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Abstract

This paper introduces a decomposition of the Elementary Shortest Path Prob-
lem with Resource Constraints(ESPPRC), where the path is combined by smaller
sub paths. We show computationals result by comparing different approaches for
the decomposition and compare the best of these with existing algorithms. We
show that the algorithm for many instances outperforms a bidirectional labeling
algorithm.

Keywords: Elementary Shortest Path With Resource Constraints, Column Gener-
ation, Dantzig-Wolfe, Vehicle Routing Problem

1 Introduction

A formal definition of the ESPPRC problem solved in this conference paper is as fol-
lows: Given a directedG(V,A) with node setV{1, .., |V |} and arc setA, a set of re-
sourcesR each with a global upper boundW r

u . For each edge(i, j) ∈ E,ci j is the cost
of the edge andwr

i j is the resource consumption of the edge. A pathp is feasible if
∑(i, j)∈E(p) wr

i j ≤ W r
u for all r ∈ R. The objective is to find the feasible pathp with the

minimum cost∑(i, j)∈E(P) ci j from a source nodes ∈V to a destination noded ∈V .
When negative cycles are allowed, the ESPPRC can be shown to beNP-complete

by reduction from the longest path problem. Beasley and Christofides [2] gave a math-
ematical formulation of the problem where each node is considered a resource. When
the graph may contain negative cost cycles Feillet et al. [8]introduced a labeling,
Righini and Salani [12] proposed a bi-directional labelingalgorithm and a Branch and
Bound algorithm, using a relaxation where cycles are allowed 1 , Boland et al. [3] gave
a label correcting algorithm and Baldacci et al. [1] computed lower bounds on paths
from a node in the graph to the destination and used these to speed up a bi-directional
labeling algorithm.

1see Irnich and Villeneuve [9] for details on the relaxation
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For ESPPRC where the graph is assumed to contain no negative cost cycles, known
as the resource constraint shortest path problem (SPPRC), Beasley and Christofides [2]
gave a Branch and Bound algorithm based on Lagrangian dual bounds, Dumitrescu and
Boland [7] suggest improved prepossessing as well as several algorithms and Carlyle
et al. [5] propose a Lagrangian approach, where paths with cost between the Lagrangian
bounds and the current upper bound are found using the k shortest path algorithm by
Carlyle and Wood [4]

The main application of ESPPRC is as the pricing problem, when solving the Vehi-
cle Routing Problem through Branch and Cut and Price. Chabrier [6] and Jepsen et al.
[11] has done this successfully for VRPTW and Baldacci et al.[1] has recently done it
for CVRP.

Labeling algorithms has so far been used very successfully for ESPPRC problems
especially when time windows are included as resources. However for instances where
the time windows are very large the state space becomes huge and labeling algorithms
are no longer a good practical solution approach.

Motivated by the bi-directional labeling algorithm by Righini and Salani [12] and
the fact that branch and cut has been used quite successfullyto solve the ESPPRC
when time window like resources are not included(see Jepsenet al. [10]), we propose a
Danzig-Wolfe decomposition approach based on a model wheresmall sub paths called
partial paths are concatenated together to form the solution. Since each of the sub paths
are elementary the SR-inequalities for VRPTW introduced byJepsen et al. [11] can be
used to improve the lower bound. Furthermore any valid inequality to the ESPPRC can
be used.

2 Bounded partial paths

The idea behind the following mathematical model and decomposition is that any feasi-
ble pathp can be seen as a sequence ofK = {1, .., |K|} partial pathspov1, pv1v2, ...., pvkd .
Wherepi j is a partial path from nodei to nodej.

Each of the|K| partial paths can be seen as a path through the original graph.
This leads to an alternative formulation of the ESPPRC wherethe graph is replicated
|K| times and edges are added between the adjacent layers. The division is done as
follows:

For resourcel ∈ R, let wl
max be the maximal resource consumption. For a fixed

number of partial paths|K|, the maximal partial path lengthL is given as:

L =

⌈

W l

|K|

⌉

+wl
max−1

Let δ+(S) = {(i, j) ∈ A|i ∈ S} denote arcs out of the setS andδ−(S) = {(i, j) ∈
A| j ∈ S} denote the in going arcs ofS. We shall useδ(i) instead ofδ({i}) for i ∈ V .
The binary variablexi jk indicates if arc(i, j) ∈ A is used in thek’th layer. The binary
variablesik indicates if a partial path starts in nodei ∈V in layerk ∈ K and the binary
variabletik indicates if a partial path ends in nodei∈V in layerk. For ease of modelling
we assume thatti|K|+1 = si0 = 0, ∀i ∈V . The mathematical model for ESPPRC based
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on partial paths can be formulated as:

min ∑
k∈K

∑
(i, j)∈A

ci jxi jk (1)

s.t. ∑
(o, j)∈δ+(o)

xo j1 = 1 (2)

