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INTRODUCTION 

Modeling with flexible models, such as neural networks, requires careful con- 
trol of the model complexity and generalization ability of the resulting model 
which finds expression in the ubiquitous bias-variance dilemma [4]. 

Regularization is a tool for optimizing the model structure reducing vari- 
ance at the expense of introducing extra bias. The overall objective of adap- 
tive regularization is to tune the amount of regularization ensuring minimal 
generalization error. Regularization is a supplement to direct model selec- 
tion techniques like step-wise selection and one would prefer a hybrid scheme; 
however, a very flexible regularization may substitute the need for selection 
procedures. 

This paper investigates recently suggested adaptive regularization schemes. 
Some methods focus directly on minimizing an estimate of the generalization 
error (either algebraic or empirical) [l], [3], [5], [6],  [7], [12], [13], whereas 
others starts from different criteria, e.g., the Bayesian evidence [2, Ch. lo], 
[7], [15], [16]. The evidence expresses basically the probability of the model, 
which is conceptually different from generalization error; however, asymptot- 
ically for large training data sets they will converge' [15]. 

The papers is organized as follows: first the basic model definition, train- 
ing and generalization is presented. Next, different adaptive regulariza- 
tion schemes are reviewed and extended. Finally, the experimental section 
presents a comparative study concerning linear models for regression/time- 
series problems. 

TRAINING AND GENERALIZATION 

Suppose that our model, M (e.g., neural network), is described by the func- 
tion f(s; w) where x is the input vector and w is the vector of parameters 

'Up to a scaling factor and an additive constant. 
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(or weights) with dimensionality m. The objective is to use the model for ap- 
proximating the true conditional input-output distribution p(ylz), or some 
moments thereof. For regression and signal processing problems we nor- 
mally model the conditional expectation E{ylz}. Define the training set 
7 = {z(k);y(k)}fzl of N 7  input-output examples sampled from the un- 
known but fixed joint input-output probability density p ( z ,  y). The model is 
trained by minimizing a cost function, C?(w), which is usually the sum of a 
loss function (or training error), S~(W), and a regularization term R ( ~ , K )  
parameterized by a set of regularization parameters K ,  

where e ( . )  measures the cost of estimating the output y(k) with the model 
prediction &(k;  w) = f ( z ( k ) ;  w), e.g., log-likelihood loss or the simple squared 
error loss function e =  IIy - &11'. Often we will consider linear regularization, 
i.e., R(w, K )  = K ~ T ( W )  = Et l  lciri(w) where ri(w) are associated regular- 
ization functions. Many suggested regularizers are linear; this includes the 
popular weight decay regularization and regularizers imposing smooth func- 
tions such as the Tikhonov regularizer [2]. Training provides the estimated 
weight vector 8 = argmin, C7(w). The generalization error is defined as 
the expected loss on a future independent sample (z,y), 

G(G) = E=,tA~(Y,&(G))l = / e ( Y , i i ) P ( z , Y ) d z d Y ,  (2) 

and the average generalization error r is defined by averaging G ( 8 )  over all 
possible training sets:' r = E.r{G(G)} = G ( 8 ) p ( 7 )  d 7 .  

ADAPTIVE REGULARIZATION 

Validation Error Approach 

Adapting regularization so as to minimize an empirical estimate of the gen- 
eralization error, viz. the K-fold cross-validation [19], leads to  an adaptive 
regularization scheme originally suggested in [12], which was further improved 
in [l], [3], [5], [13]. Suppose that all available data 2) = { z ( k ) ;  y(k)}F=, of N 
input-output examples, split into K randomly chosen disjoint sets of approx- 
imately equal size, i.e., 2) = U g l V j  and V i  # j : V; n Vj  = 8. a a i n i n g  and 
validation is replicated K times, and in the j ' th  run training is done on the 
set 7; = V\Vj and validation is performed on V j .  The K-fold cross-validation 
estimate is then given by the average validation error estimates, 

2For more details on empirical generalization error, generalization error distribution 
and average generalization error, see e.g., [ll]. 
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where Gj are the weights estimated from training set 7;. N,j is number of 
validation examples. Fcv is an estimate of the average generalization error 
over all possible training sets of size Nt j ,  see [13]. 

