable resonance period-10
cycle (shown in Fig. 8) that belong to the first and the second
group, respectively. In Fig. 7, the shaded regions are the domains
of bistability where two stable period-11 resonance cycles of
different types, coexist.

Let us consider the main BCB boundaries. These are the lines
denoted in Figs. 7 and 8 as , , , and . Each of these
lines is a union of BCB boundaries of two kinds

Fig. 7. Domain of stability of period-11 cycle� .

Fig. 8. Domain of stability of period-10 cycle� .

The curves correspond to the boundaries where stable
and unstable cycles of different types merge and disappear, and

correspond to the boundaries with a simple change of the
solution type.

The resonance domains are bounded by an aggregate of BCB
lines of the type , with the exception of the segment AB,
which is a boundary of type , where the solution changes its
type with loss of stability.

The difference between resonance domains from the first and
second group first of all lies in the presence of domains of co-
existence of two stable cycles of different types. In Fig. 7,
such domains are denoted as , ,
The domains are bounded by the BCB lines in the
points of which a stable period-11 cycle merges with an unstable
one of another type and disappears. Within each periodic
motions smoothly depend upon the parameters, while intersec-
tion of the BCB boundaries results in hard transitions from
a stable period-11 cycle to a stable period-11 cycle of another
type and vice versa, with hysteresis as one typically observes
for such transitions. The bifurcation lines within are
supported by the points , of codimension two.
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Fig. 9. Bifurcations within� . (a) Soft appearance of a cycle of chaotic
intervals. (b) Transition to quasi-periodic mode.

Fig. 10. Bifurcations within� .

The dashed and dotted lines in Fig. 7 mark the boundaries
where a simple change of the number of the trajectory por-
tions being sewed occurs (a simple change of the solution type
[3]). They are continuation of the BCB boundaries as rep-
resented by solid lines in the diagram. If the parameters are
changed along the curve , , this means that the curves

continuously convert into the BC-bifurcation curves
of a simple change of the type of solution when passing through
the points , of codimension two. Dotted lines
show the BCB boundaries for the change of the type of solution
for the stable cycles, and the dashed lines show the same for un-
stable cycles.

When moving from the domain into the domain
, the number of parts from which the trajectory of

a stable period-11 cycle is sewed successively, increases in
steps of two. For example, the trajectories of the stable cycles
existing in is sewed from four parts, in from six,
etc., and in their number is 20. The number of parts from
which the phase trajectory of a period-11 cycle is sewed is

Fig. 11. Doubling and tripling of the cycle period on the boundaries of
resonance domains. This diagram contains only two branches of six (the cycle
period is equal to 6).

Fig. 12. Resonance cycles of the first, second, and third level of complexityk.

limited (it cannot exceed 22). Hence, the number of domains
is finite.

The inner structure of the synchronization domains for the
second group is simpler than that for the first group. The parts
of the lines in Fig. 8 that correspond to BCB of a simple
change of the solution type of the stable and unstable period-10
cycle are inner ones and divide the domain into four parts.
In each of these regions, a single stable cycle of a particular
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Fig. 13. Time series for the state variablex for the one oscillation period (left) and 2-D projections of the integral curves (right) for the period-13 cycle: (a)
1-turned cycle (� = 26:9,� = 0:017, rotation number = 1=13, level of complexity = 1); (b) 2-turned cycle (� = 38:0;� = 0:345, rotation number =

2=13, level of complexity = 2). Circles on the integral curve mark the positions of the Poincaré map points, the numbers indicating the sequence of the iterations.

type exists. Within every , , the number of
which inside is finite, stable cycles of four different types
exist. When changing the parameters, a stable resonance cycle
continuously transforms into a stable cycle of another type. This
happens in the points of the BC-boundaries marked in Fig. 8 by
the dashed lines.

Now let us consider the changes in the system behavior at the
intersecting bifurcation boundaries.

When intersecting the boundary , a stable resonance cycle
disappears as it merges with an unstable cycle of a different
type. Hard transitions to a resonance cycle with another period
or to chaotic oscillations developed form a resonance cycle with
another period are possible here. Such transitions occur within
the domain of resonance overlap.

When intersecting that part of the boundaries of or
which corresponds to the line (the segments AB in

Figs. 7 and 8), a resonance cycle changes its type and becomes
a saddle. Here, a cycle of chaotic intervals softly arises from
the resonance cycle. As shown in our previous work [15], the
skeleton of this cycle of chaotic intervals is a denumerable set
of saddle cycles with periods that are multiple to the period of
the basic cycle.

One of the possible transitions to chaos via a sequence of
BCB within the resonance domains of the first kind is illus-
trated by the bifurcation diagram depicted in Fig. 9(a). With
change of the parameters a resonance cycle undergoes both hys-
teresis and soft BCB transitions. When intersecting the line AB,

a cycle of chaotic intervals softly arises from a stable cycle via a
border-collision bifurcation. Another bifurcation scenario when
changing the parameters within such domains is illustrated in
Fig. 9(b). This diagram is obtained for the system considered in
this paper. Here, the transition from periodic to quasi-periodic
oscillations occurs abruptly when two period-11 cycles of dif-
ferent types merge and disappear at the boundary.

Bifurcations of a resonance cycle and transitions to chaos
which are related with are on the whole similar to those
of . The only exception is that hysteresis transitions do not
occur (see Fig. 10).

