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We show that the linewidth of a Josephson flux-flow oscillator has the same functional dependence on
temperature, static, and dynamic resistances as the ones of Josephson single-fluxon oscillators and small
Josephson junctions. This suggests a universal formula for the linewidth of Josephson oscillators.
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Josephson flux-flow oscillators (FFO), e.g., long one-
dimensional Josephson junctions operating in the flux-flow
regime, represent ideal devices for practical applications in
superconducting mm and sub-mm-wave electronics [1-5].
This is mainly due to their properties of easy and wide-
band tunability, high output power, and relatively narrow
spectral linewidth. In contrast to Josephson single-fluxon
oscillators [6], flux-flow devices operate in the presence
of a magnetic field sufficiently high to induce a uniform
increase of the phase along the junction (background ro-
tation) with small amplitude excitations traveling on top
of it (flux-flow dynamics). In a particlelike picture, this
can be seen as a unidirectional motion of Josephson vor-
tices (fluxons), each carrying one quantum of magnetic
flux ¢g = h/2e, continuously generated at one end of the
junction and destroyed at the other. When the excitations
collide with the junction edges, electromagnetic radiation
is emitted and a time dependent signal, reflecting the spa-
tial flux-flow dynamics inside the junction, is generated.
The presence of thermal fluctuations in the current which
flows through the junction introduces noise in this dynam-
ics which then results in a linewidth in the spectrum of the
emitted radiation. In recent papers by Koshelets ef al. [5],
it was shown that the experimentally measured linewidth
of a Josephson FFO could be well fitted by the analytical
expression
47kgT R},

¢s Rs’
with the prefactor p = 8. In this formula Rg, Rp, kg, and
T are, respectively, the static resistance (e.g., Vy./1,4.), the
dynamic resistance (e.g., dV./dl - in the bias point), the
Boltzmann constant, and the temperature. On the other
hand, it is known that Eq. (1) with p = 1 coincides with
the linewidth of a small Josephson junction [6—8], and with
p = 1/4 coincides with the expression of the linewidth of
a Josephson single-fluxon oscillator [9] (in this case the
extra 1/4 factor is due to a modified Josephson frequency-
voltage relation). This suggests Eq. (1) to be a universal
formula for the linewidth of a Josephson oscillator.

The aim of this Letter is to provide a theoretical evidence
for the validity of this statement. Since the linewidths of

Av =p (1)
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small junctions and single-fluxon oscillators are known to
reduce to the above formula, we shall concentrate only on
the linewidth of a Josephson flux-flow oscillator, which
apparently seems to deviate from it. In some recent pa-
pers [10,11], indeed, different expressions of the FFO’s
linewidth were obtained by using the particlelike descrip-
tion of the fluxon dynamics inside the junction. In these
approaches, however, the linewidth was given in terms of
quantities which apparently are not related to the dynamic
and static resistances, so that Eq. (1) was missed. On the
other hand, by using a quasilinear mode analysis for the
flux-flow dynamics, we show that the linewidth expres-
sion in Eq. (1) naturally follows with the same p as for
the small junction case (i.e., p = 1) . This result devi-
ates from the experimental measurements of Ref. [5] by a
factor = 8. Possible explanations for this discrepancy are
given at the end.

We remark that a quasilinear analysis can be justified by
the fact that for the flux-flow regime the nonlinearity of the
system is effectively reduced by the background rotation
induced by the magnetic field. In the absence of noise,
this approach was used to describe the current-voltage (IV)
characteristics of a FFO, both in the presence and in the
absence of microwave fields [12—-14].

The most remarkable property of Eq. (1) is that it con-
tains only physical quantities which are directly measur-
able from the IV curve, thus making it very useful from an
experimental point of view. Moreover, some of the terms
entering this formula can easily be justified. Thus, the pres-
ence of R% can be understood as a noise conversion factor
from the spectrum of the current S;(w) to the spectrum of
the voltage, according to Sy(w) ~ R3S (w). Similarly,
the factor 1/ ¢§ arises from the conversion of the voltage
spectrum to the frequency one. On the other hand, the ap-
pearance of Rg in Eq. (1) is not trivial and requires, as we
show in the following, a careful analysis of the junction
dynamics both in its high and low frequency components.