The optimal regularization can be found by using gradient descent3, 

where 7 > 0 is a step-size (learning rate) and K ( ~ )  is the estimate of the regu- 
larization parameters in iteration n. After convergence* it is recommended to 
retrain on all available data using the optimized regularization parameters. 

In case of linear regularization, the gradient of the cross-validation error 
can be written as [12], [13] 

aEv 1 asv. dT asv. 
=(") = &$(Gj), %(Gj) = --(Gj)..7;'(.iitj).-2(.iit-) aw 3 '  alE aWT 

j = 1  

(5) 
where J j ( w )  = a2C7;(w)/awawT is the Hessian of the cost function. As 
an example, consider the case of weight decay regularization with separate 
weight decays for two group of weights, e.g., the input-to-hidden and hidden- 
to output weights of a neural network: 

R(W, K )  = /GI . 1W112 -k fCH . I'UJHI2 (6) 

where K = [&I, w = [wI,wH] with w', wH denoting the input-to- 
hidden and hidden-to output weights, respectively. The gradient of the vali- 
dation error then yields, 

where gj is the vector gj = [gi,gr] = Jy l (Gj ) .  aSvj(Gj)/aw. 

Algebraic Generalization Error Approach 

The literature suggests many algebraic estimators of the generalization er- 
ror, including: FPER [lo], GEN [8], GPE [14] and NIC [17]. The various 
estimators differ mainly in assumptions regarding model bias and depen- 
dence among data examples. In particular, they are all o ( l l N 7 )  estimators 
where N7 is the number of training examples. In many practical modeling 
scenarios the large training set assumption may be violated, however, the 
adaptive regularization based on this algebraic estimate might still be use- 
ful, as demonstrated in the experimental section. The major advantage of 
algebraic estimators is that all available data  can be used to train the model, 

30ptimization can be improved by using second order information [5 ] ,  [3]. 
4E.g., small norm of gradient or small change in validation error. 
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i.e., 7 = V. This is not the case when using the empirical validation error 
approach discussed above. 

In [7] properties of adaptive regularization is studied in the simple case 
of estimating the mean of a random variable using an algebraic estimate 
of the average generalization error, and [6] proposed an adaptive regular- 
ization scheme for neural networks based on an algebraic estimate. In the 
following we present an extended version of this scheme where regularization 
parameters are adapted by an iterative gradient descent scheme aiming at 
minimizing the GEN/NIC [8], [9], [17], estimate of the generalization error. 
We use GEN/NIC in this work as an representative for the family of algebraic 
estimators. GEN/NIC has the advantage that model biased is not assumed 
negligible. The presented procedure can in principle be invoked for any of 
the mentioned estimators. 

The o ( l / N T )  GEN/NIC estimate of the average generalization error is 

where w* are the optimal model weights, i.e., w* = argmin, G(w). metf is 
the effective number of parameters5 (weights) in the model [8] ,  [9] 

= t r  [J-' (w*)L] (9) 
where &f = min(M, NT - l ) ,  M is the time dependence length (for i.i.d. 
examples M = 0), A = &f + 1 - &?(A? + 1 ) / 2 N ~ ,  and K ( n )  = E{d.f?(k)/dw. 
d l ( k  + n)/dwT} with l(k) E l ( y ( k ) , c ( k ;  w*)), as E{.} denotes expectation 
w.r.t. joint input-output distribution. J(w) is the Hessian matrix of the 
expected cost function ET{CT(W)}, i.e., J(w) = W(w) + d2R/dwdwT. If 
data are independent K ( n )  E 0 for n > 0, and if the cost is the log-likelihood 
loss then K(0)  becomes the Hessian matrix of the unregularized cost, i.e., 
K(0)  = H(w*) = d2G(w*)/dwdwT. 

