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Improved Differential Evolution Based on
Stochastic Ranking for Robust Layout

Synthesis of MEMS Components
Zhun Fan, Member, IEEE, Jinchao Liu, Torben Sørensen, and Pan Wang, Member, IEEE

Abstract—This paper introduces an improved differential evo-
lution (DE) algorithm for robust layout synthesis of microelectro-
mechanical system components subject to inherent geometric
uncertainties. A case study of the layout synthesis of a comb-
driven microresonator shows that the approach proposed in this
paper can lead to design results that meet the target performance
and are less sensitive to geometric uncertainties than the typical
designs. It is also demonstrated that the algorithm proposed in
this paper cannot only obtain better results than the standard
DE algorithm but also outperform some other state-of-the-art
algorithms in constrained optimization.

Index Terms—Differential evolution (DE), microelectromechan-
ical systems (MEMS), robust design, stochastic ranking (SR).

I. INTRODUCTION

M ICROELECTROMECHANICAL systems (MEMS) are
tiny mechanical devices that are built upon semicon-

ductor chips and are measured in micrometers. They usually
integrate a number of functions, including fluidics, optics,
mechanics, and electronics, across different physical domains
and are used to make numerous devices such as pressure sen-
sors, gyroscopes, engines, accelerometers, etc. Many designs
of MEMS are made through engineering experience and back-
of-the-envelope calculations and are highly dependent on the
knowledge and experience of the designers.

One reason for this is the complexity involved in the model-
ing, design, and fabrication of MEMS—there are many con-
straints in designing and fabricating MEMS devices due to
the limitations of current fabrication techniques. However, as
process technologies become more stable, research emphasis
can be shifted from developing specific process technologies
toward the design of systems with a large number of reusable
components, such as resonators, accelerometers, gyroscopes,
and micromirrors. It greatly benefits the MEMS designers if the
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routine design of frequently used components can be optimized
automatically by computer programs, while the designers can
take more time in contemplating the more creative conceptual
designs.

It has been shown that the performance of individual compo-
nents influences the quality of the whole system. For example,
the frequency stability of a MEMS resonator can directly affect
the quality of the MEMS RF system in which it serves as a com-
ponent of a filter or an oscillator [1]. Because microresonators
are basically 2.5 dimensional devices, the design automation
of microresonators boils down to a layout synthesis problem,
which has been carried out by many researchers. Some notable
research uses deterministic numeric approaches [2]–[4] and
metaheuristic approaches such as evolutionary computation [5],
[6] and simulated annealing [7], [8].

It is notable that, with current micromachining techniques,
the fabrication process variation in MEMS is inevitable when
devices are miniaturized to the point of process limitations [1].
For example, it is reported in [9] that the width of a typical
suspension beam has a fabrication tolerance of about 10%. How
to design MEMS that is most insensitive to fabrication process
variation is therefore an important issue in MEMS design. This
paper also addresses this important issue, i.e., incorporating
uncertainty in MEMS design through robust optimization.

Many approaches exist in the literature to incorporate un-
certainty in a design formulation. Taguchi [10] introduced the
concept of robust design to improve the quality of products
with significant variations in their manufacturing process by
reducing the sensitivity of the design performance to possi-
ble sources of variations without an attempt to eliminate the
sources. Robust design has been developed and applied in many
areas. Some examples include robust optical coating design
[11], [12], robust design of a vibratory microgyroscope [13],
an active micromixer [14], and brushless dc motors [15].

In this paper, we present a robust optimization approach
for designing MEMS subject to process-induced geometrical
uncertainties. In this approach, we first formulate the robust
design problem as a multiobjective constrained optimization
problem [16], [17] and then solve it using an improved differ-
ential evolution (DE). DE is a strong and efficient optimization
algorithm capable of handling nonlinear, nondifferentiable, and
multimodal objective functions [18]. A case study based on the
layout synthesis of comb-driven microresonator shows that the
robust designs nominally meet the target performance and are
less sensitive to geometric uncertainties. It is also demonstrated

0278-0046/$25.00 © 2009 IEEE
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that the algorithm proposed in this paper cannot only obtain
better results than the standard DE algorithm but also out-
perform some other state-of-the-art algorithms in constrained
optimization.

The remainder of this paper is organized as follows.
Section II introduces the formulation of the general robust
optimization problem that is used to formulate the MEMS
layout synthesis problem in this paper. Section III describes the
method of modeling uncertainty in MEMS fabrication process.
Section IV explains in details the improved DE algorithm (IDE)
used to do the robust layout synthesis. Section V gives the
description of the case study of comb-driven microresonator de-
sign, and Section VI presents experimental results. Section VII
concludes this paper with a brief summary.

II. FORMULATION OF THE ROBUST

OPTIMIZATION PROBLEM

This paper considers the application of a general robust opti-
mization problem that can be formulated as the following [17].

Let �x = {x1, x2 . . . , xn} be an array of design variables of
a given design problem. We assume that the uncertainty �δ =
{δ1, δ2, . . . , δn} can be characterized as a random vector with
the following statistics:

E(�δ) = 0nx1 (1)

E(�δ�δT) = Ω ∈ �nxn (2)

where Ω is the covariance matrix and is positive semidefinite.
If the uncertainties are uncorrelated, then Ω is diagonal; oth-
erwise, the off-diagonal entries are nonzero when correlation
exists.

Given a function f(�x,�δ) describing the performance of a
design merit, the robust design problem that we aim to solve
is to minimize the expected value of the squared error between
the actual and target performances. We can write this as

min
x

E
(
f(�x,�δ) − f̄

)2

subject to gi(�x) ≤ 0 (3)

where f̄ is the target performance, and the expectation is taken
over the random vector �δ. In addition, gi(�x) ≤ 0 represents a
list of constraints to be satisfied.