There are other kinds of resonance domains withinthat
display certain differences in the structure of their bifurcation
boundaries by comparison with the above considered domains.
These differences lie in the presence of BCB lines of resonance
cycle period-doubling and tripling within the synchronization
tongues (see, for example, Fig. 11). A detailed study of bifurca-
tional transitions in the points of such curves was performed in
our previous work [15], [17].

C. Arrangement of the Resonance Domains Within the
Parameter Plane

Domains of stability of resonance cycles are arranged within
the parameter plane in such a way, that their rotation numbers
are ordered according to the well-known Farey tree [41]. This
means that the rotation number of such a cycle can be repre-
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Fig. 14. Time series for the state variablex for the one oscillation period (left) and 2-D projections of the integral curves (right) for: (a) 2-turned period-17 cycle
(� = 31:0,� = 0:22, rotation number = 2=17, level of complexity = 2); (b) 3-turned period-17 cycle (� = 37:0,� = 0:46, rotation number = 3=17,
level of complexity = 3); (c) 3-turned period-26 cycle (� = 29:9, � = 0:21, rotation number = 3=26, level of complexity = 2, s = 2). Circles on the
integral curve mark the positions of the Poincaré map points, the numbers indicating the sequence of the iterations.

sented as

(8)

or

(9)

Here, is thelevel of complexity[42]; is
the number of the cycle in the sequence of cycles ofth level of
complexity; and are the rotation num-

bers of the nearest neighboring cycles of ( )th level of com-
plexity; and .

In other words, the Farey principle for the case under consid-
eration can be stated as follows: between any two domains of
existence of stable resonance cycles with the rotation numbers

and one always finds the domain of existence of a stable
resonance cycle with the rotation number

Fig. 12 shows the arrangement of resonance domains of var-
ious levels of complexity within the plane of control parameters.
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Let us consider the form of the rotation number for multidi-
mensional dynamical systems.

(a) The denominator of the rotation number determines
the oscillation period. In particular, for control systems with
PWM (1) if is the rotation number of a resonance cycle,
then the period of this cycle is , where is the period
of modulation. The period of oscillation for the Poincaré map
equals .

As long as we only consider the period of the cycle the opera-
tion “ ” can be replaced with common addition while building
the Farey series, i.e., between two resonance domains one al-
ways finds a domain with a cycle period that is equal to the sum
of the cycle periods of the original domains.

(b) The numerator of the rotation number determines how
many turns along the big circle of the torus the trajectory will
perform during the period, i.e., the resonance cycle with the ro-
tation number rotates times in iterations.

All the discussed regularities are also valid for control sys-
tems with one-sided PWM of the first kind as described in our
previous work [16]. As an illustrative example, Figs. 13 and 14
show the trajectories for cycles with the same periods, but dif-
ferent rotation numbers for this system. Note the succession of
the Poincaré map iterations for the cycles with different numer-
ator of the rotation number. These figures clearly show that for
the given period the big diameter of the torus changes inversely
proportional to the numerator of the rotation number. This can
be explained as follows: the rate of the state variable changes is
basically determined by the values of the reactive elements and
remains nearly constant.

Fig. 14(c) is presented to avoid the false impression that the
number of turns that the trajectory performs during one period is
determined by the level of complexity. There are cycles with the
same periods and the same level of complexity but with different
numerator of the rotation number, for example, period-57 cy-
cles of the second level of complexity. The domain of existence
of one such cycle lies between and , and the rotation
number (see (8) for , , ). For an-
other period-57 cycle the domain of existence lies between
and , and (see (8) for , , ).
Generally, it should be noted that increase of the numerator of
the rotation number leads to an increase of the complexity of
motion even if the motion period (denominator of the rotation
number) does not change. In practical applications this results in
an increasing probability for the occurrence of incoherent mo-
tions due to jumping of the phase point from one part of the
integral curve to another [43].

IV. CONCLUSION

We studied the bifurcation phenomena that can be observed
in a dc-dc voltage converter with two-sided PWM. The amplifi-
cation constant and the transfer constantfor the PI-corrector
were used as bifurcation parameters. By contrast to the case of
one-sided PWM [16], the system displays a subcritical transi-
tion to quasi-periodicity. This implies that there is a parameter
interval in which a stable periodic state (the operating mode) co-
exists with a stable and an unstable torus. The basin of attraction

for the operating mode may be very small, however, so that in
practice the system can be unstable.

A similar phenomenon was recently described by Chris-
tiansenet al. [44] for the so-called transonic flutter in aircraft
wings, i.e., the self-excited excitations of the elastic modes
of the wing structure that can arise through interaction with
the aerodynamical flow. These authors also investigated how
random fluctuations in the airflow could induce transitions
between the stable operating mode and finite amplitude flutter
oscillations.

In the regime of quasi-periodicity, both the one-sided and
the two-sided pulsewidth modulated voltage converter display
transitions between resonant and nonresonant behavior. By con-
trast to the well-established theory for smooth dynamical sys-
tems [45], these transitions take place via BCB rather than via
saddle-node bifurcation. Moreover, the inner organization of
the resonance domains is also quite different from the case of
smooth dynamical systems. We suggest that the transition to
chaos through torus destabilization can also occur via mecha-
nisms that differ from the mechanisms known for smooth dy-
namical systems [29] and [46].
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