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Pre- and post-processing filters for improvement of 
blood velocity estimation 

Malene Schlaikjer and Jorgen Arendt Jensen 

Center for Fast Ultrasound Imaging, Department of Information Technology, Bldg. 344, 
Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark 

Abstract 
The standard deviation on the blood velocity estimates are 
influenced by measurement noise, velocity spread, and sig- 
nal alteration introduced by de-noising and clutter filters. A 
noisy and non-smooth appearance of the velocity distribution 
is obtained, which is not consistent with the actual velocity 
in the vessels. Post-processing is beneficial to obtain an im- 
age that minimizes the variation, and present the important 
information to the clinicians. 

Applying the theory of fluid mechanics introduces restric- 
tions on the variations possible in a flow field. Neighboring 
estimates in time and space should be highly correlated, since 
transitions should occur smoothly. This idea is the basis of the 
algorithm developed in this study. From Bayesian image pro- 
cessing theory an a posteriori probability distribution for the 
velocity field is computed based on constraints on smooth- 
ness. An estimate of the velocity in a given point is computed 
by maximization of the probability, given prior knowledge of 
the original estimate in that position, and the estimates in the 
neighboring positions in time and space. 

The method has been tested on simulated 2D RF-data re- 
sembling signals from the carotid artery with different signal- 
to-noise ratios (SNR). The exact extent of the vessel and the 
true velocities are thereby known. Velocity estimates were 
obtained by employing Kasai’s autocorrelator on the data. 
The post-processing filter was used on the computed 2D ve- 
locity map. An improvement of the RMS error in the range of 
15-53 % was observed. For low S N R s  the highest improve- 
ment was obtained. Visual inspection of the images show 
a high qualitative improvement. A more smooth profile has 
been obtained, which more closely resembles the true smooth 
profile. The same conclusion can be drawn after application 
of the filter to in-vivo data acquired with a dedicated sampling 
system. 

A short discussion of new ideas to differentiate flowing 
blood from moving tissue surrounding the blood are included 
in this paper. Neural networks and statistical discriminators 
are of interest, if it is possible to determine features for the 
different signal components. 
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1 Introduction 
Ultrasound is widely used to obtain estimates of the blood 
velocities in the cardiovascular system. The spatial velocity 
distribution and the magnitudes contain information of diag- 
nostic value. The processing of the recorded RF-data goes 
through a number of steps: pre-processing to remove noise 
and clutter signals, estimation of the blood velocities, and 
post-processing to create the image to display. Clutter filters 
are used to separate the tissue and blood components i n  the 
RF-signals, as only the velocity of the blood is of interest in 
this case. As both tissue and blood are moving, a discrimina- 
tion is needed to determine, which estimates to display. Ideas 
for methods for the discrimination are discussed shortly in 
Section 2. The pre-processing is followed by the actual esti- 
mation of the blood velocities. The computed estimates are 
encumbered with uncertainty due to measurement noise, ve- 
locity spread, and signal alteration introduced by de-noising 
and clutter filters. A noisy and non-smooth appearance of 
the velocity distribution is obtained. The level of noise varies 
over the image and between consecutive images. The hu- 
man visual system is sensitive to these rapid variations. The 
observers focus therefore gets distracted from the important 
information. Post-processing is necessary to obtain an image 
that minimizes the variation, and a new post-processing ap- 
proach based on optical flow theory is introduced in Section 
3. In Section 4 results are presented. 

2 Pre-processing of RF-data 
One of the main problems in velocity imaging is to differenti- 
ate between the flowing blood and moving tissue surrounding 
the blood [I]. The signals from the two often overlap, and it is 
difficult to find the exact boundary separating the two. Often 
the velocity estimates overlaps the boundary wrongly indi- 
cating flow outside the vessel or the algorithms do not detect 
flow at the vessel boundaries. Better approaches for doing 
the separation are thus needed. Discriminators based on neu- 
ral networks and statistics are of interest, if one can determine 
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at set of features that clearly distinguish the different signal 
components. The features need be stable with respect to noise 
variations and vessels size. Investigation into this area have 
been initiated. Employment of a simple 2-layer feed forward 
network [2] was used as a discriminator. The RF-lines were 
split up in a number of segments, and the discrimination is 
carried out on each of these. The input to the network is the 
values for a set of features. In this study the features were the 
energy of the segments before and after echo-canceling with 
a high pass (HP) filter, and the variance between values at the 
same depth location in consecutive RF-lines before and after 
echo-canceling with HP-filter. A total of 4 inputs were used. 
The outputs are the probability of whether the segment under 
investigation carry blood information or not. 

