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Block Pickard Models for Two-Dimensional
Constraints

Søren Forchhammer, Member, IEEE, and Jørn Justesen, Member, IEEE

Abstract—In Pickard random fields (PRF), the probabilities of
finite configurations and the entropy of the field can be calculated
explicitly, but only very simple structures can be incorporated into
such a field. Given two Markov chains describing a boundary, an
algorithm is presented which determines whether a PRF consis-
tent with the distribution on the boundary and a 2-D constraint
exists. Iterative scaling is used as part of the algorithm, which also
determines the conditional probabilities yielding the maximum en-
tropy for the given boundary description if a solution exists. A PRF
is defined for the domino tiling constraint represented by a qua-
ternary alphabet. PRF models are also presented for higher order
constraints, including the no isolated bits (n.i.b.) constraint, and
a minimum distance � constraint by defining super symbols on
blocks of binary symbols.

Index Terms—Pickard random fields, minimum distance � con-
straint, n.i.b. constraint, two-dimensional (2-D) capacity, 2-D con-
straints, 2-D entropy.

I. INTRODUCTION

W E consider two-dimensional (2-D) fields specified by
shift invariant constraints of finite extent over

some finite alphabet . A constraint is defined by a list, ,
of forbidden configurations of symbols in . Each forbidden
configuration is contained within a rectangle of maximum size

. A configuration on a finite segment of the plane con-
taining no forbidden configurations is called an admissible con-
figuration.

Let be the set of admissible configurations on an
rectangle for a given field . The combinatorial entropy

(or capacity) of is defined as

(1)

As discussed in [1], this limit is well defined, even though
it may not be computable. The limit is identical if we consider
rotated rectangles, parallelograms, or other segments where the
length of the boundary is small compared to the area [2]–[4].

In this paper, we shall approach the entropy by assigning
probability measures to the configurations. Let be a prob-
ability measure on that agrees with the constraint on an

rectangle. That is, each of the possible configu-
rations, , that contains forbidden words in , have probability
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Fig. 1. A n.i.b. configuration on � � � blocks.

zero under . Let the elements of the
configuration be denoted . We shall
also use for the measure on a rectangle. The
(measure theoretic) entropy of is defined as

(2)

A measure is said to be (locally) stationary if two configura-
tions within the rectangle that differ only by a translation, i.e.,
adding a constant pair to the indices, have the same prob-
ability. For finite it is a standard result that

, and that equality holds if all admissible out-
comes have the same probability. Thus if the entropy converges
for going to infinity, it is a lower bound on the capacity.
Besides the entropy, a stationary measure also provides useful
information as correlation properties and the spectrum.

So far analytical results are largely limited to first-order (
) constraints, and even such cases are in general extremely dif-

ficult. We analyze some cases of larger constraints by consid-
ering rectangular blocks of given size covering the plane. The
approach is illustrated by the following example.

Example 1.1: Consider the “no isolated bits” (n.i.b.) 2-D con-
straint [5] characterized by the two forbidden configurations:

Introducing blocks of 1 2 elements, the plane may be cov-
ered by blocks, where in each row the blocks are offset by one
element (Fig. 1).

Section II describes finite causal models in general, and
Pickard random fields (PRF) [6] are reviewed. They are defined
by probability distributions conditioned on a finite part of the
“past”. In Section III, we consider PRF over large alphabets
and approach the problem starting with two Markov chains
specifying rows and columns. It is shown that the transition ma-
trices of the Markov chains must commute. If this is satisfied,
a method based on iterative scaling for optimizing the entropy
of the PRF for a constrained field is presented. In Section IV,
we define block based Pickard random fields and consider the
application to constrained fields. Cases discussed include the

0018-9448/$26.00 © 2009 IEEE
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n.i.b. constraint and a field with minimum distance between
’s.

II. CAUSAL MODELS AND PICKARD FIELDS

In a MRF, the conditional probability of a finite segment of
the plane is specified conditioned on the boundary, which may
be chosen wide enough to ensure that the constraint is satisfied.
In particular, we can assign equal probabilities to all admissible
outcomes within the segment, and it is clear that this assign-
ment is consistent with assignments on subsets. If the distribu-
tion converges to a limit when the size of the segment increases
(thus becoming independent of the boundary), it follows that the
entropy reaches the combinatorial entropy. However there is no
practical way of finding the probabilities for large segments.

