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Linear and nonlinear excitations in two stacks of parallel arrays of long Josephson junctions
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J. Mygind
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We investigate a structure consisting of two parallel arrays of long Josephson junctions sharing a common
electrode that allows inductive coupling between the arrays. A model for this structure is derived starting from
the description of its continuous limit. The excitation of linear cavity modes known from continuous and
discrete systems as well as the excitation of a new state exhibiting synchronization in two dimensions are
inferred from the mathematical model of the system. The stable nonlinear solution of the coupled sine-Gordon
equations describing the system is found to consist of a fluxon-antifluxon string. This is a two-dimensional
phase-locked solitonic mode. Both linear and nonlinear excitations are numerically investigated and experi-
mentally demonstrated in two stacks of five-junction arrays.

I. INTRODUCTION

Long Josephson junctions are very attractive systems
where linear as well as nonlinear excitations are fully devel-
oped and directly related to experimentally observable quan-
tities. Linear ~or quasilinear! excitations principally consist
of cavity modes along the length of the junction1,2 excited by
means of the current oscillations associated to the ac Joseph-
son effect, while the typical nonlinear excitation is a solito-
nic solution of the sine-Gordon equation3 describing the long
junction and is physically represented by a fluxon, a current
vortex enclosing a flux quantum. These two kind of excita-
tions correspond to distinct current singularities in the
current-voltage characteristic of the junction. Moreover,
when we bias the junctions on these singularities, an ac sig-
nal in the microwave range is received. This is why the Jo-
sephson junctions are also known as Josephson oscillators4

and deserve an interest in microwave electronics. Coherent
excitations in coupled structures of Josephson junctions, as
synchronized linear modes or phase-locked fluxon modes are
an intriguing physical subject, where linear as well as non-
linear dynamics play a comparable role. The analysis of
coupled structures demonstrating stable coherent states can
deserve some interest also because of possible practical ap-
plications. In fact, microwave and far infrared oscillators4

greatly enhance their performance if such excitations are es-
tablished. For this purpose, stacks of magnetically coupled
long Josephson junctions were proved to be good candidates.
It was shown theoretically5–8 and experimentally that
linear9–11 and nonlinear12,13 excitations can be synchronized
in these systems. Moreover, also arrays made of short,14–17

and long18–20 Josephson junctions have been experimentally
demonstrated capable of mutual synchronization.

In this paper we propose and study an hybrid structure,
consisting of a two stack of magnetically coupled parallel
arrays of long Josephson junctions. This structure is, in our
opinion, an interesting physical example where coupling of
discrete and continuous dynamical systems can be recovered.

For example, in some regime the system is described by
Frenkel-Kontorova chains coupled by both continuous and
discrete terms. Also, due to the hybridation between planar
and vertical integration, we can expect the structure to be
capable to support states where both planar and vertical syn-
chronization are achieved. A synchronization involving more
than one dimension obviously enhances the robustness and
the stability of the coherent state that is achieved, an impor-
tant for practical applications. As we will see, the nonlinear
coherent state in the structure consist of fluxon-antifluxon
pairs arranged in more or less rigid strings, oscillating across
the long dimension of the junctions. The linear coherent state
consists of cavity modes along the length of the junctions
synchronized both in the planar and in the vertical dimen-
sions of the structure.

The paper is organized as follows. In Sec. II we derive the
model for the physical system starting from the description
of its continuous limit, i.e., a two stack of two-dimensional
Josephson junctions. We obtain the dispersion relation for
electromagnetic waves in the coupled structure linearizing
the coupled sine-Gordon equations that describe the system.
We analyze the excitation of cavity mode resonances in the
structure providing an approximate analytic form as well as
the analytic prediction of the excitation frequencies. Nonlin-
ear waves solutions are then found, and their stability is dis-
cussed considering the interaction energy in the nearest-
neighbor approximation. Hence an analytic expression is
given for the current-voltage (I -V) characteristic represent-
ing the stable oscillations of the fluxon-antifluxon string. In
Sec. III we further discuss the cavity modes and the fluxon-
antifluxon string with the help of numerical simulations and
we provide an analysis of the electromagnetic signals ex-
pected at one edge of the structure operated in a cavity mode.
In Sec. IV we report on the experimental demonstration of
excitation of cavity mode resonances and fluxon-antifluxon
strings in two stacks of five-junction arrays and we compare
their I -V curves with the theoretical predictions. A summary
of the main results of the paper is finally given in Sec. V.
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II. THEORY

