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Abstract

This paper introduces a decomposition of the Elementary Shortest Rdtth Pr
lem with Resource Constraints(ESPPRC), where the path is combineddbigism
sub paths. We show computationals result by comparing differenbagipes for
the decomposition and compare the best of these with existing algorithms. We
show that the algorithm for many instances outperforms a bidirectionelitadb
algorithm.

Keywords. Elementary Shortest Path With Resource Constraints, Column Gener-
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1 Introduction

A formal definition of the ESPPRC problem solved in this coefee paper is as fol-
lows: Given a directed3(V,A) with node seV{1,..,|V|} and arc sef, a set of re-
sourcesR each with a global upper bouMy;. For each edgé, j) € E,cj is the cost
of the edge ana\{; is the resource consumption of the edge. A paitls feasible if
3 (i.))<E(p) w{j < Wj for all r € R. The objective is to find the feasible pabtwith the
minimum costy ; j)cg(p) Cij from a source node€ V to a destination nodé €V .

When negative cycles are allowed, the ESPPRC can be shownN&+{oemplete
by reduction from the longest path problem. Beasley andsBifitles [2] gave a math-
ematical formulation of the problem where each node is dmmed a resource. When
the graph may contain negative cost cycles Feillet et alif8pduced a labeling,
Righini and Salani [12] proposed a bi-directional label&igorithm and a Branch and
Bound algorithm, using a relaxation where cycles are altbtveBoland et al. [3] gave
a label correcting algorithm and Baldacci et al. [1] computaver bounds on paths
from a node in the graph to the destination and used thesetmsp a bi-directional
labeling algorithm.

Isee Irnich and Villeneuve [9] for details on the relaxation



For ESPPRC where the graph is assumed to contain no negasiveycles, known
as the resource constraint shortest path problem (SPPR&$|& and Christofides [2]
gave a Branch and Bound algorithm based on Lagrangian duatisp Dumitrescu and
Boland [7] suggest improved prepossessing as well as dalgmaithms and Carlyle
et al. [5] propose a Lagrangian approach, where paths wittbetween the Lagrangian
bounds and the current upper bound are found using the keshqath algorithm by
Carlyle and Wood [4]

The main application of ESPPRC is as the pricing problem nmdudving the Vehi-
cle Routing Problem through Branch and Cut and Price. Ceaf§] and Jepsen et al.
[11] has done this successfully for VRPTW and Baldacci dildlhas recently done it
for CVRP.

Labeling algorithms has so far been used very successtullg$PPRC problems
especially when time windows are included as resources.eMemfor instances where
the time windows are very large the state space becomes hddalseling algorithms
are no longer a good practical solution approach.

Motivated by the bi-directional labeling algorithm by Righand Salani [12] and
the fact that branch and cut has been used quite succestfudlylve the ESPPRC
when time window like resources are not included(see Jegtsan[10]), we propose a
Danzig-Wolfe decomposition approach based on a model vamadl sub paths called
partial paths are concatenated together to form the saluimce each of the sub paths
are elementary the SR-inequalities for VRPTW introducedépsen et al. [11] can be
used to improve the lower bound. Furthermore any valid inétyuto the ESPPRC can
be used.

2 Bounded partial paths

The idea behind the following mathematical model and deasitipn is that any feasi-
ble pathp can be seen as a sequencKef {1, ..,|K|} partial pathgov, , Pvyvs, ----» Pyd-
Wherep;j is a partial path from nodeto node;j.

Each of the|K| partial paths can be seen as a path through the original graph
This leads to an alternative formulation of the ESPPRC whegegraph is replicated
|K| times and edges are added between the adjacent layers. visierdis done as
follows:

For resource € R, let wh,,, be the maximal resource consumption. For a fixed
number of partial pathg |, the maximal partial path lengthis given as:

Let 37 (S) = {(i,]) € Ali € S} denote arcs out of the s€tandd~(S) = {(i,]) €
Alj € S} denote the in going arcs & We shall used(i) instead ofd({i}) fori e V.
The binary variable;jk indicates if ard(i, j) € Ais used in the'th layer. The binary
variablesy indicates if a partial path starts in node V in layerk € K and the binary
variablet;, indicates if a partial path ends in nodeV in layerk. For ease of modelling
we assume thaﬂKHl =50 =0, Vi € V. The mathematical model for ESPPRC based



on partial paths can be formulated as:

min Z< Z CijXijk @)
(i.))eA
= (2)
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The objective 1 is to minimize the total cost of the path. Gaists 2, 3 and 4 ensure
that no node is visited more than once and that the path lemeenters source and
target. Constraints 5 are the resource bounds and constiare the generalized
subtour inequalities(GSEC) which prevents cycles in at&oiu Constraints 7 to 11
ensure that the partial paths are elementary, connectedandt violate the reduced
resource.