From a physical point of view one can say that the
thermal fluctuations in the current induce noise amplitude
and phase modulations of the voltage at the end of the
junction which, in normalized units, can be represented in
the form
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Q1) = w + 3 + AW)Flwt + x(1)], (2)

where F(---) is a 277 periodic function of unitary ampli-
tude and Yy is a time dependent phase (here and in the fol-
lowing tildes denote stochastic signals). From frequency
modulation theory [15] it is known that the full half-power
linewidth of a voltage signal like (2) can be expressed in
terms of the power spectrum Sy, of the instantaneous fre-
quency as

2mAv = §3,(0). 3)

This relation is valid in the Lorentzian limit, i.e., if
S5 (0) < 2B, where S is the characteristic frequency of
the spectrum [roughly given by the damping constant («)
in the system], and in the following it is assumed to be
satisfied. The derivation of the linewidth is then reduced
to the problem of computing the low frequency part of
the spectrum of y;. To this end we need to know the
phase difference ®(x, t) across a junction in the presence
of thermal noise and with a magnetic field « applied at
the edges. As is well known [6], this is described by the
perturbed sine-Gordon equation

b, — &, =sin(P) + ad, — n + iilx, 1), 4)

with boundary conditions @, (0,¢) = ®,(l,¢) = k. In this
equation space and time are normalized to the Josephson
penetration depth A; = (/i/2eJ wod)'/? and to the inverse
plasma frequency w; ' = (2¢J/hC)™1/2, respectively, 7
is the bias current normalized to AJ, « is the magnetic field
normalized to JAy;, « is the shunt damping normalized
to hwy;R~'/2eAJ, and ji(x,t) is Johnson-Nyquist white
Gaussian noise

{Alx, D', 1))y = 16a kg—T S(x — xNé( —1). (5
0

Here we denoted J as the maximum Josephson current
density, A as the area of the junction, d as the magnetic

thickness of the oxide layer, and C and R™! as the ca-
pacitance and the normal-state conductance per unit area,
respectively. Moreover, we used (()) to denote the ensem-
ble average, and Ey, the fluxon rest energy, to fix the scale
of energy in the system. In the absence of noise, a solution
of Eq. (4) can be obtained in the form

D(x,t) =Yy + V(x,1), (6)

with ¥ (x, ) a small modulation (¥ < 1) around the ro-
tating background ¥y = wt + kx + ¢ (Py denoting an
arbitrary phase). Except for the case @ = 0 and uniform
backgrounds, this expansion does not lead to any secular
term and can be used to compute the IV characteristic as
shown in Refs. [12,13]. In the presence of noise, however,
the secularity at @ = O implies a singularity in the low
frequency part of the spectrum which could invalidate the
calculation of the linewidth. To avoid this secularity we
expand the solution of Eq. (4) as

D(x,1) = Vo + Py (x,1) + Jx, )+ 5@, D

where Wy (x, 1) is a quasideterministic modulation around
Wy, x(7) is a stochastic homogeneous low frequency
modulation of the phase, and (x,¢) < 1, the remaining
part of the stochastic modulation. This splitting into slow
and fast time components gives the extra variable (),
whose time evolution can be fixed to eliminate the secular
term in the expansion. From a physical point of view
it can be justified by assuming that the spectrum of the
voltage consists mainly of two contributions, one at low
frequency and the other around the Josephson frequency
w; at which the system oscillates.

Substituting Eq. (7) into Eq. (4) and using the smallness
of Wy, (x,1) and (x, 1) to linearize the resulting equation
[note that no restriction is made on the magnitude of y ()],
we get

n —A{alo + X:(0)] + Vg, 1) cos[Wo + YO} = {(=0xx + 9 + €d)W5,(x,1) + sin[¥o + ¥()]}

+ (=00 + 9, + @d)P(x,t) + it (x,1) + iip(t)]
+ 7 (6) + P, 1) cos[ Wy + ()] + yulr).