To model our two stack of parallel arrays of long Joseph-
son junctions@see Fig. 1~b!#, we start from the description of
the two-dimensional double overlap stack in Fig. 1~a! which
is modelled as21

wxx1wyy2w tt5sinw1aw t1«~cxx1cyy!, ~1a!

cxx1cyy2c tt5sinc1ac t1«~wxx1wyy!, ~1b!

wx~0!5wx~ l !5~11«!hE, ~1c!

cx~0!5cx~ l !5~11«!hE, ~1d!

wy~0!52~11«!hT2
w

~11«!

gA2gB

2
, ~1e!

wy~w!52~11«!hT1
w

~11«!

gA1gB

2
, ~1f!

cy~0!52~11«!hT2
w

~11«!

gB2gA

2
, ~1g!

cy~w!52~11«!hT1
w

~11«!

gA1gB

2
, ~1h!

where w, and c are the Josephson phase differences,21
,«,0 is the magnetic coupling constant, defined as a func-
tion of the thicknessd of the intermediate electrode, of the
thicknesst of the insulating barriers, and of the London pen-
etration depthlL by5

«52
lL

sinh~d/lL!

1

@ t1lL1lLcoth~d/lL!#
. ~2!

The lengths in Eqs.~1! are normalized to the Josephson pen-
etration length

lJ5A \c2

8ped8 ~12«2!J0

,

whered85t1lL1lLcoth(d/lL) andJ0 is the critical current
density of the junctions. The time is normalized to the in-
verse of the plasma frequencyvJ5 c̄/lJ , where

c̄5cA t

« rd8 ~12«2!

is the Swihart velocity. Furthermore,l 5L/lJ is the normal-
ized length andw5W/lJ is the normalized width of the
junctions,a5(1/R)A\/2eCJ0 is the Ohmic dissipation, and
gA,B5I A,B /J0LW are the normalized bias currents@see Fig.
1~a!#. Finally, hT,E5HT,E/Hc are the components of an ex-
ternally applied magnetic fieldH[(HT,HE,0) @see Fig.
1~a!#, normalized to the critical fieldHc5(4p/c)lJJ0(1
2«2).

Assuming the junctions in the parallel arrays as one di-
mensional@i.e., d!lJ , see Fig. 1~b!#, the structure in Fig.
1~b! becomes the continuous system of Fig. 1~a! in the limit

p→`, Dy→0; pDy5W.

For a finite separation between the junctionsDy and for a
finite number of junctionsp, we can think of the system in
Fig. 1~b! as they -discretized version of the continuous sys-
tem in Fig. 1~a!. Thus the model for the two stack of parallel
arrays of long Josephson junctions can be obtained by dis-
cretizing the model Eqs.~1! in the y direction,

w~x,y!→w@x,~n21!Ab#[wn~x!, ~3a!

c~x,y!→c@x,~n21!Ab#[cn~x!, ~3b!

where we have definedb[(Dy/lJ)
2. Hence our model is

wntt5wnxx2sinwn2awnt2«cnxx1
1

b
~wn1122wn1wn21!

2
«

b
~cn1122cn1cn21!, 2<n<p21, ~4a!

cntt5cnxx2sincn2acnt2«wnxx1
1

b
~cn1122cn1cn21!