A. Causal Models

The boundary may be chosen to extend across the whole
plane and the conditional probability of a configuration given
the outcome in the upper half plane can be specified to depend
only on the bottom rows. When a two-dimensional field is
specified by a shift invariant constraint of finite extent, the value
of a symbol at position is constrained by values in a finite
neighborhood, . For
practical reasons the field is often processed by taking the sym-
bols in some particular order, usually one row at a time from the
top, each row being read from left to right. In this way, we can
talk about the symbols preceding , i.e., or
and , as the past set.

Definition 2.1: A causal model describes the symbol in posi-
tion in terms of a finite set of symbols belonging to the
past set.

Thus if we neglect a border of rows and columns,
a causal model gives a shift invariant description of the field.
However, in general the conditional probability of a symbol in
a MRF depends on an infinite part of the past.

We are interested in describing probability distributions that
allow us to express the conditional distribution of a symbol as
depending on a finite number of variables, since this will allow
us to calculate the relevant entropy, correlation functions and
spectrum as well as to study methods for encoding information
into the field or compressing an outcome of the field interpreted
as a source. The only types of nontrivial 2-D fields which satisfy
this requirement so far are variations of Pickard fields [6], [7].

B. Pickard Random Fields

A Pickard random field is described by the probability distri-
bution of four symbols [6]: Let be random variables
over in a rectangle with relative positions

Let be random variables and let denote
that and are independent given . We assume the indepen-
dence condition for the models under consideration.

Consider defined by the joint distribution of
the variables. Likewise, let for a subset of variables, e.g.,

denote the joint distribution of the variables and the con-
ditional probability distribution of given . The probabilities
of are expressed by

(3)

and due to the PRF independence condition

(4)

Each symbol has the probability distribution and further the
model is specified by the three conditional probability distri-
butions and . Derived from , a
measure, [6], on an rectangle is defined by the
distribution on the boundary

(5)

and the distribution of conditioned on the boundary

(6)

Thus, the conditional distributions and define two
Markov chains on the boundary (5). Let denote the transi-
tion matrix for the Markov chain left-to-right given by
and denote the transition matrix for the Markov chain from
the bottom and up, i.e., given by , which is the reversed
Markov chain of .

To ensure stationarity when extending to the rectangle,
we follow [6] and note that provides a solution.
This is expressed by the following theorem based on Pickard
([6, Corollary of Theorem 2 ]).

Theorem 2.2: Let be a stationary measure induced by
, satisfying . Then for all

(5)–(6) is stationary if satisfies either

(7)

or

and (8)

We shall refer to the fields defined by Theorem 2.2 as Pickard
random fields (PRF). The pair of independence conditions, (4)
and (7), lead to an expression of the probability distribution
of the form (5)–(6). The second pair of conditions (8) simply
comes from the first by symmetry [7]. [Actually (8), without
requiring , are sufficient for a stationary measure
on an rectangle. The description of this unilateral mea-
sure starts in the upper right hand corner, , instead of the
upper left hand corner, , as in (5)]. By the stationarity of the
Markov chains, any row (or column) has the same distribution
as the first row (or column) and further any rectangle has
the same distribution, namely . Pickard [6] also showed
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that any consecutive rows (or columns) form a Markov chain.
For any pair of variables, and , in the plane, we can calcu-
late the joint distribution by repeated application of the
independence conditions. From these distributions we may de-
rive the correlation functions and power spectrum of fields with
real alphabets.

Let denote the conditional entropy of given
.

Theorem 2.3: The entropy per symbol (2) of a stationary mea-
sure defined by Theorem 2.2 is bounded by

(9)

Proof: The elements, , of the measure may
be divided into the boundary, , (5) and the remaining
(interior) elements (6). The entropy of each element of the latter
is given by due to the stationarity and the chain
rule. The entropy of the boundary is not less than this as the
distribution on the boundary is given by and the Markov
chains and , which are identical to the marginal
distribution on the rows (and columns) of the remaining interior,
due to the stationarity.