An alternative model where the layers are connected witihglesiedge can be



formuated as follows:

min Z< > Gij(Xijk+Yoj1) (14)
KEK (i, TTeA
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(i,))eA
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(i,1)€d+(9) (i,j)eot (s)
Xijk < vke K (23)
(i,j)eA
Xijk € {0,1} Y(i,j) e AkeK (24)
yijke{071} Vi€V7k€K (25)

In the above model variablgjx indicate that the path leaves layjefrom nodei and
enters layek+ 1 in nodej. The variables are used instead of the variableandt;.
Furthermore the variables contributes to the resourcetzns18.

In the following we will make a Danzig-Wolfe reformulatiori the mathematical
model, where constraints 9 to 11 fotidentical sub problems. The single sub prob-
lem is to find a shortest paghbetween two arbitrary nodes in the graph. uﬁt: 1if
pathp uses edgé, j) and zero otherwi:seﬁiip = 1if p starts in nodé andyip indicate if
p ends in nodeé . Let the binary variabl@&P indicate if partial pathp is used and, be
the cost of using the path. The master problem then becomes:



min 'y cpA (26)
pgp pAp
PEP (0,j)€d* (0)
fAp=1 (28)
p
FJZ:’(i d);*(s)
E; afidp<1 vveV\{o,d} (29)
(i,j)eA
a-p-)\p > afXp SCV,VseS (30)
PZ:’(l J)EO+H(S N ZF’ (i,j z+( .
Z:, > IJcz(”)\p<Wr VreR (31)
(i,))eA
;Ap— K| (32)
VAp=S BPA VieVv (33)
pZP i'p ng i \p
sk € {0,1} VieV,keK (34)
Ape{0,1} VpeP (35)

With the exception of constraint 32 the constraints folloinectly from a standard
Danzig-Wolfe reformulation. Constraint 33 substitutes || constraints 7 and states
that we must choosg| columns corresponding to one from each layer. The master
model may be too large to solve, therefore delayed columemgéion is used to solve
it.

Let s be the|V| dual of constraints 27, 28 and 28, be the|R| duals of constraints
31 andp; be thelV| duals of constraints 33. To calculate the reduced cost diatoin
the master problem, we set the edge costito="Ti; — 15 — zreRV\/{j Or +pi — pj using
standard Linear Programming theory. bgtbe the binary variable which defines if
arc(i, j) € Ais used, the binary variablg indicate if the path starts in node V and
the binary variablét; indicate if the path ends in node V. The mathematical model
for the pricing problem then becomes:

min Z GijXij (36)
(i,))eA
Z/ls <1 (37)
It <1 (38)
Is + Z Xji = Iti+ z Xij VieVv (39)
(j,i)ed(i) (i,j)eot (i)
(40)



RN SCV,vseS (41)

(i,1)E8+(9) (i,1)E8* ()

Xj <L (42)
(i,))eA
xj € {0,1} v(i,j) €A (43)
Is,It € {0,1} VieVv (44)

A column has negative reduced cost if it is less than the dagble of constraint 32.

To solve the pricing problem we reformulate it to an ESPPR@is Ts done by
substituting the variablds; andlt; with arcs from a fake source node and arcs to a fake
target node.

More formally we define a fake source nosiend a fake target node The fake arc
setA={(s,v):veV}U{(v,§) : ve V}. The pricing problem then becomes solving
an ESPPRC with a single resource in the gr&(v UV,AUA) where the cost is
cj=¢Gj(,j) e Aandc; =0,(i,j) €A

The lower bound can be improved using valid inequalitiestier ESPPRC poly-
tope, and valid inequalities for the master model such aSEwnequalities by Jepsen
et al. [11].

Furthermore the lower bound can be improved by imposing d@mmim length
on each of the partial paths. Leti, be the minimum length of a partial path. If
2Lmin— 1= L any feasible solution with length greater tHap, can be constructed if
constraint 32 is relaxed tp,p AP < [K|.

3 Implementation

We have implemented the bidirectional labeling algorithyRighini and Salani [12],
which is used to solve the pricing problem. When we impose atdvound on the
length of the partial path we only use dominance when thdddisve equal length.

The Branch-Cut-And-Price algorithm is implemented in th€Bproject from
coin-or.org. We use CLP as our LP solver and we separate tB£&Solving a mini-
mum cut problem(see Wolsey [13]) for details. The SR ineitjgalare separated using
the algorithm proposed by Jepsen et al. [11], either thedirite last node on a partial
path is not considered part of the SR-cut. Branching is done single arc or all arcs
out of a node and is added as a cut in the master model. Theaiotsin the original
space are:

xijk:O Z 2 Xijk::]- ieV (45)
keK (i,j)edt (i) keK (i,j)edt (i)
Xijk =0 Xijk =1 (i,j) eA (46)



The decomposed version of the branches are:

afAp=0 afidp
pgp(i-,i);ﬂi) ! ng(iyi);ﬁ(i) !
afAp=0 afAp=1
2.5 2.5

4 Computational studies

(47)

(48)

Based on a column generation algorithm for CVRP, some instafor the ESPPRC
were generated based on CVRP instances from www.branctiaode We have tested
several settings on several instances with 20-30 nodesamdidased on these chosen
some settings to use on larger instances.