The problem posed in (3) is a difficult robust optimization
problem to solve in general. To simplify the problem, we choose
to approximate f(�x,�δ) with a first order Taylor series expansion
in �δ as

f(�x,�δ) ∼= f(�x, 0) + ∇δf(�x, 0)�δ (4)

where ∇δf(�x, 0) is the gradient of f(�x,�δ) with respect to �δ.
Using this approximation, we can expand the expression of
(f(�x,�δ) − f̄)2 into(

f(�x,
⇀

δ ) − f̄

)2

∼=
(
f(

⇀
x, 0) − f̄

)2

+ 2
(
f(�x, 0) − f̄

)
×∇δf(�x, 0)�δ + ∇δf(�x, 0)�δ�δT∇T

δ f(�x, 0). (5)

Taking the expectation of the aforementioned equation, we
can get

E
(
f(�x,�δ) − f̄

)2 ∼= (f(�x, 0) − f̄
)2 + 2

(
f(�x, 0) − f̄

)
×∇δf(�x, 0)E(�δ) + ∇δf(�x, 0)E(�δ�δT)∇T

δ f(�x, 0). (6)

By reducing (6), based on our assumptions about the mean
and covariance of �δ according to (1) and (2), we obtain

E
(
f(�x,�δ) − f̄

)2∼= (f(�x, 0) − f̄
)2 + ∇δf(�x, 0)Ω∇T

δ f(�x, 0).
(7)

Substituting the approximation in (7) back into the original
design problem posed in (3) yields

min
x

{(
f(�x, 0) − f̄

)2 + ∇δf(�x, 0)Ω∇T
δ f(�x, 0)

}
subject to gi(�x) ≤ 0. (8)

To normalize the cost function, we decide to divide through
by f̄2. We then refer to the following expression as our robust
design problem:

min
x

((
f(�x, 0) − f̄

f̄

)2

+
1
f̄2

(∇δf(�x, 0)Ω∇T
δ f(�x, 0)

))

subject to gi(�x) ≤ 0. (9)

It is now easy to see that the expression we want to minimize
has two distinct terms. For notational convenience, we will label
the two terms as

N(�x) ≡
(

f(�x, 0) − f̄

f̄

)2

(10)

D(�x,Ω) ≡ 1
f̄2

∇δf(�x, 0)Ω∇T
δ f(�x, 0). (11)

With the aforementioned definitions, the robust design prob-
lem posed in (9) becomes

min
x

{N(�x),D(�x,Ω)} subject to gi(�x) ≤ 0. (12)

The first term N(�x) penalizes the deviation of the nominal
solution f(�x, 0) from the target f̄ , while the second term
D(�x,Ω) penalizes the sensitivity of the design with respect
to �δ. The first term is a performance index, while the second
term is a robustness index. Since there are two objectives in
the formation of the cost function to be minimized, a tradeoff
is usually needed to be made by the designer. In practice, if
we want to obtain robust designs, a simple way is to sum the
two objectives into a single one and take it as the objective
to be minimized. One disadvantage of applying this method in
our work is that it cannot guarantee that D(�x,Ω) is reduced
after optimization. Theoretically, it is possible that D(�x,Ω)
increases if the decrease of N(�x) is more than the increase
of D(�x,Ω) within the reduced sum. In our approach, we set
a small threshold constraint N(�x) ≤ 1.0e − 6 and then focus
on minimizing the value of D(�x,Ω).
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Fig. 1. Under- and overetch of a MEMS structure.

III. MODELING UNCERTAINTY IN MEMS
FABRICATION PROCESS

We assume that the uncertainty in the fabrication process
is introduced by etch- or lithograph-induced variations in
linewidth, and the structure is etched uniformly.

Fig. 1 shows the two uniform etch scenarios on a
structure—overetch and underetch. Take the underetch situa-
tion, for example, after process variation is introduced, some
design variables may increase (such as L1 and L2) and other
design variables (such as L3) may decrease, while some others
may stay unchanged (such as L4).

We can model the geometric process variations using a
simple additive uncertain model

x̃ = �x + �δ (13)

where x̃ is the uncertain (actual) design vector, and for the
aforementioned simple example, �δ = {δL1 , δL2 , δL3 , δL4}.

Since the structure is etched uniformly, if we define ρ to be a
normal random variable with zero mean and standard deviation
of σ, then we can write

�δ = ρζ (14)

where ζ = [1, 1,−1, 0]T and is called a variation vector. Note
that, in the condition of underetch, L1 and L2 increase, L3
decreases, and L4 is not changed. Also note that, in this case,
ρ is positive; the aforementioned facts can easily be verified
by (14).

Because ρ is a normal random variable, it can also be used
to model the overetch situation, in which ρ will take a negative
value.

According to (2), we can obtain

Ω = E(�δ�δT) = σ2ζζT. (15)

IV. ROBUST OPTIMIZATION USING IDE

Many types of evolutionary approaches have been developed
and implemented as design optimization tools [19], [20]. Ge-
netic algorithms with a robust solution searching scheme were
first presented by Tsutsui and Ghosh [21] and later discussed by
Deb and Gupta [22], [23]. Jin and Branke [24] made a thorough
survey of applying evolutionary computation in uncertain envi-
ronments. Most recently, Lee et al. [25] use robust evolutionary

algorithms for unmanned (combat) aerial vehicle aerodynamics
and radio cross section design optimization. One advantage
of using genetic algorithms is its convenience to solve the
optimization problem with both discrete and continuous design
variables. While it is very difficult for many numerical opti-
mization approaches (for example, gradient-based approaches)
to include considerations of feature size constraints in MEMS
design [4], it is quite convenient for genetic algorithms to do
so. We need to modify the objective function only slightly,
mapping real values of design variables to integer multiples
of the feature size before using them in the formulations of
constraints and objectives. No modifications to the genetic
algorithm are needed. In this paper, we always set the feature
size as 0.09 μm. It is also very convenient for evolutionary
computation to integrate integer design variables such as the
number of comb fingers used in a microresonator.