∑
(i,d)∈δ−(S)

xid|K| = 1 (3)

∑
k∈K

∑
(i, j)∈A

xi jk ≤ 1 ∀ v ∈V \{o,d} (4)

∑
k∈K

∑
(i, j)∈A

wr
i jxki j ≤W r ∀r ∈ R (5)

∑
k∈K

∑
(i, j)∈δ+(S)

xi jk ≥ ∑
k∈K

∑
(i, j)∈δ+(s)

xi jk S ⊆V,∀s ∈ S (6)

∑
i∈V

sik = 1 ∀k ∈ K (7)

tik−1 = sik ∀i ∈V,∀k ∈ K (8)

sik + ∑
( j,i)∈δ−(i)

x jik = tik + ∑
(i, j)∈δ+(i)

xi jk ∀i ∈V,k ∈ K (9)

∑
(i, j)∈δ+(S)

xi jk ≥ ∑
(i, j)∈δ+(s)

xi jk ∀k ∈ K,S ⊆V,∀s ∈ S (10)

∑
(i, j)∈A

xi jk ≤ ∀k ∈ K (11)

xi jk ∈ {0,1} ∀(i, j) ∈ A,k ∈ K (12)

tik,sik ∈ {0,1} ∀ i ∈V,k ∈ K (13)

The objective 1 is to minimize the total cost of the path. Constraints 2, 3 and 4 ensure
that no node is visited more than once and that the path leavesand enters source and
target. Constraints 5 are the resource bounds and constraints 6 are the generalized
subtour inequalities(GSEC) which prevents cycles in a solution. Constraints 7 to 11
ensure that the partial paths are elementary, connected anddo not violate the reduced
resource.

An alternative model where the layers are connected with a single edge can be
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formuated as follows:

min ∑
k∈K

∑
(i, j)∈A

ci j(xi jk + yo j1) (14)

s.t. ∑
(o, j)∈δ+(o)

xo j1 + yo j1 (15)

∑
(i,d)∈δ−(S)

xid|K| + yid|K| = 1 (16)

∑
k∈K

∑
(i, j)∈A

xi jk + yid|K| ≤ 1 ∀ v ∈V \{o,d} (17)

∑
k∈K

∑
(i, j)∈A

wr
i j(xki j + yki j) ≤W r ∀r ∈ R (18)

∑
k∈K

∑
(i, j)∈δ+(S)

xi jk + yi jk ≥ ∑
k∈K

∑
(i, j)∈δ+(s)

xi jk + yi jk S ⊆V,∀s ∈ S (19)

∑
(i, j)∈A

yi jk = 1 ∀k ∈ K (20)

∑
( j,i)∈δ−(i)

x jik + y jik−1 = ∑
(i, j)∈δ+(i)

xi jk + yi jk ∀i ∈V,k ∈ K (21)

∑
(i, j)∈δ+(S)

xi jk ≥ ∑
(i, j)∈δ+(s)

xi jk ∀k ∈ K,S ⊆V,∀s ∈ S (22)

∑
(i, j)∈A

xi jk ≤ ∀k ∈ K (23)

xi jk ∈ {0,1} ∀(i, j) ∈ A,k ∈ K (24)

yi jk ∈ {0,1} ∀ i ∈V,k ∈ K (25)

In the above model variableyi jk indicate that the path leaves layerk from nodei and
enters layerk +1 in node j. The variables are used instead of the variablessik andtik.
Furthermore the variables contributes to the resource constraint 18.

In the following we will make a Danzig-Wolfe reformulation of the mathematical
model, where constraints 9 to 11 formK identical sub problems. The single sub prob-
lem is to find a shortest pathp between two arbitrary nodes in the graph. Letαp

i j = 1 if
pathp uses edge(i, j) and zero otherwise,βp

i = 1 if p starts in nodei andγp
i indicate if

p ends in nodei . Let the binary variableλp indicate if partial pathp is used andcp be
the cost of using the path. The master problem then becomes:
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min ∑
p∈P

cpλp (26)

s.t. ∑
p∈P

∑
(o, j)∈δ+(o)

αp
o jλp = 1 (27)

∑
p∈P

∑
(i,d)∈δ−(S)

αp
idλp = 1 (28)

∑
p∈P

∑
(i, j)∈A

αp
i jλp ≤ 1 ∀ v ∈V \{o,d} (29)

∑
p∈P

∑
(i, j)∈δ+(S)

αp
i jλp ≥ ∑

p∈P
∑

(i, j)∈δ+(s)