Thus is a lower bound for and the ca-
pacity of the constraint, . Clearly, a Pickard field is a spe-
cial case of an MRF [6], [7].

III. CONSTRUCTING PICKARD RANDOM FIELDS

For larger constraints and causal models with causal neigh-
borhood extending beyond the three closest causal variables, we
shall use blocks of symbols as in the construction of Example
1.1. Thus several symbols are collected into a block having
elements, which is treated as a super symbol drawn from the
extended finite alphabet, , of size and the plane is cov-
ered with such blocks arranged in a suitable grid. First this is
addressed by considering construction of constrained Pickard
random fields over an -ary alphabet. Thereafter in Section IV,
this is used for construction of block Pickard fields.

A. Constructing Pickard Random Fields From Two Markov
Chains

We consider the configurations on symbols over a finite
-ary alphabet and proceed by considering the construction

of Pickard random fields over a finite alphabet, taking the two
Markov chains of the boundary (5) as point of departure instead
of the stationary distribution as in Section II.

It is essential for the construction that the stationary distribu-
tion on the states is the same for the two Markov chains. How-
ever, as discussed above, the pairs and may have dif-
ferent distributions. Nevertheless, we can restate the Pickard in-
dependence assumptions (4) and (7) as

(10)

(11)

and again conclude that they imply that the boundaries are
Markov chains.

Given the two Markov chains of the boundary (5), the distri-
bution of can then be found in two ways by considering the
triples and .

We consider the two transition matrices for the boundary
Markov chains (5), and . Given the distribution of ,
defined by a vector, we can find the distribution of by multi-
plying by either or . Since the conditional distribution
of is defined conditioned on any value of , the products
have to be identical column by column, and we conclude that
the matrices must commute

(12)

This constraint can be written out as a set of nonlinear equa-
tions in the entries of and . However, it is often useful to
consider the eigenvectors of and . If , it follows
that

and consequently is also an eigenvector of with the same
eigenvalue. In our constructions we shall not consider the spe-
cial cases of multiple eigenvalues, but require that the matrices
have the same eigenvectors. In particular, this means that the
two processes have the same stationary distributions.

The existence of solutions can often be decided by consid-
ering periodic patterns satisfying the given constraints. If such
a pattern can be described by a pair of deterministic transition
matrices, it follows that the equations have at least this type of
solutions.

We shall only consider irreducible Markov chains. If a chain
were not irreducible, we should reduce it to an irreducible com-
ponent. Once a pair of (irreducible) MCs with commuting tran-
sition matrices, , have been obtained, the final step is to get
the distribution and thereby consistent
with the distributions on the triples, and , as de-
fined by and . By (12), the marginal distribution on
is identical for and and these triples define

and . The requirement for
may be formulated by a system of linear equations for each pair
of values for

(13)

(14)

Again there are clearly more variables than equations, but the
equations may not have a (positive) solution. At this stage we
shall limit the terms of the distribution to those con-
figurations that satisfy the constraints, i.e., the PRF shall assign
probability to forbidden configurations, .

1) Tiling With Dominoes Using PRF: We describe domino
tiling of the plane as a Pickard field. The combinatorial entropy
of this field is known explicitly [8], [9], and the numerical value
is approximately . Nevertheless certain configurations of
dominoes give rise to long range effects, and it is not easy to
get a random field with an entropy that approaches the theoret-
ical value. Below a very simple field with a modest entropy is
constructed.
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The dominoes are represented as occupying two adjacent po-
sitions in a rectangular grid, and depending on the orientation,
they are labelled (eft), (ight), (p), and (doWn). Clearly
an is always followed by an in a row, and an by a in
a column.

The boundary is described by two Markov chains, one for
rows (left to right having transition matrix ) and one for the
diagonals from the lower left to upper right (having transition
matrix ). (The same orientation of the Markov chains was ap-
plied to the binary hard-square model in [4].) A state in each
chain is a single symbol, and for the construction of the field we
consider the configuration.

