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Abstract
This paper presents a simulation study of a low-

complexity optical packet switching Quality of Service
differentiation scheme, aiming at minimising the penalty of
offering packet loss rate isolation in an optical packet
switch with a wavelength converter pool. Special emphasis
is given to potential improvements, impact of node
dimensions and overload situations.

1 Introduction

Efficient contention resolution, avoiding excessive
hardware counts, is an important target in Optical Packet
Switching (OPS) and Optical Burst Switching (OBS)
research. This has motivated Tuneable Wavelength
Converter (TWC) pool designs, e.g. Shared Per Node (SPN)
[1-2], and Shared Per Waveband Plane (SPWP) [3].
Moreover, asynchronous operation with variable length
packets is attractive, avoiding complex synchronisers and
providing a good match with Internet traffic [4]. Finally,
differentiating Quality of Service (QoS) in the optical layer
may facilitate the transition from a Best-Effort (BE) to a
QoS aware Internet [4]. This paper addresses these issues,
by investigating the performance of a recently proposed
QoS differentiation algorithm, suitable for an SPN optical
packet switch [5].

2 Best-Effort switch performance

We evaluate performance of a single optical packet
switch by discrete event-driven numerical simulations in
OPNET. Asynchronous operation is implemented by a per-
wavelength Poisson packet arrival process with exponential
packet length distribution, subject to per-wavelength FIFO
buffers to emulate serialised packet output clocking. Packet
CoS and output fibre are uniformly distributed. The generic

node design is illustrated in Figure 1, where the Wavelength
Conversion Ratio (WCR) denotes the relative size of the
SPN TWC pool, thus governing TWC- and switch matrix
port count. In a BE scenario, Figure 2 shows the impact of
the node adjacency, F, the wavelength count on each fibre,
W, and the WCR, with 95 % confidence intervals. For a
fixed load, L=0.7, the PLR decreases down to a minimum,
given by F and W, with increasing WCR. Hence, achievable
TWC count reduction depends on the required PLR.
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Figure 1. SPN switch with TWC pool
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Figure 2. BE performance.

3 QoS differentiation algorithm

When the traffic consists of two Classes of Service (CoS)
with different PLR requirements, QoS differentiation has
two potential benefits: i) achieve lower minimum PLR than

Performance Analysis of a Low-Complexity and Efficient QoS
Differentiation Algorithm for Bufferless Optical Packet Switches with Shared

Wavelength Converters in Asynchronous Operation

M. Nord
Research Centre COM, Technical University of Denmark, B345V, Lyngby, Denmark &

Telenor R&D, 1331 Fornebu, Norway.
mn@com.dtu.dk

Proceedings of the First International Conference on Broadband Networks (BROADNETS’04) 
0-7695-2221-1/04 $ 20.00 IEEE 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on February 10, 2010 at 09:22 from IEEE Xplore.  Restrictions apply. 



imposed by L, F and W in the BE case, and ii) operate with
a lower WCR than the BE switch, whilst still comply with
the most demanding CoS.

Figure 3 details the QoS algorithm, aiming at obtaining a
good performance-complexity trade-off, by using an Access
Restriction (AR) based approach. A TWC is only used if the
packet cannot achieve Direct Mapping (DM). In this case,
the scheduler only allocates CoS2 packets if the number of
free output wavelengths (OWLs) on the requested output
fibre, F, and the number of free TWCs in the pool, termed
NOWL(F) and NTWC respectively, are above a threshold
defined by the ratios RWL and RWC, respectively. Ideally,
any QoS motivated discard of the CoS2 packet should be
rewarded by avoidance of loss of a CoS1 packet. However,
in asynchronous operation, the scheduling is done without
knowing its effects on later arriving packets. An optimum
AR threshold choice has a minimum increase in total PLR
compared to the BE switch, thus minimum PLRPENALTY, for
the desired difference in the PLR isolation ratio of the two
CoS, PLRISOLATION, as defined in (1)-(2).
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Figure 3. QoS algorithm
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4 QoS algorithm performance

4.1 Single- vs. two dimensional AR schemes

Figure 4 illustrates the PLR of CoS1 and of CoS2 as a
function of the AR parameters, by scanning five RWC values
for each of the three RWL values, for W=64 and for W=128.
The WCR values are 0.625 and 0.57, respectively. In both
cases, when both RWC and RWL are zero, PLRCoS1 and
PLRCoS2 are approximately equal, and the resulting PLRBE

values of (1.6±0.1)x10-3 and (1.1±0.1)x10-3, respectively,
match well corresponding curves in Figure 2.