An IDE based on Stochastic Ranking (IDE-SR) was devel-
oped and used to solve the robust layout synthesis problem
in this paper. The succeeding sections will first introduce the
standard DE algorithm and then explain the novel mechanisms
developed in IDE-SR in details.

A. Standard DE

DE is one of the most recent evolutionary algorithms for
solving real-parameter optimization problems. In each iteration,
DE creates one new offspring individual by combining one
parental individual and the differences of several other individ-
uals in the same population. The generated offspring individual
replaces the parental individual only if it is better. In general,
DE has three parameters that can impact its performance sig-
nificantly: scaling factor F , crossover control parameter pCR,
and population size NP .

The population of DE contains NP n-dimensional
individuals

�xi,G ={xi,1,G, xi,2,G, . . . , xi,n,G}, i=1, 2, . . . NP (16)

where G denotes the generation number. Because it is consid-
ered beneficial to the search process if the initial population
can be statistically evenly distributed over the entire search
space, each variable of all individuals in the initial population is
randomly decided by a uniform distribution between lower and
upper bounds predefined for each variable.

At each generation, a target vector �xi,G is first selected ran-
domly, and then, a mutant vector �νi,G is created by disturbing
the target vector using a mutation operation; after that, a trial
vector �ui,G is formed by applying crossover operation between
the target and mutant vectors. Finally, a selection operation is
executed between the trial and target vectors to decide which
vector goes to the next generation. The procedure is repeated
NP times to create all individuals for an offspring generation.
The main procedure for DE is shown in Fig. 2 and explained in
detail as follows.

1) Mutation Operation: For each target vector �xi,G at
generation G, an associated mutant vector �νi,G = {νi,1,G,
νi,2,G, . . . , νi,n,G} can be created by using one of the mutation
strategies. The most commonly used strategies are as follows,

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 28, 2009 at 05:10 from IEEE Xplore.  Restrictions apply. 
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Fig. 2. Pseudocode of the iterative search procedure of DE.

where the indexes r1, r2, r3, r4, and r5 represent the random
and mutually different integers generated between 1 and NP

and �xbest,G is the best individual at generation G:
“rand/1” �νi,G = �xr1,G + F (�xr2,G − �xr3,G);
“best/1” �νi,G = �xbest,G + F (�xr1,G − �xr2,G);
“current to best/1” �νi,G = �xi,G + F (�xbest,G − �xi,G) +

F (�xr1,G − �xr2,G);
“best/2” �νi,G = �xbest,G + F (�xr1,G − �xr2,G) +

F (�xr3,G − �xr4,G);
“rand/2” �νi,G = �xr1,G + F (�xr2,G − �xr3,G) +

F (�xr4,G − �xr5,G).
Different strategies have different features for different applica-
tions. It is also possible to use a combination of two or more
strategies to better cope with certain application.

2) Crossover Operation: After mutation, a “binary” cross-
over operation is applied to form the final trial vector �ui,G,
according to its corresponding target vector �xi,G and mutant
vector �νi,G

�ui,j,G =
{

�νi,j,G, if rand ≤ pCR or j = jrand

�xi,j,G, otherwise
(17)

where i = 1, 2, . . . , NP ; j = 1, 2, . . . , n; and index jrand is a
randomly chosen integer within the range [1, n]. By making use
of jrand, it can be guaranteed that the trial vector �ui,G will differ
from its target vector �xi,G by at least one parameter.

3) Selection Operation: After evaluating the target vector
�xi,G and the corresponding trial vector �ui,G, a “knockout” com-
petition is played between them, and the vector with smaller

Fig. 3. Pseudocode of SR [29].

Fig. 4. Illustration of the modified mutation strategy in IDE-SR. Note that the
population ranked by SR is divided into upper part Q1 and lower part Q2. The
difference of one randomly selected individual r2 from Q1 and one randomly
selected individual r3 from Q2 forms a differential vector pointing toward r2.

objective function value is selected and added to the next
population

�xi,G+1 =
{

�ui,G if f(�ui,G) ≤ f(�xi,G)
�xi,G, otherwise.

(18)

Because each individual has both the values of objective
function and constraint violation for comparison, it is important
to use some rules for the purpose of comparison. According to
our empirical experience, different rules of handling constraints
used can actually lead to very different results in constrained
optimization algorithms.

B. Different Rules of Handling Constraints

Very few constraint handling techniques have been re-
ported in DE. Two very important and similar techniques are
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Fig. 5. Pseudocode of the iterative search procedure of the IDE based on SR: IDE-SR.

proposed by Lampinen [26] and Becerra and Coello [27].
Both techniques use three rules for the replacement during the
selection procedure, and the first two are the same. They are as
follows.

1) A feasible individual is always better than an infeasible
individual.

2) If both individuals are feasible, the one with better
value of the objective function is selected for the next
generation.

The third rule, regarding the situation when both individuals
are infeasible, is different. In Lampinen’s approach, the com-
parison is made in the Pareto sense in the constraint violation
space. It can be expressed as follows.

1) If both individuals are infeasible, the parent is replaced if
the new individual has lower or equal violation for all the
constraints.

In Becerra and Coello’s approach, a sum of normalized
constraint violations is used for comparison and can be written
as follows.