Assuming that the states have the same stationary probability,
we can write the row Markov chain transition matrix with tran-
sitions from columns to rows as

where here denotes transition probabilities. The tran-
sitions to and to are assigned the same parameter
since they represent the same configuration of pieces. Similarly,
for the Markov chain along the diagonal some of the transitions
are the same, and are identified with row transitions. In partic-
ular the diagonal transitions to and to are the same
configuration as the row transition to (having probability
). In order to simplify the problem, we first assume that all di-

agonal elements in the transition matrix are the same, and we
obtain

Since the two matrices must commute (12), we compare the
products of row 1 and column 4 and get the condition

. As the least restrictive choice we take . It is now possible
to make the matrices commute by taking

.
As an easy numerical case we take

In this case all combinations have probability .
We can now find the entropy of the field by considering the

conditional probability distribution of given . Clearly
gives zero contribution to the entropy. Because of the

choice , a symbol cannot be followed by an . Thus the

next symbol is either given as because the one above was ,
or it is not yet covered in which case is the only possibility.
Thus the entropy is also zero in this case. The two remaining
cases, and , are identical. If can be chosen as
either or , and we get an entropy of 1 bit. For , the
only choices are or , depending on the symbol above, and
the entropy is zero. For or there are two situations:
The following symbol is forced to be with probability

, or there are two choices for both and . In this
case we can use iterative scaling (see Section III-B) or solve and
optimize directly to get the marginals and . Clearly, the
conditional probability distribution is in both cases.
Thus, for these parameters we get the entropy

With a more general version of

we get 3 conditions on the variables by calculating the matrix
products. These can be satisfied by selecting , eliminating

as and
, and finally determining as

the solution of . Now
all admissible configurations have nonzero probabilities, and by
varying the two parameters, we can get an entropy value greater
than for and .

B. Iterative Scaling

Given two Markov chains having transition matrices which
commute (12), the Pickard independence assumptions,

and , defines the two distributions and
. The problem is now to define the probability distribu-

tion on the four elements , consistent with and
and the constraint as expressed by (13)–(14).

Since the number of variables tends to be large, iterative
scaling ([10, Th. 5.1]) may be used to find a solution, which
also maximizes the entropy. Let , and denote
values of and , respectively. Now let the values of

and be fixed. Compute the marginal distribution
on and
from the Markov chains. The probability distribution
can be written as a matrix, with the value of defining the
row index and the value of defining the column index, i.e.,
for each configuration , the elements are given by

(15)

The row sums must equal the conditional distribution
(13) and the column sums (14).

The iterative scaling may be described in terms of iterative
projections. Following [10], the I-projection of a distribution

onto a (nonempty) closed convex set is the
such that , where

.
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The I-projection is easily found for linear families over par-
titions as defined, e.g., by either the row or the column sums in
(13)–(14). Formally [10], the I-projection of onto a linear
family determined by all distributions having a given dis-
tribution on each of the partitions
of , is given by

where (16)

Thus, is obtained by scaling Q to .
In (13), the row and column sums each constitute a linear

family over a partition. In general, consider given linear fami-
lies, and generate a sequence of distributions by

and for , let be the I-projection of onto
, where for mod . The sequence

of distributions converges to the I-projection onto the given
linear families, ([10, Th. 5.1]),

Theorem 3.1: If then , the
I-projection of onto .

Let iterative scaling refer to the process of solving
by iterating scalings of the form (16).

Applying iterative scaling to (13)–(14), the matrix is
modified to get row sums (13) and column
sums (14). Starting with the row sums
defining and mapping the initial and for even
onto by

(17)

and subsequently, let the column sums define and determine
for odd by

(18)

If the linear equations have a nonnegative solution, the iteration
will converge to it by Theorem 3.1. For constraints defined on
the joint variables, here and given , the matrix is ini-
tialized with zeros in positions that are not admissible by the
constraint and this property is preserved by the scalings.

is the solution, which minimizes the divergence,
for . Initializing with a uniform initial

distribution over the admissible configurations as , implies
that minimizing the divergence, , by the iterative
scaling (17)–(18) maximizes the entropy, , over the
distributions . We shall refer to this as maximum entropy
iterative scaling and apply (17)–(18) to find a joint distribu-
tion on two variables given the marginal distribution on each
variable.