A statistical discriminator can be designed from the distri- 
butions of the feature values. Two probability distributions 
arise for each of the features. A discrimination is carried 
out by assigning the segment to the component type with the 
highest probability. 

The top plot in Fig. 1 shows the results of a discrimination 
with a neural network with 4 inputs, 20 hidden neurons, and 
one output. The discriminator has been used on simulated 
data resembling the carotid artery (see Section 4). Several 
frames were evaluated, and the result shows the worst out- 
come. The true segment discrimination is shown in the bot- 
tom plot. A total of 98.3 % of the segments are correctly dis- 
criminated. The procentage of correctly discriminated blood 
and tissue segments are 94.9 % and 99.0 % respectively. The 
discriminator works well on the tissue segments and the blood 
segments in the middle of the vessel. Unfortunately the tran- 
sition from tissue to blood and vice versa is less well deter- 
mined. 

At this point the method need being compared with other 
methods. Then it will be possible to say, if an improvement 
with respect to discrimination is obtained by employing the 
neural network. 

3 Post-processing filter based on opti- 
cal flow theory 

As discussed in the introduction the computed blood ve- 
locity estimates are encumbered with uncertainty, and post- 
processing is needed to minimize the noisy variation. The fil- 
ters, which are currently applied, make use of the spatial and 
temporal correlation that exist among neighboring velocity 
estimates. The correlation property states, that the levels of 
the velocity in a spatial and temporal neighborhood are sim- 
ilar. In this context it usually means that the true velocity in 
a given location lies within the range of the velocities used in 
the filter. This is the case, when employing median filtering. 
No assumptions on the transitions from one velocity to an- 
other velocity in a neighboring spatial and temporal location 

Discrimination result using neural network 

True discrimination of signal segments 

5 10 15 -15 -10 -5 0 
Lateral position [mm] 

Figure 1: Discrimination result from employing a neural net- 
work. Segments with blood velocity information is marked 
with black. 

are given. A filter, which employs the spatial and temporal 
correlation and introduces assumptions on the transitions, is 
introduced in this study. 

The mechanics of fluid motion introduces restrictions on 
the possible flow patterns for blood. The velocity is a function 
of time and spatial location. The transition from one velocity 
to another in a neighboring point in time and space must be 
a continuous and smooth function. The smoothness property 
is the link to introduce restrictions on the variations possible 
between neighboring velocity estimates in time and space. A 
filter, which incorporates the smoothness property, can be de- 
rived from statistics. The filter computes an estimate of the 
true velocities 17.' = { V " ( X I , Z ~ , ~ ) ,  . . . , ~ (  X N : Z M , ~ ) }  in the im- 
age, where x, and zI  indicates the spatial location in the im- 
age, and r is time. The available information for the filter is 
the estimated velocities, 17.' = { ~ ( , " I , Z ~ ) , . . . , V Y ( X N , Z M ) ) ,  for 
the present and previous image, and the smoothness property. 

The filter is designed by employing Bayesian theory 
[3]: where a conditional, posterior probability distribution, 
p(VcIp') ,  for the true velocities can be obtained by: 

p ( p " )  is the a priori probability distribution, and p(pirlpc) is 
the model specific probability. p ( c ' )  is the probability dis- 
tribution of the estimated velocities. This factor is not de- 
pendent on the true velocities, and therefore does not influ- 
ence the estimation of the true velocities. The expressions for 
p ( p " )  and p ( v e l P c )  will be derived in  the following. 

An a priori knowledge is given on the true estimates, when 
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the smoothness property is accepted. It has to be within a cer- 
tain range relative to the neighboring velocities to fulfill the 
property. Applying the theory of optical flow [4] from image 
processing makes it possible to define a set of mathematical 
relations, which describes, when the transitions between ve- 
locity levels obey the smoothness property. One set of rela- 
tions are the spatial and temporal derivatives. A smooth tran- 
sition will be characterized by having small derivatives, as the 
velocity levels in neighboring locations will be fairly similar. 
One way of formulating the smoothness constraint is by us- 
ing a Markov random field (MRF) model [4], [ 5 ] ,  [6]. The 
Markov property states, that the true velocity in a given loca- 
tion ( x ,  z ,  t )  depends on the velocities in a finite neighborhood 
of (x,z, t ) .  Implementing the derivatives as finite differences 
obeys the Markov property : 

where Cdx,?dz, and r;d, denote the spatial and temporal deriva- 
tives, and A describes a temporal or spatial distance be- 
tween neighbors. As an MRF model has been used, the 
Hammersfield-Clifford theorem [4], [7] states, that the distri- 
bution of the derivatives is a Gibbs distribution. The resulting 
distribution is: 