1) If both individuals are infeasible, the individual with
less level of constraint violations is better. The level
of constraint violation is measured with the normal-
ized constraints with the expression of viol(xj) =

∑constr
c=1 (gc(x)/gmax c), where gc(x) denotes the violated

constraints of the problem and gmax c is the largest viola-
tion of the constraint gc(x) found so far.

It is worthwhile to point out that both approaches bear
some resemblance with an approach proposed by Deb [28]
previously, even though Deb’s approach is not based in DE.
The key difference also lies in the comparison for the case
of two infeasible individuals: Lampinen’s method makes the
comparison in the Pareto sense, Deb’s method sums all the
constraint violations and compares a single value, and Becerra
and Coello’s method makes normalization for the constraint
violations before summing them together.

Like the selection of mutation strategies, the selection of
proper constraint handling techniques is highly dependent on
applications. In this paper, Becerra and Coello’s approach was
selected because it outperformed the others.

C. IDE-SR: An Improved DE Based on SR

The “rand/1” mutation strategy used in the standard DE pro-
vides no information of direction toward the global optimum.
If the information of direction can be obtained and utilized
in the search process, the performance of the algorithm has a
potential to be improved. To avoid the search to be stuck in
local minimum, however, the direction information should not
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be local but global. To define a “global direction” information
for the whole population is not an easy task, particularly when
each individual has actually two features to compare with the
others in a constraint optimization problem—one feature is the
objective value, and the other is the level of constraint violation.
How to optimally balance them in the comparison procedure
presents a challenge.

SR [29] provides a convenient and powerful mechanism to
balance the dominance in ranking the whole population with
both objective value and constraint violation as comparison
criteria. The pseudocode of SR is provided in Fig. 3.

The IDE-SR is designed with a focus on a modified mutation
strategy, which can be described in more details as the follow-
ing: For the generation of trial vectors, the whole population
is first made to undergo an SR procedure. Then, the ranked
population is divided into two parts—upper and lower parts.
The upper part comprises of the “better” individuals who have
been ranked high after the SR procedure. For each individual
trial vector, the upper part contributes two “good” randomly
selected individuals, and the lower part contributes one ran-
domly selected individual that is “less good.” The three indi-
viduals then make a mutation operation according to “rand/1”
strategy, with the difference vector obtained through extracting
one “good” individual with the “less-good” individual. It is
notable that, in this way, the difference vector will always be
directed toward the upper part of the population, thus leading
the population to search upwards (Fig. 4). This procedure is
repeated until the whole population of trail vectors is obtained.
The rest of the algorithm is almost the same as the standard
DE, with the exception that the scaling factor F can become
a random variable as a variation of the algorithm. The overall
procedure of the IDE-SR algorithm can be illustrated using the
pseudocode listed in Fig. 5.

V. CASE STUDY

A case study in the area of MEMS design was carried
out to verify the effectiveness of the aforementioned robust
optimization method using the IDE-SR. The design problem is
a comb-drive microresonator with 15 mixed-type design vari-
ables and 24 design constraints, both linear and nonlinear. The
following section gives a more detailed description of the case
study.

A. Comb-Driven Microresonator Design

The comb-driven microresonator problem was originally
taken from [4]. The goal of the design is to robustly match
the resonant frequency to the predefined target frequency in
the presence of geometric process variations. The comb-drive
microresonator is fabricated in a polysilicon surface microstruc-
tural process. The layout of the comb-driven microresonator is
shown in Fig. 6(a) and can be specified by 15 design variables,
as shown in Fig. 6(b) [4]. The vector of design variables can
then be defined as follows:

�x=[Lb,wb,Lt,wt,Lsy,wsy,wsa,wcy,Lcy,Lc, wc, Lsa, xo,V,Nc]
(19)

Fig. 6. (a) Comb-drive microresonator fabricated in a polysilicon surface
microstructural process [4]. (b) Major design variables for comb-driven
microresonators [4].

where

Lb and wb the length and width of flexture beam,
respectively;

Lt and wt the length and width of truss beam,
respectively;

Lsy and wsy the length and width of shuttle yoke,
respectively;

Lcy and wcy the length and width of comb yoke,
respectively;

Lc and wc the length and width of comb fingers,
respectively;

wsa the width of shuttle axle;
g the gap between comb fingers;
xo the comb finger overlap;
V the voltage amplitude;
Nc the number of rotor comb fingers.

It is noted that the first 13 design variables have units of
micrometers. They are discrete variables because they can only
be integer multiples of the feature size, which is set to be
0.09 μm in this paper. The fourteenth design variable has units
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of volts and is a continuous variable. The fifteenth variable has
no unit and is an integer variable.

The constraints for the design variables are also listed as fol-
lows: 2 ≤ Lb ≤ 400, 2 ≤ wb ≤ 20, 2 ≤ Lt ≤ 400, 2 ≤ wt ≤
20, 2 ≤ Lsy ≤ 400, 10 ≤ wsy ≤ 400, 10 ≤ wsa ≤ 400, 10 ≤
wcy ≤ 400, 2 ≤ Lcy ≤ 700, 8 ≤ Lc ≤ 400, 2 ≤ wc ≤ 20,
2≤Lsa≤400, 4 ≤ xo ≤ 400, 0 ≤ V ≤ 50, and 3 ≤ Nc ≤ 50.

In addition, we assume that wc = g = d in our design, for
the special case of equal comb finger width, gap, and spacing
above the substrate. Some design variables are predefined: They
are wba = 11, wca = 14, γ = 4, and t = 2, in which wba is the
width of beam anchors, wca is the width of stator comb, and t
is the thickness of the microresonator.