®)

Here 7'(x, ) represents the inhomogeneous part of the
noise, which can be written as

o]

i'(x,1) = D (1) cos(kpx) 9)
p=l1
with k, = 7p, ((ii,(#))) = 0, and
(a1 = (2 = 80,) 2L 5,00~ 1),
(10)

while 7ig, 77, are, respectively, the high and the low fre-
quency part of the homogeneous component of the noise
fg(t) = fig(t) + fig(z). At zero temperature we have that

5398

all the tilde quantities vanish and ¥y, (x,7) — W(x,1), so
that Eq. (8) reduces to

n—aw+V(x, t)cos(Wy) = (—0y + 9y + @d)V(x,1)
+ sin(W¥y) . (11)

This is the same equation used in Refs. [12,13] to obtain
the IV characteristic of a FFO in the absence of noise. We
remark that one can solve Eq. (11) in two steps, i.e., by
first computing the ac part [equating its right hand side
(RHS) to zero], and then the dc part [equating its space-
time averaged left hand side (LHS) to zero]. The dc part
gives just the IV curve. To generalize this to the case of
nonzero noise, we note that the quasideterministic part of
the phase can be obtained by equating the curly bracket in
the RHS of Eq. (8) to zero and solving the corresponding
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equation for Wy (x,¢). By inserting this solution into the
space averaged LHS of Eq. (8), and equating it to zero,
one gets

n = alo + ¥) + (Py 1) cos[¥o + Y@, (12)

with () denoting the spatial average. In the following we
assume that y(¢) is slow varying in comparison with the
damping rate « of the high frequency oscillations (adia-
batic approximation). In this case the frequency noise will
follow the current noise and the IV curve can be obtained
by averaging Eq. (12) in time. Since the quasideterminis-
tic part of the phase is not relevant for the calculation of
the linewidth, we do not consider it further.

Once the quasideterministic terms in Eq. (8) are bal-
anced, we can proceed with the balance of the low and high
frequency stochastic components of the phase. To this end
we remark that in Eq. (8) 7iy(r) acts as a noise source for
the high frequency component ¢ (x, t), while i, (f) excites
only the low frequency part, y(¢), of the phase. The non-
homogeneous high frequency part #(x, #) can then be ob-
tained by equating the square bracket in the RHS of Eq. (8)
to zero, i.e.,

(0 + 9y + @d)P(x, 1) + 7' (x,1) + fig(t) = 0.
(13)

By expanding J(x,t) in Fourier modes ¢ (x,1) =
Z§=0 ¥, (t) cos(k,x), and using Eq. (9), we have that the
spectrum of ¢ can be written as

w(w?ta
Sl/’p = Sﬁp

(02 —k2)*+a’w?

for p =0;

14
L,2,.... 14

for p =

From Eq. (10) it follows that S; (@) = (2 — 80,,)So, With
So = 16akpT /Eyl, so that no singularities appear in the
spectrum of this part of the noise. On the other hand, from
Eq. (14) we see that a singularity can arise at ® = 0 for
p = 0. The assumption made on the spectrum, however,
allows the introduction of a limiting frequency wg, which
divides the spectrum in its high and low frequency com-
ponents and which can be used to split the homogeneous

part of the noise, for example, as s

A condition for wg to hold is Av < wy K wy.
From Eq. (15) we have that at small frequencies
Siy = Sowz/wg and, from Eq. (14), it follows that also
the spectrum of ¢ has no singularity at zero frequency.

As the next step we balance the homogeneous low fre-
quency components, i.e., all the terms not included in the
curly and in the square brackets of Eq. (8). This leads, af-
ter averaging over space, to the following equation for the
low frequency part:

n — alw + j) — (Vg (x,1)cos[¥o + (1))
=qar + <¢,7/(x,t)cos[‘Po + )?(ﬂ]) + X -

Because of the adiabatic approximation the last term in
this equation can be neglected. Moreover, we can average
Eq. (17) over fast time [16], thus leading to

7)

n = (o + x) = ir + @x,1)cos[Wo + x(1)]),
(18)

where the overline denotes the fast time average and

n(w + X)) =a(o + ) + (Vg (x, 1) cos[ ¥y + x(1)]).