αp
i jλp S ⊆V,∀s ∈ S (30)

∑
p∈P

∑
(i, j)∈A

wr
i jα

p
i jλp ≤W r ∀r ∈ R (31)

∑
p∈P

λp = |K| (32)

∑
p∈P

γp
i λp = ∑

p∈P
βp

i λp ∀i ∈V (33)

sik ∈ {0,1} ∀ i ∈V,k ∈ K (34)

λp ∈ {0,1} ∀ p ∈ P (35)

With the exception of constraint 32 the constraints follow directly from a standard
Danzig-Wolfe reformulation. Constraint 33 substitutes the |K| constraints 7 and states
that we must choose|K| columns corresponding to one from each layer. The master
model may be too large to solve, therefore delayed column generation is used to solve
it.

Let πi be the|V | dual of constraints 27, 28 and 29,σr be the|R| duals of constraints
31 andρi be the|V | duals of constraints 33. To calculate the reduced cost of a column in
the master problem, we set the edge cost to: ˆci j = ci j −πi −∑r∈R wr

i jσr +ρi −ρ j using
standard Linear Programming theory. Letxi j be the binary variable which defines if
arc(i, j) ∈ A is used, the binary variablelsi indicate if the path starts in nodei ∈V and
the binary variablelti indicate if the path ends in nodei ∈V . The mathematical model
for the pricing problem then becomes:

min ∑
(i, j)∈A

ĉi jxi j (36)

∑
i∈V

lsi ≤ 1 (37)

∑
i∈V

lti ≤ 1 (38)

lsi + ∑
( j,i)∈δ−(i)

x ji = lti + ∑
(i, j)∈δ+(i)

xi j ∀i ∈V (39)

(40)
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∑
(i, j)∈δ+(S)

xi j ≥ ∑
(i, j)∈δ+(s)

xi j S ⊆V,∀s ∈ S (41)

∑
(i, j)∈A

xi j ≤ L (42)

xi j ∈ {0,1} ∀(i, j) ∈ A (43)

lsi, lti ∈ {0,1} ∀ i ∈V (44)

A column has negative reduced cost if it is less than the dual variable of constraint 32.
To solve the pricing problem we reformulate it to an ESPPRC. This is done by

substituting the variableslsi andlti with arcs from a fake source node and arcs to a fake
target node.

More formally we define a fake source node ¯s and a fake target nodēt. The fake arc
setĀ = {(s̄,v) : v ∈ V}∪{(v, s̄) : v ∈ V}. The pricing problem then becomes solving
an ESPPRC with a single resource in the graphḠ(V ∪ V̄ ,A ∪ Ā) where the cost is
c̄i j = ĉi j(i, j) ∈ A andc̄i j = 0,(i, j) ∈ Ā

The lower bound can be improved using valid inequalities forthe ESPPRC poly-
tope, and valid inequalities for the master model such as theSR-inequalities by Jepsen
et al. [11].

Furthermore the lower bound can be improved by imposing a minimum length
on each of the partial paths. LetLmin be the minimum length of a partial path. If
2Lmin −1 = L any feasible solution with length greater thanLmin can be constructed if
constraint 32 is relaxed to∑p∈P λp ≤ |K|.

3 Implementation

We have implemented the bidirectional labeling algorithm by Righini and Salani [12],
which is used to solve the pricing problem. When we impose a lower bound on the
length of the partial path we only use dominance when the labels have equal length.

The Branch-Cut-And-Price algorithm is implemented in the BCP project from
coin-or.org. We use CLP as our LP solver and we separate the GSECs solving a mini-
mum cut problem(see Wolsey [13]) for details. The SR inequalities are separated using
the algorithm proposed by Jepsen et al. [11], either the firstor the last node on a partial
path is not considered part of the SR-cut. Branching is done on a single arc or all arcs
out of a node and is added as a cut in the master model. The constraints in the original
space are:

∑
k∈K

∑
(i, j)∈δ+(i)

xi jk = 0 ∑
k∈K

∑
(i, j)∈δ+(i)

xi jk = 1 i ∈V (45)

∑
k∈K

xi jk = 0 ∑
k∈K

xi jk = 1 (i, j) ∈ A (46)
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The decomposed version of the branches are:

∑
p∈P

∑
(i, j)∈δ+(i)

αp
i jλp = 0 ∑

p∈P
∑

(i, j)∈δ+(i)

αp
i jλp i ∈V (47)

∑
p∈P

αp
i jλp = 0 ∑

p∈P
αp

i jλp = 1 (i, j) ∈ A (48)

4 Computational studies

Based on a column generation algorithm for CVRP, some instances for the ESPPRC
were generated based on CVRP instances from www.branchandcut.org. We have tested
several settings on several instances with 20-30 nodes and have based on these chosen
some settings to use on larger instances.