It may be noted that, the initial matrix has the property that
each entry (for an admissible configuration) satisfies

(19)

where is a constant that depends on only the row index and
depends on only the column index. The iterative scaling

(17)–(18) preserves the form (19), as each step is a scaling of
row or column values, as well as for non-admissible
combinations.

C. Maximizing PRF Entropy for 2-D Constraints

Applying iterative scaling for each configuration of
defines a distribution , which

provides stationary solutions for the marginal distributions
and satisfying the conditions of the Pickard

random field (3), (4), (7), if such solutions exist. The maximum
entropy iterative scaling of is defined by (17) and
(18) and selecting a uniform initial distribution over the admis-
sible configurations. For each configuration , the elements
are given by (15). The row and column sums (17)–(18) are
given by and (13)–(14),
respectively.

Iterative scaling is applied for each pair. The initial dis-
tribution, , is set to a uniform distribution over the
admissible configurations for each (and to 0 for the non-
admissible configurations). For each a sequence of distribu-
tions is generated by iterating (17) and (18), which converges to
the solution in the limit. The entropy of the inte-
rior, , may be expressed by

(20)

where and are given by the Markov chains
defining the boundary and is given by the distri-
bution determined by the iterative scaling.

Theorem 3.2: It is a necessary condition for two irreducible
Markov chains, with transition matrices and , to define the
boundary (5) of a Pickard random field satisfying (7), that these
matrices commute (12). For two irreducible Markov chains sat-
isfying (12) and defining a boundary (5) by and , applying
iterative scaling (17)–(18), to find a solution for
(13)–(14), determines whether a PRF with the given boundary
and satisfying (4) and (7) exists. If a solution exists, the max-
imum entropy iterative scaling I-projections, for all
values of , combined with (4) and (7), determines the
conditional probabilities , which maximizes the en-
tropy, , among PRFs with the boundary description
(5) given by and . Initializing the iterative scalings with

for forbidden configurations of within
a 2 2 square, the PRF will satisfy the constraint defined by

.
Proof: The PRF independence conditions, (4)

and (7), implies that the boundaries are defined
by two Markov chains. For a given MC boundary pair (5), with
stochastic matrices and , the PRF independence conditions
(4) and (7) also define the distributions (4) and
(7). The transition matrices for to over and are
and , respectively. Starting with any given value of , the
distribution of must be identical for and . As the
Markov chains are irreducible, this applies for all values of
and therefore is a necessary condition.
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To ensure stationarity of the PRF, the stationary distributions
of and must be identical. Thus the stationary dis-
tributions of and must be selected when defining
by (4) and by (7). This in turn implies that the distri-
butions and as well as and will be
identical. Thus a distribution consistent with the so
defined and , will be stationary.

The stationary distribution as well as and
(13)–(14) are given for all values of by and

and the independence conditions (4) and (7). To complete the
PRF, must be specified. By Theorem 3.1, iterative
scaling (17)–(18) based on (13)–(14) for all values of finds
a solution to the joint distribution , consistent with

(13) and (14), if such a solution exists.
Rewriting by (20), the terms and

are fixed for given and . expressed
by for each is the only variable term and it is
optimized by the maximum entropy iterative scaling (17)–(18)
based on (13)–(14), thus optimizing among PRFs
for which the boundary is given by and .

Initializing the iterative scalings with , for
forbidden configurations, , the iterative scalings (17)–(18)
preserve this property and converges to the I-projection with

for forbidden , which in turn gives
for forbidden . Thus forbidden configura-

tions appearing in the interior will be assigned probability 0.
By the stationarity property of the PRF, this also applies to
forbidden configurations appearing on the boundary.