2
«

b
~wn1122wn1wn21!, 2<n<p21, ~4b!

w1tt5w1xx2sinw12aw1t2«c1xx1
2

b
~w22w1!

2
2«

b
~c22c1!1

2

Ab
~12«2!hT1~p21!~gA2gB!,

~4c!

c1tt5c1xx2sinc12ac1t2«w1xx1
2

b
~c22c1!

2
2«

b
~w22w1!1

2

Ab
~12«2!hT1~p21!~gB2gA!,

~4d!

FIG. 1. ~a! Sketch of a two-dimensional double overlap stack.
~b! Two stack of parallel arrays ofp long Josephson junctions.
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wptt5wpxx2sinwp2awpt2«cpxx1
2

b
~wp212wp!

2
2«

b
~cp212cp!2

2

Ab
~12«2!hT

1~p21!~gA1gB!, ~4e!

cptt5cpxx2sincp2acpt2«wpxx1
2

b
~cp212cp!

2
2«

b
~wp212wp!2

2

Ab
~12«2!hT

1~p21!~gA1gB!, ~4f!

wnx~0!5wnx~ l !5~11«!hE, 1<n<p, ~4g!

cnx~0!5cnx~ l !5~11«!hE. 1<n<p ~4h!

A. Linear excitations

In the absence of perturbations and in the nontunneling
limit @i.e., gA5gB5hT5hE5a5sinwn5sincn50#, the
structure in Fig. 1~b! becomes a system of coupled transmis-
sion lines. If, for the sake of simplicity, we neglect the edge
lines (n51, andn5p), the system is described by

wnxx2«cnxx1
1

b
~wn1122wn1wn21!

2
«

b
~cn1122cn1cn21!2wntt50, ~5a!

cnxx2«wnxx1
1

b
~cn1122cn1cn21!

2
«

b
~wn1122wn1wn21!2cntt50. ~5b!

The dispersion relation for linear electromagnetic waves in
the structure is obtained by substituting a plane-wave solu-
tion

wn~x!5Aei [kxx1(n21)Abky2vt] , ~6a!

cn~x!5Bei [kxx1(n21)Abky2vt] , ~6b!

in Eqs.~5!. The result is

v65u6Akx
21

4

b
sin2

kyAb

2
, ~7!

where u15A11u«u is the characteristic velocity corre-
sponding to the in-phase (A5B) mode, andu25A12u«u is
the velocity corresponding to the out-of-phase (A52B)
mode in the structure.

Cavity mode resonances are found looking for solutions
that satisfy open circuit boundary conditions~B.C.’s!. In the
continuous system of Fig. 1~a! the B.C.’s are

wx~0!5wx~ l !5cx~0!5cx~ l !50,

wy~0!5wy~w!5cy~0!5cy~w!50,

and spatial cavity modes have the formw56c
}coskxxcoskyy with wave numberskx5 j p/ l , ky5mp/w
( j ,m integers!. In the y-discretized system of Fig. 1~b!, the

ky is simply found noticing that herew5(p21)Ab, while
kx is the same as in the continuous system. Hence the cavity
mode resonances in the two stack of parallel arrays will have
wave numbers

kx5
j p

l
, j 51,2 . . . , ~8a!

ky5
mp

~p21!Ab
m51,2 . . . ~8b!

and hence, from relation~7!, frequencies

v j ,m
6 5u6AS j p

l D 2

1
4

b
sin2

mp

2~p21!
. ~9!

Therefore in our system the dispersion relation exhibited by
a parallel array of long Josephson junctions19 splits in two
branches.

The resonances described by Eq.~9! are practically ex-
cited by a magnetic field and appear as current singularities
in the I -V characteristic. If we apply only a magnetic field
along they direction, we haveky50. From Eqs.~8! and~9!
the cavity modes~Fiske steps! will have excitation frequen-
cies

v j ,0
6 5u6S j p

l D5 j DVFS
6 . ~10!

