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Partial Path Column Generation for the
Vehicle Routing Problem with Time Windows

Bjørn Petersen& Mads Kehlet Jepsen}

DIKU Department of Computer Science, University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen Ø, Denmark

Abstract

This paper presents a column generation algorithm for the Vehicle Routing Problem with Time Windows
(VRPTW). Traditionally, column generation models of the VRPTW have consisted of a Set Partitioning master
problem with each column representing a route, i.e., a resource feasible path starting and ending at the depot.
Elementary routes (no customer visited more than once) have shown superior results on difficult instances (less
restrictive capacity and time windows). However, the pricing problems donot scale well when the number of
feasible routes increases, i.e., when a route may contain a large number of customers. We suggest to relax that
‘each column is a route’ into ‘each column is a part of the giant tour’; a so-called partial path, i.e., not necessarily
starting and ending in the depot. This way, the length of the partial path can bebounded and a better control of
the size of the solution space for the pricing problem can be obtained.

Keywords: Vehicle Routing Problem, Column Generation, Elementary Shortest Path Problem with Resource
Constraints

1 Introduction

The VRPTW can be described as follows: A set of customers, each with a demand, needs to be serviced by a
number of vehicles all starting and ending at a central depot. Each customer must be visited exactly once within a
given time window and the capacity of the vehicles may not be exceeded. The objective is to service all customers
traveling the least possible distance. In this paper we consider a homogeneous fleet, i.e., all vehicles are identical.

The standard Dantzig-Wolfe decomposition of the arc flow formulation of the VRPTW is to split the problem
into a master problem (a Set Partitioning Problem) and a pricing problem (an Elementary Shortest Path Problem
with Resource Constraints (ESPPRC), where capacity and time are the constrained resources). A restricted master
problem can be solved with delayed column generation and embedded in a branch-and-bound framework to ensure
integrality. Applying cutting planes either in the master or the pricing problem leads to a Branch-and-Cut-and-Price
algorithm (BCP). Dror [5] showed that the ESPPRC (with time and capacity) is stronglyNP -hard.

We propose a decomposition approach based on the generationof partial paths and the concatenation of these.
In the bounded partial path decomposition approach the mainidea is to limit the solution space of the pricing
problem by bounding some resource, e.g., the number of nodeson a path. The master problem combines a known
number of these bounded partial paths to ensure all customers are visited.

The paper is organized as follows: In Section 2 an overview ofthe Dantzig-Wolfe decomposition of the
VRPTW is given and it is described how to calculate the reduced cost of columns when column generation is
used. Section 5 concludes on the model.
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2 The Vehicle Routing Problem with Time Windows

The VRPTW can formally be stated as: Given a graphG(V,A) with nodesV and arcsA, a setR of resources
(R = {load, time}) where each resourcer ∈ R has a lower boundar

i and an upper boundbr
i for all i ∈ V and a

positive consumptionτr
i j when using arc(i, j) ∈ A, find a set of routes starting and ending at the depot node 0∈V

satisfying all resource limits, such that the cost is minimized and all customersC = V \{0} are visited.

2-index formulation of the VRPTW In the following letci j be the cost of arc(i, j)∈A, xi j be the binary variable
indicating the use of arc(i, j) ∈ A, andTr

i j be the consumption of resourcer ∈ R at the beginning of arc(i, j) ∈ A.
Let δ+(i) andδ−(i) be the set of outgoing respectively ingoing arcs of nodei ∈ V. The mathematical model of
VRPTW adapted from Bard et al. [2] and Ascheuer et al. [1]:

min ∑
(i, j)∈A

ci j xi j (1)

s.t. ∑
(i, j)∈δ+(i)

xi j = 1 ∀i ∈C (2)

∑
( j,i)∈δ−(i)

x ji = ∑
(i, j)∈δ+(i)

xi j ∀i ∈V (3)

∑
( j,i)∈δ−(i)

(Tr
ji + τr

ji x ji ) ≤ ∑
(i, j)∈δ+(i)

Tr
i j ∀r ∈ R, ∀i ∈C (4)

aixi j ≤ Tr
i j ≤ bixi j ∀r ∈ R, ∀(i, j) ∈ A (5)

Tr
i j ≥ 0 ∀r ∈ R, ∀(i, j) ∈ A (6)

xi j ∈ {0,1} ∀(i, j) ∈ A (7)

The objective (1) sums up the cost of the used arcs. Constraints (2) ensure that each customer is visited exactly
once, and (3) are the flow conservation constraints. Constraints (4) and (5) ensure the resource windows are
satisfied. It is assumed that the bounds on the depot are always satisfied. Note, no sub-tours can be present since
only one time stamp per arc exists and the travel times are positive.