Comment: Theorem 3.2 deals with PRF where the elements
are traversed from the upper left hand corner (5) and condition

(7) is satisfied. We can also consider the alternative
pair of independence conditions,
(8), for defining a PRF in Theorem 2.2. In this case one of the
Markov chains could be reversed and again the condition (12)
could be checked. Again Theorem 3.2 could be applied but now
switching the roles of and . One could also consider
reversing both Markov chains, but this is already covered as
reversing both irreducible MCs, the matrices commute iff and

commute.

IV. BLOCK PICKARD RANDOM FIELDS FOR 2-D CONSTRAINTS

To construct fields with constraints of larger extent than
elements, we consider PRFs where the symbols are replaced by
supersymbols defined by the symbols within rectangular blocks.
The blocks are rectangles of size by symbols. We restrict
the treatment to blocks arranged in rows in such a way that each
row is shifted by half a block, symbols, relative to the previous
row (Fig. 2). The blocks are identified by two indices, the first
one indicating the position on a diagonal from upper left to lower
right. Thus block includes rows to . The
other index increases from left to right.

We propose a causal model where the blocks are specified one
diagonal at a time starting from the upper left and extending
to the lower right. Each diagonal is given conditioned on the
previous one. If we need to refer to a specific element, it will
be given a third index numbered row by row within
each block.

Fig. 2. Four � � � blocks �� � � � �� and four blocks with � � � � �.

Now consider blocks positioned on two succes-
sive diagonals with above (see Fig. 2) and consider by

constraints. By choosing , we can describe the se-
quences of blocks along the diagonals as Markov chains, since
the forbidden configurations of involving elements of the cur-
rent block does not extend beyond the rows of the previous block
in the causal direction. By choosing and ,
an configuration that includes a symbol in does not
extend into past blocks other than , and . Further, for the
chosen values of and , no forbidden by configuration
involves elements of both and . Thus it is not impossible
off-hand that they can be independent for all admissible config-
urations in a PRF. We base our construction of a block PRF on
these blocks. As we shall see later for specific constraints, the
properties of the forbidden configurations on the list allows
for blocks sizes smaller than by
still allowing for independence of and for all admissible
configurations.

Example 4.1: Consider a binary field with the constraint that
allows at most one within an by square which
may be expressed by

Thus a list of forbidden configurations, , would include all
combinations of two 1s within such a square. For we can
base the construction of a PRF on the 2 4 blocks indicated in
Fig. 2. Here and the individual
elements within a block are given by lower case letters. In the
simpler case , we can use the same 1 2 blocks (Fig. 2)
as for the n.i.b. field (Fig. 1). Let the indices of the blocks be
given by the the binary number of the binary symbols within the
block, e.g., (Fig. 2). We consult
the list of forbidden configurations of both when defining
the possible configurations of a block and the two blocks of a
transition, this gives as there can not be two 1s
within the block. It is a straight forward exercise to show that
we can get the transition matrix ( to ) for the Markov chain
as

Here and the commuting transition
matrix, , is obtained by interchanging the last two rows and
columns. The conditional probabilities may be
obtained by iterative scaling by finding a solution to (17)–(18).
In this example, the structure (19) of the maximum entropy
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iterative scaling leads to a unique solution for a given value of
. The maximal entropy is per binary symbol,

which is achieved for . The entropy value is close
to the capacity for the constraint, which was estimated to be

[11]. It may be noted that it the blocks were organized in
an ordinary horizontal-vertical structure, then for the constraint
elements of and would be diagonal neighbors leading to
exclusion of admissible configurations to achieve the indepen-
dence of and (given ) (4) regardless of the size of the
blocks.

Now consider blocks of elements posi-
tioned together as given above with block at and con-
sider this the current block. For a PRF defined on the blocks
to satisfy a constraint it is obviously a necessary condition that
configurations on which are forbidden must be as-
signed probability .