There are a number of design constraints to be considered
for the comb-driven microresonator cell component, including
both geometric and functional constraints. In this paper, without
loss of generality, we consider the following 24 constraints:

g1(x) : −(Lcy + 2g + 2wc) ≤ 0

g2(x) : Lcy + 2g + 2wc − 700 ≤ 0

g3(x) : −(Lsy + 2Lb + 2wt) ≤ 0

g4(x) : Lsy + 2Lb + 2wt − 700 ≤ 0

g5(x) : −(3Lt + wsy + 4Lc − 2x0 + 2wcy + 2wca) ≤ 0

g6(x) : 3Lt + wsy + 4Lc − 2x0 + 2wcy + 2wca − 700 ≤ 0

g7(x) : Lc − (x0 + xdisp) − 200 ≤ 0

g8(x) : 4 − Lc + (x0 + xdisp) ≤ 0

g9(x) : − ((2Nc + 1)Wc + 2Ncg − Lcy) ≤ 0

g10(x) : (2Nc + 1)Wc + 2Ncg − Lcy − 700 ≤ 0

g11(x) : −(x0 − xdisp − 4) ≤ 0

g12(x) : x0 − xdisp − 200 ≤ 0

g13(x) : 4 − (Lt − xdisp − (Wsy + Wb)/2) ≤ 0

g14(x) : Lt − xdisp − (Wsy + Wb)/2 − 200 ≤ 0

g15(x) : 2 − (Lsy − 2Wba − Wsa)/2 ≤ 0

g16(x) : (Lsy − 2Wba − Wsa)/2 − 200 ≤ 0

g17(x) : 2 − xdisp ≤ 0

g18(x) : xdisp − 100 ≤ 0

g19(x) : 5 − Q ≤ 0

g20(x) : Q − 1e5 ≤ 0

g21(x) : −xdisp/Lb ≤ 0

g22(x) : xdisp/Lb − 0.1 ≤ 0

g23(x) : −Ke,y/Ky ≤ 0

g24(x) : Ke,y/Ky − 1/3 ≤ 0.

Among them, the first sixteen are linear constraints, and the
last eight are nonlinear constraints

xdisp = QFe,x/Kx (20)

TABLE I
LIST OF PARAMETERS USED BY IDE-SR

where Q is quality factor and can be represented as

Q =
√

mxKx/B2
x. (21)

Fe,x is the force generated by the comb drive. The force is
proportional to the square of the voltage V applied across the
comb fingers

Fe,x = 1.12ε0Nc
t

g
V 2 (22)

where ε0 is the permittivity of air.
We also have

Kx =
2EtW 3

b

L3
b

L2
t + 14αLtLb + 36α2L2

b

4L2
t + 41αLtLb + 36α2L2

b

(23)

where

α = (Wt/Wb)3 (24)

Bx = μ

[
(As + 0.5At + 0.5Ab)

(
1
d

+
1
γ

)
+

Ac

g

]
(25)

where μ is the viscosity of air, and As, At, Ab, and Ac are the
bloated layout areas of the shuttle, truss beams, flexure beams,
and comb finger sidewalls, respectively.

Moreover, we know that

mx = ms +
1
4
mt +

12
35

mb (26)

where ms = ρAst, mt = ρAtt, and mb = ρAbt

As = wsaLsa + 2wsyLsy (27)

At = 2wcaLcy (28)

Ab = 8Lbwb + 2wt(2Lt + wa + 2wb) (29)

Ac = 2NcwcLc. (30)

The natural frequency ωn is defined as

ωn =
1
2π

√
Kx

mx
. (31)

The design objective of comb-driven microresonator is to
robustly match the natural frequency of the comb-driven mi-
croresonator with a predefined natural frequency.
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TABLE II
RESULTS OF NONROBUST LAYOUT SYNTHESIS OF COMB-DRIVEN MICRORESONATOR

In other words, in this particular case study, the definition of
f(�x, 0) in (10) can be expressed as

f(�x, 0) = ωn(�x, 0) (32)

where f̄ can be predefined by users. In this paper, without loss
of generality, f̄ = 200 kHz.

VI. EXPERIMENTS

As shown in (10) and (11), there are two design objectives
to minimize in the robust design problem. The first objective
relates to the design performance, while the second objective
reflects the robustness of the design. To verify that involving the
robustness consideration in the optimization process can help to
reduce the sensitivity of the resulting designs to the variations
of the design variables, we carry out a comparative study. In the
first set of runs of IDE-SR, we only consider the first design
objective, i.e., the performance objective. In the second set of
runs of IDE-SR, we consider both performance and robustness
objectives.

To verify that the performance of IDE-SR is competitive,
a comparison study was also made among IDE-SR, standard
DE, and two other state-of-the-art approaches in constrained
evolutionary approaches.

A. Results of Nonrobust Layout Synthesis

In the first set of runs, we only considered the perfor-
mance objective fobj = N(�x), as described in (10). Ten runs
of experiments using IDE-SR algorithm were repeated with

f̄ = 200 kHz. The parameters of the constrained genetic algo-
rithm are listed in Table I.

The experimental data were obtained in Table II. It is noted
that ten results represent ten different designs that all satisfy
the design constraints and have natural frequencies very closely
matching to the target f̄ = 200 kHz.

B. Results of Robust Layout Synthesis

For robust layout synthesis of the comb-driven microres-
onator, we need to consider both objectives in (10) and (11).
To calculate the robustness index in (11), we need to know
the variation vector according to (15). By examining the layout
schematic of the comb-driven microresonator, we found that the
variation vector can be set as follows:

ξ=[0 1 0 1 1 1 1 1 1 0 1 − 1 1 0 0].