3 Bounded partial paths

A solution to the VRPTW:v0 → c1
1 → . . . → c1

k1
→ v0,v0 → c2

1 → . . . → c2
k2
→ v0, . . . ,v0 → cn

1 → . . . → cn
kn
→ v0

can be represented by the giant-tour representation of Christofides and Eilon [3]:

v0 → c1
1 → . . . → c1

k1
→ v0 → c2

1 → . . . → c2
k2
→ v0 . . . → v0 → cn

1 → . . . → cn
kn
→ v0

which is one long path visiting all customers. The consumption of resources is reset each time the depot node is
encountered.

The idea is to partition the problem so that the solution space of each part is smaller than the original problem.
This is done by splitting the giant-tour into smaller segments by imposing an upper limit on some resource, e.g.,
bounding the path length in the number of nodes. In the following the number of visited customers is considered
the bounding resource, i.e., the number of visits to the non-depot node setC. Each segment represents a partial
path of the giant-tour. With a fixed number of customers on each partial path, sayL, a fixed number of partial
paths, sayK, is needed to ensure that all customers are visited, i.e.,L ·K ≥ |C|. The partial paths can start and end
in any node inV and can visit the depot several times. Example of a partial path:

c1 → c2 → v0 → c3 → v0 → c4

Consider the graphG′(V ′,A′) consisting of a set of layersK = {1, . . . , |K|}, each one representingG for a
partial path. LetGk be the sub graph ofG′ representing layerk with node setVk = {(i,k) : i ∈ V} for all k ∈ K
and arc setAk = {(i, j,k) : (i, j) ∈ A} for all k ∈ K. Let A∗ = {(i, i,k) : (i,k) ∈Vk∧ (i,k+1) ∈Vk+1∧ k ∈ K} be
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the set of interconnecting arcs, i.e., the arcs connecting alayerk with the layer abovek namely layerk+1 for all
k∈ K and all nodesi ∈V (layer|K|+1 is defined to be layer 1∈ K and layer 0 is defined to be layer|K| ∈ K). Let
V ′ =

S

k∈K Vk and letA′ =
S

k∈K Ak∪A∗. An illustration ofG′ can be seen on Figure 1. Note, that arc(i, i,k) does
not exist inAk and that arc(i, j,k) with i 6= j does exist inA∗, so all arcs(i, j,k)∈A′ can be uniquely indexed. With
the length of a path defined as the number of customers on it, the problem is now to find partial paths of length at
mostL in |K| layers withL · |K| ≥ |C| > L · (|K|−1), so that each partial pathp ending in nodei ∈ V is met by
another partial pathp′ starting ini. All partial paths are combined while not visiting any customers more than once
and satisfying all resource windows. A customerc∈C is considered to be on a partial pathp if c is visited onp
and is not the end node ofp.

Layer: 1

v0

c1 c2

c3

2

v0

c1 c2

c3

. . .

. . .

|K|

v0

c1 c2

c3

Figure 1: Illustration ofG′ with |C| = 3, |K| = 3, and|L| = 1. Edges (full-drawn) represent two arcs; one in each
direction. Dashed lines are the interconnecting arcsA∗.

Let L be the upper bound on the length of each partial path, and let|C| be the length of the combined path (the
giant-tour). Now, exactly|K| = ⌈|C|/L⌉ partial paths are needed to make the combined path, sinceL⌈|C|/L⌉ ≥
|C| > L(⌈|C|/L⌉−1). Note that given a|K|, L can be reduced toL = ⌈|C|/|K|⌉.

3-index formulation of the VRPTW Let xk
i j be the variable indicating the use of arc(i, j,k) ∈ A′. Problem

(1)–(7) is rewritten:

min ∑
k∈K

∑
(i, j)∈A

ci j x
k
i j (8)

s.t. ∑
k∈K

∑
(i, j)∈δ+(i)

xk
i j = 1 ∀i ∈C (9)

∑
(i, j)∈δ+(i)

xk
i j ≤ 1 ∀k∈ K, ∀i ∈C (10)

∑
k∈K

(

xk−1
ii + ∑

( j,i)∈δ−(i)

xk
ji

)