Theorem 4.2: Given a list of forbidden configurations, ,
within an rectangle and a 2-D lattice structure with
rectangular blocks tiling the plane, consider a Pickard Random
Field description on these blocks over the alphabet of the con-
figurations on the blocks. The causal ordering of elements is
given by (6) on the 2-D lattice and a given ordering of elements
within the block. A sufficient condition for this block PRF to
assign the probability to any configuration containing a for-
bidden configuration of , is that the conditional probability is

, when the last symbol of the forbidden config-
uration of , in the causal ordering, is an element of the block

.
Proof: The condition states that any forbidden configura-

tion of with the last causal element in conditional on sym-
bols in (and ) will assign the configuration of
probability (6). By the PRF stationarity this will also apply
to all configurations (6) having at least one element of a for-
bidden configuration in the interior (6). Again applying the PRF
stationarity that all rows as well as all columns have identical
(marginal) distributions ensures that configurations with a for-
bidden configuration of is assigned probability also on the
boundary.

It should be noted that it is not always possible to construct
a PRF in this way. There may be cases where there is no ad-
missible choice for block or it may not be possible to satisfy
the independence constraints. The symmetric run-length con-
straints [13] is an example where issues of finding solutions is
nontrivial. For and , any by rec-
tangle holding elements of , will only have causal elements
in the blocks , and and no forbidden configurations of

has elements in both and . Below we consider specific
constraints where the list of forbidden configurations allows
smaller block sizes while still providing a restriction of checking
the constraint to configurations of and a separation of

and .

A. No Isolated Bits

Block Pickard random field construction for 2-D constraints
is now treated for the 2-D no isolated bits (n.i.b.) constraint (Ex-
ample 1.1) in detail and with a slight modification the no iso-
lated zero (n.i.z) constraint (where the isolated 1 is admissible

and only an isolated zero is forbidden). For these constraints
, but the block Pickard field along diagonals can

be constructed with blocks as the forbidden configura-
tions do not involve the corner elements, so the relation of the
center element and the diagonal neighbors are not important.
For the n.i.b. constraint, consider the four blocks con-
stituting (Fig. 2). Given the values of , and , we
must choose the values of in such a way that neither or
becomes isolated. It is not necessary to check other causal ele-
ments besides , and . Thus if we can define a PRF, it will
assign probability 0 to any forbidden configuration by Theorem
3.2. It may also be observed that, the choice will
always be admissible for any combination of elements of ,
and . This implies that each of the four configurations on the
diagonal processes defines a state and all transitions along diag-
onals are possible as well as all configurations of . This is
also true for the less restrictive n.i.z. constraint.

A simple solution for the transition probability matrices to
commute is simply to assign equiprobable transition probabili-
ties to the transitions between the four symbols in the diagonal
processes. A higher entropy may be achieved giving a bias to
certain configurations.

Again the configurations on the blocks are indexed by the bi-
nary numbers, e.g., . If we con-
sider the transitions from to and to (see Fig. 2), it is
clear that to are two different configurations
in the two processes. However, if we consider the transitions
from to and , the configurations are obtained by reflection
in the horizontal axis, and we could choose to assign the same
probability to them. Here is the same transition as , but

is a transition in the same chain as taken in the reverse
order. Thus in addition to symmetry around a vertical axis, and
symmetry with respect to interchange of the binary symbols
and , we can simplify the construction by requiring that the two
diagonal processes represent the same Markov chain with a re-
versal of the direction. (Unfortunately that property does not in
itself imply that the transitions matrices commute.) If we write
the transition matrix (with transitions from columns to rows) for
the main diagonal ( to ) as

(21)

where the symmetry with respect to an interchange of and
has been used to reduce the number of parameters. (

are here and in the next section used as parameters.) This prop-
erty implies that the stationary distribution has the form

. Since the columns of sum to , we have

(22)

(23)

and if is used as a parameter, we get

(24)
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which gives

(25)

If the other transition matrix, , is specified by using symmetry
about a vertical axis, we simply have to interchange rows and
columns 2 and 3 of . To make this matrix the transition ma-
trix for the process in the main diagonal reversed, we multiply
the columns of both by the stationary probability of the corre-
sponding states, and then require that one of the results is the
transpose of the other. (This procedure amounts to verifying that

This condition actu-
ally implies just that

(26)

since it follows from the previous relations that we then also
have

(27)

To make and commute, we calculate the product and notice
that eight of the entries are already equal due to the symmetry
of the matrices. The remaining eight products are equal if