According to (15), to obtain the robustness index in (11), we
also need to make an assumption about σ. In this paper, we
assume σ = 0.1 μm.

In the robust layout synthesis, we took the robustness in-
dex as the optimization objective fobj = D(�x,Ω). In addition,
another constraint N(�x) ≤ 1.0e−6 is added to the constraint
list. Ten runs of experiments using IDE-SR algorithm were
repeated, with the same parameters defined in Table I. The
experimental data were listed in Table III. It can be seen from
Tables II and III that the values of the objective D(�x,Ω)
are smaller in the case of robust designs than those in the
case of nonrobust designs. The next section demonstrates that
the reduced objective values of D(�x,Ω) lead to more robust
designs.
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TABLE III
RESULTS OF ROBUST LAYOUT SYNTHESIS OF COMB-DRIVEN MICRORESONATOR

Fig. 7. (a) Histogram of natural frequencies of the nonrobust design of
comb-driven microresonator subject to uncertainties. (b) Histogram of natural
frequencies of the robust design of comb-driven microresonator subject to
uncertainties.

C. Comparison of Robust and Nonrobust Results

It is noted that, in the robust design process, we minimized
the robustness objective. To verify that doing this helps the
resulting designs to increase their insensitivity to geometric
uncertainties, we designed a comparative study as the fol-
lowing: We put two designs in one group for comparison by
selecting one design from the robust design group and the other
from the nonrobust design group. We then ran Monte Carlo
simulations to model uncertain MEMS fabrication processes.
We introduced the same variations to the design variables of
both designs to emulate uniform overetch and/or underetch sit-
uations. To represent the variations in the process, we generated
10 000 Gaussian random vectors with a standard deviation σ
of 0.1 μm. The natural frequencies of both the robust and
nonrobust designs were calculated, and the histograms of them
were plotted, as shown in Fig. 7.

According to Fig. 7, we can see that robust design has a much
tighter distribution of natural frequencies and therefore is much
less sensitive to geometric variations. The tests of other design
candidates from both robust and nonrobust design groups re-
vealed similar results. Figs. 8 and 9 drawn with SUGAR [30]
show the layout of two exemplar nonrobust and robust designs,
respectively.

D. Comparison of Different Optimization Algorithms

A comparison study was also made to compare the perfor-
mance of IDE-SR with the standard DE and two other state-of-
the-art evolutionary constraint optimization algorithms, which
are improved stochastic ranking based evolutionary strategy
(ISRES) [29] and nondominated sorting genetic algorithm
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Fig. 8. (a) Layout of nonrobust solution I with a natural frequency of 200 kHz.
(b) Layout of nonrobust solution II with a natural frequency of 200 kHz.

(NSGA)-II [31]. For each algorithm, 50 independent runs were
carried out, with the best, mean, worst, and standard deviation
of the obtained results that are all recorded in Table IV for
comparison purposes. Bold values in Table IV indicate the best
results among different algorithms.

It is clear from Table IV that IDE-SR outperforms DE,
ISRES, and NSGA-II in terms of best, mean, and worst results.
The most important criterion to be compared is the best result,
because usually, we choose the design vector related to the best
result to make the design. It is also important to note that DE,
NSGA-II, and IDE-SR all performed very stably and could suc-
cessfully find feasible solutions that satisfy all the constraints
every time out of 50 independent runs. Due to their stochastic
nature, evolutionary algorithms cannot guarantee convergence
every time. However, the aforementioned three algorithms
show very good consistency in this particular problem. ISRES,
however, failed to do so in five times out of 50 independent
runs. It is also notable that, if we use a population size of 100 in
ISRES, it could not find a feasible solution. The reported results
for ISRES were obtained with a population size of 200, which
is double the population size used in other algorithms.

Fig. 10 shows the curves of objective values versus gener-
ation number recorded in one exemplar evolutionary process
of both algorithms—IDE-SR and standard DE. It can be seen

Fig. 9. (a) Layout of robust solution I with a natural frequency of 200 kHz.
(b) Layout of robust solution II with a natural frequency of 200 kHz.

TABLE IV
COMPARING IDE-SR WITH OTHER ALGORITHMS

that IDE-SR has a stronger capability to find better objective
values.

VII. CONCLUSION

Layout synthesis is an important stage for a structured design
of MEMS [32], [33], after the stage of the system-level design
[34]. This paper has developed a novel constrained optimization
algorithm IDE-SR, which is an IDE based on SR, and reports
a method of robust layout synthesis of MEMS based on it. The
method transforms the robust design problem into a multiob-
jective constrained optimization problem and then solves it by
using IDE-SR. Simulation results based on a case study of the
layout synthesis of a comb-driven microresonator show that the
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Fig. 10. Curves of objective value versus generation of both DE and IDE-SR.

design solutions obtained using the method proposed in this
paper are much less sensitive to process-induced uncertainties.
This paper has also shown that the IDE-SR algorithm cannot
only obtain better results than the standard DE algorithm but
also outperform some other state-of-the-art evolutionary con-
strained optimization algorithms.

The next step is to combine the detailed design described
in this paper with system-level design so that a hierarchical
design procedure can be automated. In addition, another work
of testing the performance of IDE-SR on a comprehensive set
of benchmark problems [35] is being conducted.

ACKNOWLEDGMENT

The authors would like to thank E. Goodman for his valu-
able comments and suggestions in revising and finalizing the
manuscript. The authors would also like to thank Z. Cai and Y.
Wang for their general discussions on the DE algorithm when
they visited the Technical University of Denmark as Research
Scholars during April–August 2007. The visit was gratefully
sponsored by the Otto Mønsted Fund of Denmark.