(19)
Note that the LHS of Eq. (18) can be rewritten as
N dw\ !
1=+ o) =~(52) w0, e

where dw/dn = rp is the normalized dynamic resistance
(rp = Rp/aR) . On the other hand, the RHS of Eq. (18)
defines an effective noise

fiest = iy + (P(x, 1) cos[Wo + ¥ (1)),

for the homogeneous low frequency part of the phase, so
that Eq. (18) becomes

2

Xt = — It - (22)

From Eq. (3) we then see that the linewidth directly fol-
lows from the spectrum of 7i.ss at zero frequency. Note

i . _ Ta that the second term in (21) represents a down-converted
S (@) = So(l , e "), as) contribution originated from the noise around the Joseph-
-5 son frequency w;. To compute this contribution, we use
Si, (w) = Spe 0. (16)
the fact that
|
i g in<! Kkl — k,l
cos[¥y + y(0)] = Z 2 - 50,,1),(1%,("1 T,fl X cos(knx)cos[wjt + () + ——— + (Do] (23)
n=0 2 T2
Moreover, since the spectrum of §, is very narrow with | 1 & "7’ sin "1_2"“’ 2
respect to the characteristic size of the spectrum of s, we Sii: (0) = S5,(0) + 5 Z i i | Su(@)
can neglect y(¢) in Egs. (21) and (23) and compute the N n=0 2 2
down-converted term as the mixing [17] of the stochastic = S0 aw’ 24)

signal ¢ with the deterministic one from Eq. (23). After
some calculations, we get

where, in the last step, we used the expression of the IV
characteristic as derived in Refs. [12,13]. Since w/n =rs
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is the normalized static resistance (rs = Rs/aR), we
have, from Egs. (22) and (24), that

2
$5,(0) = Sp 2. (25)
arg
From this expression and from Eq. (3) it follows, after
restoring physical dimensions [18], that the linewidth of
a FFO is given by Eq. (1) with the prefactor p = 1.

From the above derivation it is clear that the factor 1/Rg
in Eq. (1) is due to the down-converted term in the effec-
tive noise, and it represents the contribution of the FFO
dynamics to the linewidth expression (if only 7i;, would be
present in 7ier, one would get instead of 1/Rg, the recip-
rocal normal resistance characterizing just the Ohmic part
of the IV characteristic).

Before closing this paper we discuss the assumptions
made and the range of validity of the result. Our approach
is based on the ansatz solution in Eq. (7) and on the adia-
batic approximation. Moreover, we assumed a Lorentzian
limit for the validity of Eq. (3). A main assumption, how-
ever, was made on the form of the spectrum for which
we considered only two main contributions, one around
the Josephson frequency, related to the flux-flow dynamics,
and the other at very low frequencies, related to the fluc-
tuations of the homogeneous background rotations. From
a physical point of view, this is quite reasonable since one
expects that contributions to the spectrum coming from
Fiske steps would influence the linewidth only through sec-
ond order effects, i.e., down-conversions from w; to Fiske
frequencies which are then further down-converted to zero.
Since Fiske steps have a width =« and are spaced in fre-
quency by multiples of 77 /I, to avoid overlappings one
must require

Ar < w0<a<<%<< wy. (26)

Although these conditions appear restrictive, they are sat-
isfied by most Josephson devices.

We finally remark that in comparison with the experi-
mental results of Ref. [5] there is a factor =~ 8 missing
in our formula. This discrepancy could be due to the
appearance of noise-induced parametric excitations (not
included in our analysis), leading to an increased effec-
tive temperature in the system. This possibility could be
experimentally checked by investigating the linewidth de-
pendence on the temperature (the experiments reported in
Refs. [S] were done at fixed temperatures). Another ex-
cess of noise source in the system could be the presence
of deterministic chaos, a phenomenon which was indeed
observed in the numerical simulations of a FFO in the
absence of noise [19].

5400

In conclusion, we have shown that in spite of the differ-
ent internal dynamical states characterizing different types
of Josephson oscillators, under certain conditions, a uni-
versal formula for the linewidth of Josephson oscillators
emerges.
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