For practical implementation the quantities in Eq. (8) are estimated from 
data, as shown by, 

where &,tf is calculated via Eq. (9) by substituting J T ' ( 6 )  for J-'(w*), 

Further , 

(12) 
1 " - " d l ( y ( k ) , y ^ ( k ; 6 ) )  . dL(y (k+n) , y^ (k+n;G) )  

dW dWT 

5For some cost functions, e.g., mean square error, me* is scaled by noise variance. 
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is substituted for K ( n ) .  To proceed as in [6] ,  a simple gradient descent 
optimization as in Eq. (4) can be used6. The gradient of FGEN, noting that 
all quantities are evaluated at G = G(K) ,  is according to Eq. (10) and ( 5 )  in 
case of linear regularization, given by 

Eq. (13) can be written as 

Evidence Approximation Approach 

The Bayesian evidence approach adapts regularization parameters so as to 
minimize the evidence [2, Ch. lo], [15], [16]. The evidence is the probabil- 
ity of data7 given the model, p(71M) = S p ( T l w , M )  .p(wlM)dw, where 
p ( 7 l w , M )  is the likelihood and p(w1M) is the prior. In terms of the cost 
function components in Eq. (1) the likelihood and prior are expressed by: 

P ( ~ I w ,  M )  = 2;' e x ~ ( - P N r S r ( w ) ) ,  p(wlM) = 2;' exp(-R(w, K ) )  (15) 

where p plays the role of the precision (inverse noise variance), and Zs, ZR 
are normalization constants. The evidence approximation framework consists 
in expanding the evidence to second order around the maximum aposteriori 
solution G .  According to [15] the negative log-evidence is 

- logp(71M) M @NTST(G)  + R(G,&) + log 2s + log ZR 
log lJT( ' ) '  + (log p + log NT - log 27r). (16) + 2  2 

If the likelihood and the weight prior are assumed to be Gaussian distributed*, 
which corresponds to  using mean square loss and weight decay regularization 
as in Eq. (6), then the negative log-evidence is approximated by 

m' log a1 + mH log CrH log 1JT(G)1 + NT log 7r + m(l0g NT - log 2) 
+ 2  2 

- 
2 

6[6]  proceeds by finding the gradient of Eq. (8) and then use plug in estimates of un- 
known quantities. Here we proceed from the computable estimate Eq. (10). The difference 
between these approaches turn out to be minor. 

'Also for this approach no validation data is required, i.e., 7 = 'D. 
81f these assumptions are not fulfilled, the evidence framework becomes much more 

complicated and closed form solution can generally not be obtained. In such cases Monte 
Carlo techniques are required. 
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where ai = rci/(DNr) are the normalized weight decays, mr,mH are the 
number of hidden-to-input and hidden-to-output weights, respectively. 

Minimizing the negative log-evidence by solving the equation, the deriva- 
tive of Eq. (18) w.r.t. P,a',aH equal to zerog results in optimal updated 
choices for p, a', aH based on current values (6 = G(fl(n),  qn))), 

with Z, 7-c defining the indices for input-to-hidden and hidden-to-output weights, 
respectively, and X i  is the i'th eigenvalue of H r ( 6 ) .  Thus, the evidence 
based scheme consists in alternating between weight optimization and up- 
date of weight decay and precision parameters, like the generalization based 
schemes. 

To improve the performance of the evidence method, various control 
strategies have been suggested [18], e.g., dealing with the out-of-bound es- 
timates of number of effective parameters and large changes in the value of 
the regularization parameters. These strategies involve a number of heuristic 
parameters which have to be tuned, thus adding a new layer of optimization. 
The simple out-of-bound estimates of number of effective parameters was 
tested but did not yield any improvement. 

EXPERIMENTS 

Consider modeling a simple linear system y(n) = zT(n)wo + e(.). The 
input z(n) = [z1(n),...,z,,,(n)lT is a m = 10 dimensional i.i.d. Gaus- 
sian distributed vector z(n) - n/(O,H) ,  where H is the covariance ma- 
trix. The true weight vector is w* = [l, l, l , O , O , O , O , O , O , O ] T .  The noise 
~ ( n )  - N(0, U:) is i.i.d. and independent of s(n). The noise variance is de- 
termined by .: = NSR.(W*)~HW", where NSR is the noise-to-signal ratio of 
the output. The weights are estimated using mean square error augmented by 
a simple weight decay, i.e., G = J; 'XTy/N~,  where y = [y(l) ,  . . . ,y(Nr)]' 
and 57 is the Hessian of the regularized cost function given by 57 = H r + n I  
where H T  = X X T / N r  and X = [ z ( l ) , . . . , z ( N ~ ) ]  T. The true general- 
ization error of the estimated linear system is easily computed as G ( 6 )  = 