(3) 

where Z is a normalization factor, which assures that 
Jp(?')dxdzdr = 1. The variables a and y are scale factors, 
that weights the contributions from the spatial and temporal 
derivatives respectively. El ( t )  and E2(t) are energy terms de- 
fined by: 

1 
z p ( v " ( r ) )  = -exp(-aEl(t) --YE&)), 

Two energy terms are used with different scaling factors to 
allow for the level of spatial and temporal correlation to be 
different. An a priori distribution has been obtained based on 
the a priori knowledge saying, that transitions should occur 
smoothly. The a priori distribution assigns a high probabil- 
ity to a choice of the true velocities close to the levels of the 
neighboring true velocities and vice versa. The chosen defi- 
nition of the derivatives represent a first-order neighborhood. 

The smoothness property is not the only information avail- 
able. Although the velocity estimates are encumbered with 
uncertainty, their values give an indication of what interval of 
possible velocities the true velocity belongs to. This can be 
used to define a conditional probability distribution p ( v e l @ ) ,  
which introduces a relation between the estimates and the true 

velocities. A relation describing a measure of error is intro- 
duced. A Gibbs distribution is usually assumed for the error 
distribution. The energy term is defined by: 

where p is a weighting parameter like a and y. The index k in- 
dicates the dimension of the velocity vector. The scale factor 
wk is introduced to account for ones faith in the velocity es- 
timates. If the estimate is encumbered with high uncertainty, 
it is not a good indicator for the level of the true velocity, and 
its influence in the post-processing should be weighted down. 
When employing Kasai's autocorrelation method (81 for es- 
timating the velocities, a measure of the variance of the esti- 
mate can be determined. In this case one could set wk propor- 
tional to the inverse of the standard deviation. The different 
vector velocity components might have been obtained with 
different estimators, and therefore w is dependent hereof. The 
weighting parameters are restricted by a+ p + y= 1, and each 
of them take a value between 0 and 1. 

At this point a posterior, conditional probability distribu- 
tion for the true velocities has been derived. An estimate of 
the true velocities, ."(x,y, t)  can be obtained by maximization 
of the obtained posterior distribution, p(3"1v'), with respect 
to qC. As the posterior distribution is expressed by an expo- 
nential, the maximization of (1) equals minimization of the 
sum E = El +E2+ E3. 

The energy terms are computed by integrating over the 
whole image, which makes the optimization very cumber- 
some. Besag [9] has derived a method termed the Iterated 
Conditional Mode (ICM) to ease the optimization. Through 
iterations the global posterior distribution (Eq. 1 )  is maxi- 
mized by maximizing the local posterior distribution. Rather 
than working on the whole image, the maximization process 
is carried out on each of the pixels on an iterative basis. This 
approach is valid due to the Markov property. A simple filter 
is obtained, which computes an estimate of the true velocity, 
V ,  in a given location from the values of the velocity in the 
neighboring locations in space and time. The velocity esti- 
mates ve in the neighborhood are used as initial guesses of 
the true velocities. In most commercial scanners only the ve- 
locity along the radial direction can be estimated. If only one 
iteration is performed the filter equation becomes: 

1 

( a (ve (x -b , z , t )  + v'(x+hx,z,r) 
+ V e ( X , Z - ~ , r ) + u Y ( X , Z + & , t )  ) 

+ pwve(x,Z,f)), (6) 
+ p r ( x , z , t  - At) 

where the velocity vector has one component only and w = 1, 

2000 IEEE ULTRASONICS SYMPOSIUM - 1533 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on February 16,2010 at 08:54:10 EST from IEEE Xplore.  Restrictions apply. 



The optimal scale factors can be determined by minimization 
of the absolute error: 

F N W  

30 
40 

where 8 is a vector, which consists of the scale parameters 
a, p, 71. A set of F 2D images are given, where the true and 
the estimated velocities are known. The integration has been 
substituted with summation, as the images consist of discrete 
values on a 2D pixel grid. 

0.049 16.9 17.6 -0.8 3.9 
0.048 15.8 16.5 -0.4 4.1 

4 Results 

SNR 0 
a 0.77 
13 0.00 

5 10 15 20 30 40 
0.89 0.80 0.39 0.22 0.15 0.13 
0.00 0.13 0.59 0.77 0.85 0.87 

I I I I I I I 

y 1 0.23 1 0.11 1 0.07 [ 0.02 1 0.01 1 0.00 I 0.00 

Table I :  Optimal scale parameters (a,P,y) for data with a 
range of SNRs (dB). 