The functional form of these cavity modes~eigenvectors as-
sociated to frequenciesv j ,0

6 ) can be inferred from the ansatz
Eqs.~6! and ~8a! as

cn
(ac)56wn

(ac);A~v!cosS j p

l
xD cos~vt ! 1<n<p,

~11!

whereA(v) will be maximum when the resonance condition
v5v j ,0

6 is satisfied, and where we used the notationwn
(ac) ,

cn
(ac) to indicate the oscillating component of the phases that

account for the excitation of a cavity mode.
If we apply a magnetic field in thex direction, we have

kx50. From Eqs.~8! and~9! the cavity modes will have now
excitation frequencies

v0,m
6 5u6

2

Ab
Usin

mp

2~p21!
U, ~12!

with associated eigenvectors of the form

cn
(ac)56wn

(ac);A~v!cosF ~n21!mp

~p21! Gcos~vt !, 1<n<p,

~13!

where, again,A(v) will be maximum when the resonance
conditionv5v0,m

6 is satisfied.
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In the experimentalI -V characteristic of the device, the
resonances excited by a magnetic field in they direction will
correspond to current singularities with asymptotic voltages

Vj
65 j F0c̄6/2L5 j F0c̄A16u«u/2L5 j DVFS

6 , ~14!

whereL is the physical length of the junctions,F0 is the flux
quantum andc̄ is the Swihart velocity in the stack. In other
words we expect two series of singularities, with character-
istic voltage spacingDVFS

6 corresponding to the two veloci-
ties allowed in the structure. Conversely, the resonances ex-
cited by a magnetic field in thex direction will appear as two
series of singularities not evenly spaced, with asymptotic
voltages

Vm
65 c̄6

F0

Dy Usin
mp

2~p21!
U, ~15!

and upper limited by the maximum voltagesVmax
6

5c̄6F0 /Dy.

B. Nonlinear excitations

Possibly, many soliton arrangements can be expected in
the structure, each one deserving attention for some interest-
ing properties. Here we will focus on the solutions exhibiting
2D synchronization. This subclass of all possible solutions
will be necessarily symmetric. A symmetric ansatz is

wn5f, ~16a!

cn5sf, ~16b!

where n51, . . . ,p, s561, that reduces the unperturbed
@gA5gB5hT5hE5a50# coupled sine-Gordon system
Eqs.~4a!–~4f! to

f tt5~12s«!fxx2sinf.

Assuming infinite-length junctions for the sake of simplicity,
the basic solitonic solution of this equation is23

f54 tan21H expFgS u

A12s«
D x2ut

A12s«
G J , ~17!

whereg(z)51/A12z2, andu is the velocity of the traveling
solution. For a givenn, Eqs.~16! and~17! describe a fluxon-
fluxon pair (s511), or a fluxon-antifluxon pair (s521).
Hence the two fundamental solitonic solutions of our unper-
turbed coupled system are a fluxon-fluxon string,

cn5wn5f54 tan21H expFgS u

u1D x2ut

A12«
G J , 1<n<p,

~18!

traveling with asymptotic velocityu15A12«, or a fluxon-
antifluxon string,

cn52wn52f524 tan21H expFgS u

u2D x2ut

A11«
G J ,

~19!
1<n<p,

traveling with asymptotic velocityu25A11«.
We should remark that with ansatz Eqs.~16! we implicitly

suppressed the possibility of excitation of solitonic modes
along they direction. In fact, such a kind of excitations have
been discussed in related works16,20on the single barrier ver-
sion of our structure. In particular, both in unidimensional
overlap junctions with regular arrays of defects16 and in
bidimensional20 overlap junctions with columnar defects it is
found that solitonic excitations occur along the discretized
dimension when this dimension is quite larger than Joseph-
son penetration length. On this basis, we consider our
fluxon-fluxon or fluxon-antifluxon strings as the candidate
solitonic solutions of our structure when the discretized di-
mension is not quite large with respect to the Josephson pen-
etration length.