REFERENCES

[1] R. Liu, B. Paden, and K. Turner, “MEMS resonators that are robust
to process-induced feature width variations,” J. Microelectromech. Syst.,
vol. 11, no. 5, pp. 505–511, Oct. 2002.

[2] W. Yeh, S. Mukherjee, and N. C. MacDonald, “Optimal shape de-
sign of an electrostatic comb drive in microelectromechanical systems,”
J. Microelectromech. Syst., vol. 7, no. 1, pp. 16–26, Mar. 1998.

[3] T. Mukherjee, S. Iyer, and G. K. Feeder, “Optimization-based synthesis of
microresonators,” Sens. Actuators A, Phys., vol. 70, no. 1/2, pp. 118–127,
1998.

[4] G. Fedder, S. V. Iyer, and T. Mukherjee, “Automated optimal synthesis
of microresonators,” in Proc. 9th Int. Conf. Solid State Sens. Actuators
(TRANSDUCERS), Chicago, IL, Jun. 16–19, 1997, pp. 1109–1112.

[5] R. Kamalian, H. Takagi, and A. M. Agogino, “Optimized design of
MEMS by evolutionary multi-objective optimization with interactive evo-
lutionary computation,” in Proc. GECCO, K. Deb et al., Eds. Berlin,
Germany: Springer-Verlag, 2004, vol. 3103, LNCS, pp. 1030–1041.

[6] L. Ma and E. K. Antonsson, “Automated mask-layout and process syn-
thesis for MEMS,” in Proc. Int. Conf. Model. Simul. Microsyst., 2000,
pp. 20–23.

[7] A. Ongkodjojo and F. E. H. Tay, “Global optimization and design for
microelectromechanical systems devices based on simulated annealing,”
J. Micromech. Microeng., vol. 12, no. 6, pp. 878–897, Nov. 2002.

[8] G. Fedder and T. Mukherjee, “Physical design for surface-micromachined
MEMS,” in Proc. 5th ACM/SIGDA Phys. Des. Workshop, Apr. 1996,
pp. 53–60.

[9] Y. S. Hong, J. H. Lee, and S. H. Kim, “A laterally driven symmetric micro-
resonator for gyroscopic applications,” J. Micromech. Microeng., vol. 10,
no. 3, pp. 452–458, 2000.

[10] G. Taguchi, Taguchi on Robust Technology Development: Bringing Qual-
ity Engineering Upstream. New York: ASME Press, 1993.

[11] H. Greiner, “Robust optical coating design with evolutionary strategies,”
Appl. Opt., vol. 35, no. 28, pp. 5477–5483, Oct. 1996.

[12] D. Wiesmann, U. Hammel, and T. Back, “Robust design of multilayer
optical coatings by means of evolutionary algorithms,” IEEE Trans. Evol.
Comput., vol. 2, no. 4, pp. 16–162, Nov. 1998.

[13] K. Hwang, K. Lee, G. Park, B. Lee, Y. Cho, and S. Lee, “Robust design
of a vibratory gyroscope with an unbalanced inner torsion gimbal using
axiomatic design,” J. Micromech. Microeng., vol. 13, no. 1, pp. 8–17,
Jan. 2003.

[14] J.-Y. Park, Y.-D. Kim et al., “Robust design of an active micro-mixer
based on the Taguchi method,” Sens. Actuators B, Chem., vol. 129, no. 2,
pp. 790–798, Feb. 2008.

[15] T.-S. Low, S. Chen, and X. Gao, “Robust torque optimization for BLDC
spindle motors,” IEEE Trans. Ind. Electron., vol. 48, no. 3, pp. 656–663,
Jun. 2001.

[16] Y. Jin and B. Sendhoff, “Trade-off between optimality and robustness:
An evolutionary multiobjective approach,” in Proc. 2nd Int. Conf. Evol.
Multi-Criterion Optimization, C. M. Fonseca et al., Eds. New York:
Springer-Verlag, 2003, vol. 2632, LNCS, pp. 237–251.

[17] P. J. Sedivec, “Robust optimization: Design in MEMS,” M.S. thesis, Univ.
California, Berkeley, CA, 2002.

[18] R. Storn and K. Price, “Differential evolution—A simple and efficient
heuristic for global optimization over continuous spaces,” J. Glob. Optim.,
vol. 11, no. 4, pp. 341–359, Dec. 1997.

[19] K.-S. Low and T.-S. Wong, “A multiobjective genetic algorithm for
optimizing the performance of hard disk drive motion control sys-
tem,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1716–1725,
Jun. 2007.

[20] Y. Yu and Y. Xinjie, “Cooperative coevolutionary genetic algorithm for
digital IIR filter design,” IEEE Trans. Ind. Electron., vol. 54, no. 3,
pp. 1311–1318, Jun. 2007.

[21] S. Tsutsui and A. Ghosh, “Genetic algorithms with a robust solution
searching scheme,” IEEE Trans. Evol. Comput., vol. 1, no. 3, pp. 201–
208, Sep. 1997.

[22] K. Deb and H. Gupta, “A constraint handling strategy for robust multi-
criterion optimization,” Kanpur Genetic Algorithms Lab., Kanpur, India,
KanGAL Rep. 2005001, 2005.

[23] K. Deb and H. Gupta, “Introducing robustness in multi-objective op-
timization,” Kanpur Genetic Algorithms Lab., Kanpur, India, KanGAL
Rep. 2004016, 2004.

[24] Y. Jin and J. Branke, “Evolutionary optimization in uncertain
environments—A survey,” IEEE Trans. Evol. Comput., vol. 9, no. 3,
pp. 303–317, Jun. 2005.