In order to evaluate the performance of the regularization methods, Q = 
5000 independent data sets of size N = 40 are generated. Two measures 
are then used to evaluate the performance. The probability of improvement 

.: + (G -. w")TH(G - W O ) .  

gSome negligible terms are omitted, see [IS]. 
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Figure 1: Results for Hessian with low eigenvalue spread. The GEN method is the 
most effective method for determining the regularization parameter. At a low NSR 
the effectiveness of all the methods is similar. The evidence method and leave-one- 
out (LOO) validation based method have similar performance. Optimal K is found 
by exhaustive search. 

measures the fraction of the Q estimated models, using some regulariza- 
tion scheme, which generalize better than using no regularization, and is 
defined by PImp = Q-' E? ,='p (G( w,,,,~) - G ( G ( i ) ) ) ,  where p ( z )  = 1 for 
z > 0, and zero otherwise. G(G;ireg) is the generalization error of the model 
trained on the ith data set using no regularization. The second performance 
measure is the mean relative generalization error improvement defined as 
MRGI = Q-' Ezl 100% [G(G!ireg) - G(G(a))] /G(G;ireg). Two different 
conditions for the Hessian are considered: small and large eigenvalue spread. 
Small eigenvalue spread is around 10, while more common large eigenvalue 
spread around lo4 is obtained by multiplying a Vandermonde matrix A to  

-.- -..._. -.-. 

j 
"-0 EVIDENCE 
O....O GEN 
). - * VAL. (LOO) 
H OPTIMAL 

0.5 1 1.5 2 

d! 

I t  bi  

I 
0.5 1 1.5 2 

NSR 

Figure 2: Results for Hessian with high eigenvalue spread. The GEN method has 
still the highest qmp, but the MRGI (mean relative generalization improvement) is 
similar to the LOO validation based method. The evidence method has clearly the 
worst performance. This is caused by extremely low &E, which seems to influence 
more the evidence method then the GEN. Notice that all methods have negative 
MRGI at NSR=O.l. 
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the original input X using 2 = AX as the input. The methods are also 
compared at different NSR’s. The performance is demonstrated through 
Fig. 1-3. 

A limit is set on the IC’s suggested by the regularization schemes. If any of 
the IC’s are negative they are set to zero. Negative IC’s can make the Hessian 
of the regularized cost function J T  ill-posed, thus impeding weight updates 
using the inverse of J T .  

The computational complexity of the adaptive regularization schemes is 
very different. The leave-one-out (LOO) validation based method has the 
most computational overhead. Reestimating the weights NT times is ob- 
viously very time consuming. Both the LOO validation based and GEN 
methods use gradient descent for estimating the regularization parameters. 
The convergence is very dependent on the step-size 7 Eq. (4). In particular, 
when the eigenvalue spread is high a small value has to be used, thus slowing 
down the convergence. The evidence method is much faster as Eq. (18) are 
analytical equations for regularization parameter updates. 

CONCLUSION 

This paper compared generalization error and evidence based schemes for 
adaptive regularization. We suggested various algorithm extensions and per- 
formed numerical experiments with linear models. The generalization error 
based methods generally performs good, while the evidence method yields 
comparable performance at low Hessian eigenvalue spread. However, at high 
eigenvalue spread, which is the common case in neural net applications, the 
evidence method has very low generalization error improvement. 
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A K  A K  

Figure 3: Cumulative probability distribution for the difference between the opti- 
mal K and the K’S suggested by the different regularization schemes. Left panels 
NSR = 0.1 and right panels NSR = 2.0. Top and bottom rows are low and high 
eigenvalue spread for the Hessian matrix, respectively. Top row: When the NSR is 
low the dist,ributions are similar, while at high NSR the evidence and LOO valida- 
tion method have a larger tail then the GEN, indicating that the they are estimating 
6 too large. Bottom row: When the NSR is low the evidence method suggests K’S 

that are too large, even though it does not have a large tail. When the NSR is large 
the evidence method has a very large tail, again estimating K too large. The LOO 
validation method and the GEN show similar distributions. 
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