Information on the stability of these solutions can be ob-
tained from the interaction energy between the solitons con-
stituting the strings. For this we need to set the Hamiltonian
of the system.

1. Interaction energy between nearest-neighbors solitons

The unperturbed coupled sine-Gordon system@gA5gB
5hT5hE5a50 in Eqs. ~4!# follows from the Eulero-
Lagrange equations if the following Hamiltonian density is
chosen

H̄5 (
m52

p21

$H̄SG@wm#1H̄SG@cm#1H̄«@wm ,cm#%1
1

2
H̄SG@w1#

1
1

2
H̄SG@c1#1

1

2
H̄«@w1 ,c1#1

1

2
H̄SG@wp#1

1

2
H̄SG@cp#

1
1

2
H̄«@wp ,cp#1 (

m52

p

$H̄b@wm ,wm21#1H̄b@cm ,cm21#

1H̄«b@wm ,cm#%,

where

H̄SG@wm#5
1

2
wmx

2 1
1

2
wmt

2 112coswm , ~20a!

H̄b@wm ,wm21#5
1

2b
~wm2wm21!2, ~20b!

H̄«@wm ,cm#52«wmxcmx , ~20c!

H̄«b@wm ,cm#52
«

b
~wm2wm21!~cm2cm21!. ~20d!

As it is seen in Eqs.~20!, elastic (H̄b), magnetic (H̄«), and
discrete-magnetic (H̄«b) interactions coexist in the system.

The total energy of the system is

H5E
2`

1`

H̄dx, ~21!

while the interaction energy between nearest-neighbor soli-
ton pairs is
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EI5E
2`

1`

$H̄b@wm ,wm21#1H̄b@cm ,cm21#1H̄«@cm ,wm#

1H̄«b@wm ,cm#%dx

5E
2`

1` H 1

2b
~wm2wm21!21

1

2b
~cm2cm21!2J dx

1E
2`

1` H 2«wmxcmx2
«

b
~wm2wm21!

3~cm2cm21!J dx. ~22!

A basic set of nearest-neighbors solitons can be described
by

wm54 tan21H expFLS x2
m

2
2

j

2
2utD G J , ~23a!

cm54 tan21H expFsLS x2
m

2
1

j

2
2utD G J , ~23b!

wm2154 tan21H expFLS x1
m

2
2

j

2
2utD G J , ~23c!

cm2154 tan21H expFsLS x1
m

2
1

j

2
2utD G J , ~23d!

where

L5gS u

A12s«
D 1

A12s«
.

For s521 @s511# Eqs. ~23! describe two fluxon-
antifluxon pairs~one atm and the other atm21). In the pair,
the center of mass of the fluxon is at distancej from the
center of mass of the antifluxon@fluxon#. The centers of mass
of the two pairs are separated bym, and move with velocity
u, as it is shown at top of Fig. 2@Fig. 3#. For j5m50, Eqs.
~23! describe the building block of the fluxon-fluxon string
Eq. ~18! or the fluxon-antifluxon string Eq.~19!.

Using the solutions Eqs.~23!, only the magnetic term of
the interaction energy in Eq.~22! can be calculated analyti-
cally,

E«~j!52«E
2`

1`

wmxcmxdx528Ls«
~Lj!

sinh~Lj!
, ~24!

while the other terms must be evaluated numerically. How-
ever, we are interested to the stability of a string in which the
solitons are exactly aligned (uju5umu50). Therefore, con-
sidering small deviation from the alignment (uju,1,um
u,1), we can obtain an approximate analytic expression for
the interaction energy expanding the integrand in Eq.~22! in
power series ofj, m. To the fourth order in the variables, we
find

EI~j,m!'2s8L«1
4

3
L3s«j21

8

b
L~12s«!m2

2
7

45
s«L5j41

4

3
L3

s«

b
j2m2

2
2

9

L3

b
~12s«!m4. ~25!