The optimal choice of scale parameters is dependent on the 
SNR level. At low SNRs the filter only uses the neighboring 
velocities in time and space. The estimated velocities, V e ,  has 
a high uncertainty, and therefore they should not influence the 
filtering much. The employed neighbors have been filtered, 
so the uncertainty on these have been lowered. With this in 
mind i t  seem reasonable that the neighbors influence more 
than the actual velocity in the given position. As the SNR 
increases the uncertainty on the estimate decreases. The es- 
timated velocities are close to the truth, and therefore should 
play a big role in the post-processing. The spatial neighbors 

influences the post-processing more than the temporal neigh- 
bor. This is to be expected, as the spatial neighbors originates 
from the same frame, and the velocities should be very simi- 
lar. The temporal correlation is dependent on frame rate. For 
the current scan situation the results show, that the tempo- 
ral correlation is low compared to the spatial correlation due 
to the low frame rate. At higher frame rates one would ex- 
pect an increase in the temporal correlation. The importance 
of the temporal and spatial neighbors decreases with increas- 
ing SNR. At high SNRs the temporal influence disappear. In 
practice one would never set any of the scale parameters to 
zero. Instead a low but non-zero value would be used. 

As the true velocities are known, a measure of the perfor- 
mance of the filter can be obtained by computing the RMS 
value before and after application of the filter. Table 2 lists 
the RMS value before, and the improvement in % obtained af- 
ter application of the filter, stat 1. Improvements are obtained 
for all SNRs and range from 15-53 9%. The improvement is 
highest for low SNRs. 

1 SNR I I?hfsb,j, ,  I stat1 1 stat2 I ml I m2 1 
0.125 52.6 46.0 11.0 27.1 

0.061 26.6 26.6 
20 0.054 20.6 21.1 0.0 6.0 

Table 2: Performance table listing the RMS error before and 
the improvement in % after application of the statistical and 
median filters. 

A choice of which set of scaling factors to use must be 
made, as the level of SNR is unknown a priori. Results of 
using the optimal scale factors for 15 dB on all the data sets 
are listed as stat2 in Table 2. The improvement is slightly 
smaller than for the first case. For high SNR it seems as if 
the stat2 performs better than statl, which of course is not 
true. The reason for these results are that the performance 
evaluation is carried out using the RMS method, whereas the 
optimal scale parameters were determined by employing the 
absolute error. If the absolute errors were listed instead of 
the RMS values, one will see that the performance of statl is 
better than stat2 for all SNRs. 

Often the post-processing is performed by applying a me- 
dian filter, which acts in 1 or 2 dimensions. A comparison of 
performance between the statistical filter and median filters 
acting in 1 and 2 dimensions is carried out. The median filter 
acting in 1 dimension ( m l )  makes use of the two axial neigh- 
bors (up and down) along with the estimate it self. The second 
median filter (m2) makes use of the 4 spatial neighbors and 
the estimated velocity. The performance of the median filters 
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are listed in Table 2 .  The statistical filter performs better than 
the median filters for all SNRs. 

Plots of the original and resulting velocity image after ap- 
plication of the statistical filter on the simulated data along 
with the true velocity image are shown in Fig. 2. A more 
smooth profile has been obtained, which more closely resem- 
bles the true smooth profile. 

The filter was applied on in-vivo data acquired with a ded- 
icated sampling system, which has a 30 MHz sampling fre- 
quency and 12 bits resolution [13]. Data from the carotid 
artery was recorded with a 7.5 MHz convex array. The frame 
rate was 18 framedsec, and 10 seconds of data were recorded. 

An example of the original and resulting CFM image is 
plotted in Fig. 3. The result after application of the median 
filter, m2, is shown in the bottom plot. A certain level of 
smoothening is obtained with the median filter, but not to the 
extent as with the statistical filter, stat2. 

Employment of the statistical filter is very simple and only 
requires few calculations. Memory capacity has to be set 
aside for storing the previous velocity image though. 

5 Conclusion 

A filter has been developed to perform the post-processing 
of the velocity estimates, which incorporates features of fluid 
flow. These features introduce restrictions on the variations 
allowed between the velocities in neighboring spatial and 
temporal locations. The scale factors in the filter varies for 
different levels of SNR. The filter outperforms simple median 
filters and is computationally very simple. 

In the above it has been assumed that the same scale factors 
are used for all parts of the cardiac cycle. The velocity level 
and the level of the spatial derivatives vary over the cardiac 
cycle. Determination of the optimal scale factors for each 
frame reveals that the scale factors vary during the cardiac 
cycle. This aspect and its influence on the performance of the 
filter will be investigated in the future. 
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Figure 2 :  Plots of the velocity profile before (top) and after 
(bottom) application of the post-processing filter on simulated 
data. The middle plot shows the true velocity profile. 
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