For the instances generated we have bounded the partialgiathboth length and
capacity. When using length we have chosen to restrict themadower limit to 3
and the maximal upper limitto 5. For the capacity we splitpghth in pieces of at most
a tenth of the total capacity, finally we included the SR iredities for the different
settings.

We have chosen to show the result for a single instance whashquit represen-
tative for the instances we benchmarked on. Furthermora#itence have the char-
acteristics we are targeting to solve. The instance haveo@8s) the maximal feasible

path length is 23 and the capacity resource is 4500.
In table 1 we have compared some different settings for d¢pacd length.Lmin

is the minimal value of the partial pathy,ax is the maximal value of the partial path.

RB is the root bound ani is the time without SR inequalitiedfRBsr and TsR is the

root bound and time when SR inequalities is included.

Instance Bounded on| Lmin | Lmax | RB T RBx Tr

E-n30-k3-20| Capacity 0 2125 -192350| 311.895| -192350| 386.072
E-n30-k3-20| Capacity 0 1700 | -192350| 228.958| -192350| 203.585
E-n30-k3-20| Capacity 0 1300 | -192320| 49.579 | -192320| 143.685
E-n30-k3-20| Capacity 0 1193 | -192350| 31.810 | -192350| 128.412
E-n30-k3-20| Capacity 0 1113 | -192350| 23.653 | -192350| 120.776
E-n30-k3-20| Capacity 0 1000 | -192350(| 39.098 | -192350| 171.571
E-n30-k3-20| Capacity 0 900 | -192350| 20.173 | -192350| 118.271
E-n30-k3-20| Length 0 3 -192350| 20.361 | -192350| 19.893
E-n30-k3-20| Length 0 4 -192350| 44.407 | -192350| 50.455
E-n30-k3-20| Length 0 5 -192350| 134.080| -192350| 99.106
E-n30-k3-20| Length 0 6 -192350| 255.236| -192350| 269.989
E-n30-k3-20| Length 2 3 -192350| 75.873 | -192350| 109.283
E-n30-k3-20| Length 2 4 -192350| 102.402| -192350| 113.751
E-n30-k3-20| Length 3 5 -192350| 163.822| -192320| 431.763

Table 1: Comparing different schemes

From the result in table 1 it is clear that the longer the pla¢tpioorer the algorithms




perform. The main reason for this is that no matter how loegadth becomes there is
simply no gain in the quality of the relaxation. The valuelod toot bound is almost
the same as the one for branch and cut has, whiehl&2352787. When including
the SR inequalities only a few of the setting results in a mepment of the running
time. When a lower bound on the path length is included theingntime increases in
all cases and the root bound is still the same.

In table 2 we have shown the solution times for the two bediglgraths algo-
rithms. Ten is the running time of the best length algorithm &g, is the running
time of the best with capacity. The values are compared tbitdérectional labeling
algorithm(Tjape ) @and the Branch and Cut algorithiagc) by Jepsen et al. [10].

Instance Teac | Tiabe Tien Teap

E-n30-k3-20 | 0.44 | > 1800 | 19.893 | 20.173
B-n31-k5-17 | 2.07 | 0.22 124.492| 24.178
A-n32-k5-120| 0.51 | 0.28 32.714 | 7.892

A-n33-k5-31 | 0.45 | 0.01 121.440| 14.477
B-n34-k5-17 | 2.21 | 72.79 290.022| 32.554
B-n45-k6-54 | 4.63 | 90.3 286.978| 109.011
P-n45-k5-150| 0.58 | 0.71 19.753 | 15.457
P-n50-k8-19 | 0.94 | > 1800 | 188.008| 25.350
E-n51-k5-29 | 2.46 | > 1800 | 277.645| 287.746

Table 2: Characteristics of the benchmark instances

The main conclusion when comparing the results in table Basthe branch and
cut algorithm outperforms the other algorithms. The secolpskrvation is that the
partial path algorithms is able to solve all instances wif0 minutes which labeling is
not. Itis also worth noting that the algorithm which boundsig capacity in almost all
cases is considerable better than the one that bounds esigitn! Finally we conclude
that the partial path algorithms can not compete with thenBnaAnd Cut algorithm.

5 Conclusion and futureresearch

In this conference paper we have introduced an alternadiveuflation of ESPPRC and
shown how it can be solved using the Danzig-Wolfe decomipositrinciple. We have

shown that a early prototype is better than a standard fabalgorithm, but we have
not been able to show that the bound obtained is better the@mdasd Branch and Cut
algorithm. Therefore an open problems which has arisemduihis research is if there
exist an instance where the bound obtained by the partill gdgbrithm results in a
better than a Branch and Cut algorithm . We also suggest ¢ina¢ ®ffort is made to

find a way handle cover inequalities on the master variabléisd pricing problem
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