Figure 5 illustrates resulting penalty as a function of
isolation. When both RWC and RWL are zero, the isolation is
1. As shown in [5], the two-dimensional approach with AR

on both TWCs and OWLs, can obtain lower penalties than
the one-dimensional “pure WL reservation” and “pure WC
reservation” approaches.
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Figure 4. QoS algorithm performance, PLR.
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4.2 Impact of Direct Mapping

A peculiarity of the algorithm is that it allows CoS2
packets to be allocated even when either of the AR
thresholds is violated, provided that the packet can find its
own wavelength free at the requested output fibre. This
Direct Mapping (DM) preference is introduced in order to
save TWCs. Figure 6 shows that the DM preference does
reduce penalty for the node with W=128, but its impact
depends on the desired isolation for W=64.
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4.3 Impact of Node Adjacency

Figure 2 shows that increasing F from 4 to 8, improves
TWC sharing, and enables a lower WCR for the same
PLRBE. WCRs of 0.57 and 0.54 were chosen for W=64 and
W=128, enabling PLRBE of (2.8±0.4)x10-3 and (1.4±
0.1)x10-3, respectively. Figure 7 shows that, in spite of the
reduced WCR, increasing F lowers the penalty; otherwise
the behaviour of the QoS algorithm is quite similar.
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4.4 Impact of overload situations

For statistical input traffic, the instantaneous input load
at an optical packet switch fluctuates around the average
value during simulations. In a real network, in periods of
increased client layer traffic, the average load of the optical
network may increase, unless a strict access policy is
applied. Even so, it may also be that certain nodes
experience higher average load than the network as a whole,
in periods where unusually large portions of traffic passes
by these nodes. On a BE network, increased network load
increases PLR, as can be seen in Figure 8, for an isolation
degree of 1. After this initial penalty, the overload situation
has a limited impact on the QoS algorithm differentiation so
that the PLR of CoS1 can be kept below 10-5, by adjusting
the AR parameters.
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5 Discussion

The granularity in the parameter scan was somewhat
limited, and we expect increased granularity to demonstrate
a slight performance improvement of the QoS
differentiation schemes. Nevertheless, the study clearly
shows that the two-dimensional QoS differentiation scheme
outperforms single-dimensional systems.

Whether DM is beneficial or not was found to depend on
the system parameters and the desired isolation ratio; hence,
this issue should be studied in each case. It is expected that
DM is more favourable when TWCs are scarce, and when
the node adjacency is low, since DM packets also increases
the probability of DM for later arriving packets that should

be switched between the same fibres, thereby saving even
more TWCs.

It was shown that performance improved when
increasing F and W, when maintaining or even lowering the
WCR. However, hardware realisation issues limit
scalability, such as limited switch matrix port counts and/or
TWC wavelength operation range.

Considering load variations, decreases in load would
lead to decreased penalties, particularly when the
parameters of the QoS differentiation scheme are optimised,
idem to overload situations. Hence, to make the QoS
differentiation scheme as efficient as possible, the QoS
scheme requires either capability of signalling such changes
of load by the management system, or distributed load
monitoring with associated parameter adjustment.

The choice of Poisson arrival will for most systems yield
a better performance than more bursty traffic patterns [6].
On the other hand, high priority packets constitute as much
as 50 % of overall load. Lowering this ratio would
significantly relax system requirements, enabling lower
overall PLR and/or hardware savings in terms of WCR.

6 Conclusion

The AR-based QoS differentiation scheme is suitable for
a SPN based TWC pool design. It is scalable with respect to
node dimensions, and can maintain the PLR of the high-
priority CoS, at the expense of an increase in the PLR of the
low-priority CoS, during overload situations.
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