The numerically evaluated interaction energy and interac-
tion force

FI~j,m!52¹j,mEI~j,m!

as well as their analytic approximation are shown in Fig. 2
for the fluxon-antifluxon pairs (s521) and in Fig. 3 for the
fluxon-fluxon pairs (s511).

Figure 2 shows that the interaction between fluxon and
antifluxon in a pair, i.e.,

EI~j!um5const,

FIG. 2. Top: Nearest-neighbor solitons belonging to a fluxon-
antifluxon ~F-A! string. Bottom: Interaction energy and interaction
force between the fluxon and the antifluxon in a pair~at left!, and
between the two contiguous fluxon-antifluxon pairs~at right!.
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FI~j!52
]EI

]j
um5const,

is attractive as well as the interaction between two contigu-
ous pairs

EI~m!uj5const,

FI~m!52
]EI

]m
uj5const.

Conversely, from Fig. 3 we deduce that, though the interac-
tion between two contiguous fluxon-fluxon pairs is attractive,
the interaction between the fluxons constituting the pair is
repulsive, making impossible to originate a stable string of
fluxon-fluxon pairs. We conclude that the stable configura-
tion is the one shown in Fig. 2, or, in other words, that a
stable solitonic solution in our system is the fluxon-
antifluxon string. In the following we will focus on this state.

2. Modification of basic soliton interactions in the hybrid
structure

In the fluxon-antifluxon string the arrangement of solitons
can be regarded as the combination of configurations occur-
ring in simpler structures. In particular, the fluxon-antifluxon
pair atm (wm andcm in Fig. 2! is topologically equivalent to
the one observed12,13 in a single two stack of long Josephson
junctions, while the nearest-neighbor fluxons atm and m
21 (wm andwm21 in Fig. 2! are topologically equivalent to
a couple of homopolar solitons occurring19 in parallel arrays
of long Josephson junctions. It can be interesting to see how
the basic interactions between solitons in these simpler struc-
tures are modified in our hybrid structure. Restricting ourself
to the nonrelativistic regime (u!1) and to small departure
from the equilibrium point (uju!1, umu!1), the forceFI

(arr )

between two fluxons in the parallel array19 and the force
FI

(stack) between the fluxon and the antifluxon in the two
stack of single Josephson junctions@where theE«(j) is
given exactly by Eq.~24!# are

FI
(arr )~m!52

8

b
m, ~26a!

FI
(stack)~j!52

8

3
u«u~12u«u!23/2j. ~26b!

The analogous forces in our system are calculated from Eq.
~25! as

FI
(stack2arr )~m!uj5const52

1

2

]EI

]m

.2F 8

b
A12u«u1

4

3

u«u
b

3~12u«u!23/2j2Gm, ~27a!

FI
(stack2arr )~j!um5const52

]EI

]j

.2F8

3 U«U~12u«u!23/21
8

3

u«u
b

3~12u«u!23/2m2Gj. ~27b!

Notice that

lim
«→0

FI
(stack2arr )~m!5FI

(arr )~m!,

lim
b→`

FI
(stack2arr )~j!5FI

(stack)~j!,

as should be expected, because our two stack of parallel
arrays reduces to two uncoupled parallel arrays in the limit of
vanishing« ~physically, intermediate electrode thicknessd
very large with respect tolL), or to p uncoupled two-stack
of long junctions in the limit of very highb ~physically,
separationDy between the junctions very large with respect
to lJ).

FIG. 3. Same meaning as in Fig. 2, but here fluxon-fluxon pairs
are considered.
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From Eqs.~26! and ~27! we deduce that in our structure
the force between the two fluxons is reduced with respect to
that in the single parallel array, while the force between
fluxon and antifluxon is increased with respect to that in the
single two stack of long Josephson junctions. Moreover, in
the hybrid structure the two forces depend, though weakly,
on the relative arrangements of solitons~i.e., depend onj
and m). This relatively small effect arises from the term
E«b5*H̄«bdx in the interaction energy Eq.~22!, which is
peculiar of the hybrid nature of our structure.