(28)

We prefer to make the first factor equal to zero, since this is
less restrictive than . This analysis leaves us with the
parameters , and . For a set of parameters, iterative
scaling (17)–(18) may be applied to obtain the conditional
probabilities thus giving the full parameter set
of a block PRF. For each configuration the matrix with
elements is determined using maximum
entropy iterative scaling (17)–(18). Thereafter the entropy,

, of the field can be calculated by (20). Starting
with , the entropy becomes
0.9091. By varying the initial choices of parameters, we find the
maximum value bits per binary symbol
for and . For
comparison a lower bound of for bit-stuffing was given
in [5] for the n.i.b. constraint. In a recent paper [12], a lower
bound of was presented based on a larger neighborhood.

A block PRF may also be described for the no isolated zero
(n.i.z.) constraint. All configurations admissible by the n.i.b.
constraint are also admissible by the n.i.z. constraint. Using the
same boundary model as for n.i.b. above, maximum entropy
iterative scaling was again applied. Optimizing over the PRF
boundary parameters gave bits per bi-
nary symbol for the parameters

.

B. Minimum Distance Between ’s

We construct a binary block Pickard field for the constraint
that the -norm distance between ’s is at least [9], which
elements may be defined as

(29)

Thus this constraint may be expressed by an intersection of con-
straints defined on pairs of elements. The basic constraint is de-
scribed as a square. However, since a pair of ’s positioned
at diagonal corners of the square is admissible (29), it is
sufficient to use , i.e., blocks (shifted by
one symbol in successive rows). This is sufficient to ensure that
when selecting given , all causal elements with respect
to within distance 3 (29) of an element in , and thereby all
configurations of are in or . Therefore, if a PRF can be
defined with for forbidden, the block PRF
will assign probability to forbidden configurations (Theorem
4.2).

The states of the Markov chains on blocks are defined
by the configurations satisfying (29) within the block. This gives
five states: the zero state and four states with a single . The
nonzero states will be listed with the state that has a in the
upper left corner first, and the one with a in the lower right
corner last.

For each diagonal MC, the transitions are again defined by
pairwise testing (29) of the elements of the two blocks. There are
five transitions which are not admissible, leaving 15 variables
(since the columns have to sum to ).

To simplify the construction, we assume that all nonzero
states have the same stationary probability, . Because of
the symmetry, the two transition matrices can be obtained by
interchanging two pairs of rows and columns. The two transi-
tion matrices, from to and from to , are (with
transitions from columns to rows)

(30)

(31)

where the parameters follow from the sum of the
columns, and the factor in the first column
serves to give the desired stationary distribution. It follows from
the choice of parameters that probabilities of symmetric transi-
tions are equal. However, for the matrices to commute, four pairs
of products which correspond to transitions that are not sym-
metric, have to be equal. When is obtained by interchanging
rows and columns of , the eigenvectors are found by applying
the same permutation. It can be observed that is an eigenvalue
with eigenvector of the form . This observation
gives , and . From direct calculation of
the products we find

(32)

(33)
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Thus for any value of , the transition matrices
are specified by the parameters and . When the transition
matrices are given, we can fix the values of the blocks and

, find the marginal distributions of the blocks and from
the two Markov chains, and finally obtain the distribution

by the process of iterated scaling (17)–(18). We can
then vary the parameters to get the maximal entropy of the
field. By searching over the parameters, the maximum entropy
is found to be for the parameters

. This value is
somewhat lower than the best lower bound for the constraint,
0.3503 [9]. This lower bound was based on a model, which is
not finite, conditioning on the causal part of the last rows.

V. CONCLUSION

Block Pickard random fields were introduced. With a suitable
two-variable indexing of the blocks along diagonals a proba-
bility assignment is derived from Markov chain descriptions. If
the transition matrices of the two Markov chains can be chosen
to commute and the iterative scaling process has a solution for
the conditional distribution of a new block, the field is described
as a block Pickard random field. In this case details of the dis-
tribution can be explicitly calculated, and in particular we cal-
culate the entropy. Block PRF were calculated for a number of
2-D constraints.
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