= ∑
k∈K

(

xk
ii + ∑

(i, j)∈δ+(i)

xk
i j

)

∀i ∈V (11)

xk−1
ii + ∑

( j,i)∈δ−(i)

xk
ji = xk

ii + ∑
(i, j)∈δ+(i)

xk
i j ∀k∈ K, ∀i ∈V (12)

∑
k∈K

∑
i∈V

xk
ii = K (13)

∑
i∈C

∑
(i, j)∈A

xk
i j ≤ L ∀k∈ K (14)

∑
k∈K

∑
( j,i)∈δ−(i)

(

Trk
ji + τr

ji x
k
ji

)

≤ ∑
k∈K

∑
(i, j)∈δ+(i)

Trk
i j ∀r ∈ R, ∀i ∈C (15)
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∑
( j,i)∈δ−(i)

(

Trk
ji + τr

ji x
k
ji

)

≤ ∑
(i, j)∈δ+(i)

Trk
i j ∀r ∈ R, ∀k∈ K, ∀i ∈C (16)

ai ∑
k∈K

xk
i j ≤ ∑

k∈K

Trk
i j ≤ bi ∑

k∈K

xk
i j ∀r ∈ R, ∀(i, j) ∈ A (17)

aix
k
i j ≤ Trk

i j ≤ bix
k
i j ∀r ∈ R, ∀k∈ K, ∀(i, j) ∈ A (18)

xk
i j ∈ {0,1} ∀k∈ K, ∀(i, j) ∈ A (19)

Trk
i j ≥ 0 ∀r ∈ R, ∀k∈ K, ∀(i, j) ∈ A (20)

The objective (8) sums up the cost of the used edges. Constraints (9) ensure that all customers are visited
exactly once, while the redundant constraints (10) ensure that no customer is visited more than once. Constraints
(11) maintain flow conservation between the original nodesV, and can be rewritten as

∑
k∈K

∑
( j,i)∈δ−(i)

xk
ji = ∑

k∈K
∑

(i, j)∈δ+(i)

xk
i j ∀i ∈V

since∑k∈K xk−1
ii = ∑k∈K xk

ii . Constraints (12) maintain flow conservation within a layer. Constraint (13) ensures
thatK partial paths are selected and constraints (14) that the length of the partial path in each layer is at mostL.
Constraints (15) connect the resource variables on a globallevel and constraints (16) connect the resource variables
within each single layer, note that since there is no (15) and(16) for the depot it is not constrained by resources.
Constraints (17) globally enforce the resource windows andthe redundant constraints (18) enforce the resource
windows within each layer.

4 Dantzig-Wolfe decomposition

The 3-index formulation of the VRPTW (8)–(20) is Dantzig-Wolfe decomposed whereby a master and a pricing
problem is obtained.

Master problem: Let λp be the variable indicating the use of partial pathp. Using Dantzig-Wolfe decompo-
sition where the constraints (9), (11), (13), (15), and (17)are kept in the master problem the following master
problem is obtained:

min ∑
p∈P

cpλp (21)

s.t. ∑
p∈P

∑
(i, j)∈δ+(i)

αp
i j λp = 1 ∀i ∈C (22)

∑
p∈P:ep=i

λp = ∑
p∈P:sp=i

λp ∀i ∈V (23)

∑
p∈P

λp = K (24)

∑
( j,i)∈δ−(i)

(

Tr
ji + ∑

p∈P
τr

ji α
p
ji λp

)

≤ ∑
(i, j)∈δ+(i)

Tr
i j ∀r ∈ R, ∀i ∈C (25)

ai ∑
p∈P

αp
i j λp ≤ Tr

i j ≤ bi ∑
p∈P

αp
i j λp ∀r ∈ R, ∀(i, j) ∈ A (26)

Tr
i j ≥ 0 ∀r ∈ R, ∀(i, j) ∈ A (27)

λp ∈ {0,1} ∀p∈ P (28)

Whereαp
i j is the number of times arc(i, j) ∈ A is used on pathp∈ P andsp andep indicates the start respectively

the end node of partial pathp∈ P. Constraints (22) ensure that each customer is visited exactly once. Constraints
(23) link the partial paths together by flow conservation. Constraint (24) is the convexity constraint ensuring that
K partial paths are selected. Constraints (25) and (26) enforce the resource windows.
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Pricing problem: The|K| pricing problems corresponding to the master problem (21)–(28) contains constraints
(10), (12), (14), (16), and (18) and can be formulated as a single ESPPRC where the depot is allowed to be visited
more than once. Letsandebe a super source respectively a super target node. Arcs(s, i) and(i,e) for all i ∈V are
added toG.