[25] D. S. Lee, L. F. Gonzalez, K. Srinivas, and J. Periaux, “Robust evolution-
ary algorithms for UAV/UCAV aerodynamics and RCS design optimisa-
tion,” Comput. Fluids, vol. 37, pp. 547–564, 2008.

[26] J. Lampinen, “A constraint handling approach for the differential evo-
lution algorithm,” in Proc. CEC. Piscataway, NJ: IEEE Service Center,
May 2002, vol. 2, pp. 872–877.

[27] R. L. Becerra and C. A. C. Coello, “Cultured differential evolution for
constrained optimization,” Comput. Methods Appl. Mech. Eng., vol. 195,
no. 33–36, pp. 4303–4322, Jul. 2006.

[28] K. Deb, “An efficient constraint handling method for genetic algorithms,”
Comput. Methods Appl. Mech. Eng., vol. 186, no. 2–4, pp. 311–338,
Jun. 2000.

[29] T. P. Runarsson and X. Yao, “Stochastic ranking for constrained evolution-
ary optimization,” IEEE Trans. Evol. Comput., vol. 4, no. 3, pp. 284–294,
Sep. 2000.

[30] N. Zhou, J. V. Clark, and K. S. J. Pister, “Nodal simulation for
MEMS design using SUGAR v0.5,” in Proc. Int. Conf. Model. Simul.
Microsyst. Semicond., Sens. Actuators, Santa Clara, CA, Apr. 6–8, 1998,
pp. 308–313.

[31] K. Deb, “A fast and elitist multiobjective genetic algorithm: NSGA-II,”
IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002.

[32] G. Fedder, “A vision of structured CAD for MEMS,” in Proc. 5th ACM/
SIGDA Phys. Des. Workshop, Apr. 1996, pp. 76–80.

[33] T. Mukherjee and G. Fedder, “Structured design of microelectro-
mechanical systems,” in Proc. 34th DAC, Anaheim, CA, Jun. 9–13, 1997,
pp. 680–685.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 28, 2009 at 05:10 from IEEE Xplore.  Restrictions apply. 



948 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 56, NO. 4, APRIL 2009

[34] Z. Fan, K. Seo, R. Rosenberg, J. Hu, and E. Goodman, “System-level
synthesis of MEMS via genetic programming and bond graphs,” in Proc.
Genetic Evol. Comput. Conf. New York: Springer-Verlag, Jul. 2003,
Lecture Notes in Computer Science, pp. 2058–2071. Chicago, IL.

[35] J. J. Liang, T. P. Runarsson, E. Mezura-Montes, M. Clerc, P. N. Suganthan,
C. A. C. Coello, and K. Deb, “Problem definitions and evaluation criteria
for the CEC 2006,” in “Special Session on Constrained Real-Parameter
Optimization,” Nanyang Technol. Univ., Singapore, Tech. Rep.,
Mar. 2006.

Zhun Fan (S’01–M’04) received the B.S. and M.S.
degrees in control engineering from Huazhong Uni-
versity of Science and Technology, Wuhan, China, in
1995 and 2000, respectively, and the Ph.D. degree in
electrical and computer engineering from Michigan
State University, East Lansing, in 2004.

From 2004 to 2007, he was an Assistant Pro-
fessor with the Department of Mechanical Engi-
neering, Technical University of Denmark, Lyngby,
Denmark. He is currently an Associate Professor
with the Department of Management Engineering,

Technical University of Denmark. His research interests include MEMS,
mechatronics, robotics, design automation and optimization, evolutionary com-
putation, computational intelligence, computer vision, and intelligent trans-
portation and power system.

Jinchao Liu received the B.S. and M.S. degrees in
control science and engineering from Wuhan Uni-
versity of Technology, Wuhan, China, in 2004 and
2007, respectively. He is currently working toward
the Ph.D. degree in the Department of Manage-
ment Engineering, Technical University of Denmark,
Kongens Lyngby, Denmark.

He is also with FORCE Technology, Brøndby,
Denmark. His main research interests include com-
puter vision, image processing, welding automation,
microelectromechanical systems, robotics control,

and evolutionary computation.

Torben Sørensen received the M.S. and Ph.D. de-
grees in robotics and control engineering from the
Technical University of Denmark (DTU), Kongens
Lyngby, Denmark, in 1986 and 1996, respectively.

He was an Assistant Professor of control and
engineering design with DTU from 1996 to 1998,
where he was an Associate Professor in the Depart-
ment of Mechanical Engineering from 2001 to 2007
and an Associate Professor in the Department of
Management Engineering in 2008. He has partici-
pated as a Work Group Leader in three international

scientific projects and authored or coauthored several scientific papers, as
well as teaching materials including lecture notes, etc. His main research
interests include robotics control, welding automation, image processing, and
mechanical systems.

Dr. Sørensen was nominated for the title “Lecturer of the Year at DTU” in
2003. He was a committee member of the Danish Industrial Robot Association
(in 2004–2008). He tragically passed away in 2008.

Pan Wang (S’01–M’08) received the B.S. degree
in industrial automation from Wuhan University of
Technology, Wuhan, China, in 1994, and the M.S.
and Ph.D. degrees in systems engineering from
Huazhong University of Science and Technology,
Wuhan, in 1998 and 2003, respectively.

He is an Associate Professor and the Director of
the Laboratory of Control and Decision, School of
Automation, Wuhan University of Technology. He
has published over 35 journal papers, three mono-
graphs, and 25 conference papers. His research in-

terests include intelligent control and optimization, decision analysis, and
biomedical intelligent information systems.

Dr. Wang has been the recipient of about ten academic or teaching awards in
China.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 28, 2009 at 05:10 from IEEE Xplore.  Restrictions apply. 