For the instances generated we have bounded the partial pathusing both length and
capacity. When using length we have chosen to restrict the maximal lower limit to 3
and the maximal upper limit to 5. For the capacity we split thepath in pieces of at most
a tenth of the total capacity, finally we included the SR inequalities for the different
settings.

We have chosen to show the result for a single instance which was quit represen-
tative for the instances we benchmarked on. Furthermore theinstance have the char-
acteristics we are targeting to solve. The instance have 30 nodes, the maximal feasible
path length is 23 and the capacity resource is 4500.

In table 1 we have compared some different settings for capacity and length.Lmin

is the minimal value of the partial path,Lmax is the maximal value of the partial path.
RB is the root bound andT is the time without SR inequalities.RBSR andTSR is the
root bound and time when SR inequalities is included.

Instance Bounded on Lmin Lmax RB T RBSR TSR

E-n30-k3-20 Capacity 0 2125 -192350 311.895 -192350 386.072
E-n30-k3-20 Capacity 0 1700 -192350 228.958 -192350 203.585
E-n30-k3-20 Capacity 0 1300 -192320 49.579 -192320 143.685
E-n30-k3-20 Capacity 0 1193 -192350 31.810 -192350 128.412
E-n30-k3-20 Capacity 0 1113 -192350 23.653 -192350 120.776
E-n30-k3-20 Capacity 0 1000 -192350 39.098 -192350 171.571
E-n30-k3-20 Capacity 0 900 -192350 20.173 -192350 118.271
E-n30-k3-20 Length 0 3 -192350 20.361 -192350 19.893
E-n30-k3-20 Length 0 4 -192350 44.407 -192350 50.455
E-n30-k3-20 Length 0 5 -192350 134.080 -192350 99.106
E-n30-k3-20 Length 0 6 -192350 255.236 -192350 269.989
E-n30-k3-20 Length 2 3 -192350 75.873 -192350 109.283
E-n30-k3-20 Length 2 4 -192350 102.402 -192350 113.751
E-n30-k3-20 Length 3 5 -192350 163.822 -192320 431.763

Table 1: Comparing different schemes

From the result in table 1 it is clear that the longer the path the poorer the algorithms

7



perform. The main reason for this is that no matter how long the path becomes there is
simply no gain in the quality of the relaxation. The value of the root bound is almost
the same as the one for branch and cut has, which is−192352.787. When including
the SR inequalities only a few of the setting results in a improvement of the running
time. When a lower bound on the path length is included the running time increases in
all cases and the root bound is still the same.

In table 2 we have shown the solution times for the two best partial paths algo-
rithms. Tlen is the running time of the best length algorithm andTcap is the running
time of the best with capacity. The values are compared to thebi-directional labeling
algorithm(Tlabel) and the Branch and Cut algorithm(TBAC) by Jepsen et al. [10].

Instance TBAC Tlabel Tlen Tcap

E-n30-k3-20 0.44 > 1800 19.893 20.173
B-n31-k5-17 2.07 0.22 124.492 24.178
A-n32-k5-120 0.51 0.28 32.714 7.892
A-n33-k5-31 0.45 0.01 121.440 14.477
B-n34-k5-17 2.21 72.79 290.022 32.554
B-n45-k6-54 4.63 90.3 286.978 109.011
P-n45-k5-150 0.58 0.71 19.753 15.457
P-n50-k8-19 0.94 > 1800 188.008 25.350
E-n51-k5-29 2.46 > 1800 277.645 287.746

Table 2: Characteristics of the benchmark instances

The main conclusion when comparing the results in table 2 is that the branch and
cut algorithm outperforms the other algorithms. The secondobservation is that the
partial path algorithms is able to solve all instances within 30 minutes which labeling is
not. It is also worth noting that the algorithm which bounds using capacity in almost all
cases is considerable better than the one that bounds using length. Finally we conclude
that the partial path algorithms can not compete with the Branch And Cut algorithm.

5 Conclusion and future research

In this conference paper we have introduced an alternative formulation of ESPPRC and
shown how it can be solved using the Danzig-Wolfe decomposition principle. We have
shown that a early prototype is better than a standard labeling algorithm, but we have
not been able to show that the bound obtained is better than a standard Branch and Cut
algorithm. Therefore an open problems which has arisen during this research is if there
exist an instance where the bound obtained by the partial path algorithm results in a
better than a Branch and Cut algorithm . We also suggest that some effort is made to
find a way handle cover inequalities on the master variables in the pricing problem
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