min ∑
(i, j)∈A

ci j xi j (29)

s.t. ∑
(s,i)∈δ+(s)

xsi = 1 (30)

∑
(i,e)∈δ−(e)

xie = 1 (31)

∑
(i, j)∈A

xi j ≤ 1 ∀i ∈C (32)

∑
( j,i)∈δ−(i)

x ji = ∑
(i, j)∈δ+(i)

xi j ∀i ∈V (33)

∑
i∈C

∑
(i, j)∈A

xi j ≤ L (34)

∑
( j,i)∈δ−(i)

(Tr
ji + τr

ji x ji ) ≤ ∑
(i, j)∈δ+(i)

Tr
i j ∀r ∈ R, ∀i ∈C (35)

aixi j ≤ Tr
i j ≤ bixi j ∀r ∈ R, ∀(i, j) ∈ A (36)

xi j ∈ {0,1} ∀(i, j) ∈ A (37)

The objective (29) minimizes the reduced cost of a column. Constraints (30) and (31) ensure that the path starts
in s respectively ends ine. Constraints (32) dictates that no node is visited more thanonce, thereby ensuring
elementarity, and constraints (33) conserve the flow. Constraints (35) and (36) ensure the resource windows are
satisfied for all customers. Note, since the depot is missingin (35) each time a path leaves the depot a resource is
only restricted by its lower limitar

0 for all r ∈ R.

Let π (πi ≥ 0 : ∀i ∈C) be the duals of (22), letπ0 = 0, letµ be the duals of (23), letβ ≤ 0 be the dual of (24),
let ν (ν ≤ 0 : ∀i ∈C) be the duals of (25), letν0 = 0, and letω ≤ 0 andω ≥ 0 be the dual of (26). The cost of the
arcs in this ESPPRC are then given as:

ci j = −β+







ci j −πi − τi j ν j −aiωi +biωi ∀(i, j) ∈ A\ (δ+(s)∪δ−(e))
µj ∀(s, j) ∈ δ+(s)
µi ∀(i,e) ∈ δ−(e)

and the pricing problem becomes finding the shortest path from s to e.

Solving the pricing problem: ESPPRCs can be solved by a labeling algorithm. For details regarding labeling
algorithms we refer to Desaulniers et al. [4], Irnich [6], Irnich and Desaulniers [7], and Righini and Salani [10].

Branching: Integrality can be obtained by branching on the original variables, which can be accomplished by
cuts in the master problem (see Vanderbeck [11]), e.g., letXi j be the set of partial paths that utilize arc(i, j) then
the branch rulexi j = 0 ∨ xi j = 1 can be expressed by:

∑
p∈Xi j

λp = 0 ∨ ∑
p∈Xi j

λp = 1.

Bounds: The following theorem justifies the approach presented in this paper.

Theorem 1. Let zl p be an LP-relaxed solution to(1)–(7) and let zpp be an LP-relaxed solution to(21)–(28) then
Zl p ≤ Zpp for all instances of VRPTW and Zl p < Zpp for some instances of VRPTW.
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Proof. Zl p ≤Zpp since all solutions to (21)–(28) map to solutions to (1)–(7). An instance withZl p < Zpp is obtained
with four customers each with a demand of resourcer of half the global maximumbr of r, the distance from the
customers to the depot larger than the distance between the customers, andL = 4. The solution to (21)–(28) would
use the expensive edges four times, whereas the solution to (1)–(7) only would use them twice.

5 Conclusion

A new decomposition model of the VRPTW has been presented with ESPPRCs as the pricing problems. The model
facilitates control of the running time of the pricing problems. Due to the aggregation of the model, LP relaxed
bounds of (21)–(28) are better than the direct model (1)–(7). Since (21)–(28) is a relaxation of the traditional
Dantzig-Wolfe decomposition model with elementary routesas columns, the LP relaxed bounds may be weaker
yielding a larger branch-and-bound tree. The difference inbound quality can be decreased with the use of special
purpose cutting planes, which this paper does not leave roomfor. Furthermore, effective cuts such as Subset Row-
inequalities by Jepsen et al. [8] and Chvátal-Gomory Rank-1 cuts (see Petersen et al. [9]) can be applied to the Set
Partition master problem to strengthen the bound. Future experimental results will conclude on the effectiveness
of this approach.
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