3. I-V curve of fluxon-antifluxon string

Turning to the fluxon-antifluxon string, we can obtain its
I -V curve using a simple energetic approach. Differentiating
with respect to the time the energy Eq.~21! and by using
Eqs.~4!, we get

dH

dt
5E

2`

1`

dxH (
m52

p21

~2awmt
2 2acmt

2 !1
1

2
@2aw1t

2 2awpt
2

1~p21!~gA2gB!w1t1~p21!~gA1gB!wpt#

1
1

2
@2ac1t

2 2acpt
2 1~p21!~gB2gA!c1t

1~p21!~gA1gB!cpt#J . ~28!

Following the classic approach,24 we assume that the
dominant perturbation is in the velocity and we assume also
the existence of a stationary velocityu that makes the energy
stationary. The velocity of the string is then found by insert-
ing the fluxon-antifluxon string solution

wm54 tan21H expFgS u

u2D x2ut

A11«
G J [f,

cm[2f,

in Eq. ~28! with dH/dt50 ~power balance! to have
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f t
2dx5~p21!~gA2gB!E

2`
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f tdx,

and hence

gA2gB

2
5

4a

p

u

u2

1

A12~u/u2!2
, ~29!

whereu25A11«.
It is known4 that the dynamical state of one or more flux-

ons oscillating in a long Josephson junction is manifested in
the I -V characteristic of the junction as zero-field current
singularities, evenly spaced in voltage, named zero-field
steps~ZFS’s! and labeled from the lower to higher voltage of
appearance as ZFS1, ZFS2, ZFS3, and so forth. The voltage
of these singularities is proportional to the mean velocityu
of the fluxons,VZFSN5uN2p/ l , or, in physical units,

VZFSN5N
F0

L
u5NVZFS1 , ~30!

whereL is the junction length. If the oscillating solitons are
antifluxons moving with the same mean velocityu, a similar
picture is obtained, but for the voltage polarity. Here, the
fluxon-antifluxon string consists ofp fluxons in one array
~e.g., thewm array! andp antifluxons in the other array~e.g.,
the cm array!. Since the voltages across the two arrays are
measured in parallel, the same values as from two single
junctions are expected to be measured. In other words, using
the same notation as for the single junctions, voltages

VA
(ZFSN)52VB

(ZFSN)5N
F0

L
u ~31!

are expected ifN fluxon-antifluxon strings are oscillating in
the system with mean velocityu.

From Eq.~31!, and noticing thatgA and gB are propor-
tional to the physical bias currents,gA,B5I A,B /J0LW, Eq.
~29! should describe theI -V curve of the ZFS’s accounting
for fluxon-antifluxon strings oscillating in the two stack of
parallel arrays of long Josephson junctions.

III. NUMERICAL RESULTS

We investigated numerically the excitation of the cavity
mode resonances as well as the fluxon-antifluxon strings in
the structure integrating the full system of coupled perturbed
sine-Gordon equations Eqs.~4!. For what concerns the linear
modes, we first analyze the results obtained with a magnetic
field applied in they direction, i.e.,hEÞ0 andhT50, and
then we analyze the results with respect to the application of
a magnetic field in thex direction, both in the case of a field
externally applied (hTÞ0) and in the case of the self-field
generated by the bias currents. TheI -V curve of the fluxon-
antifluxon string is then indagated athE5hT50.

A. Cavity modes excited by a magnetic field in they direction:
Two-dimensional synchronized oscillations

In the main plot of Fig. 4 it is shown the calculatedI -V
characteristicgA(VA) of a five-junction array (p55) of a
two stack, while the other array is unbiased (gB5VB50).
The plot is obtained superimposing the curves calculated at
different magnetic fields ranging betweenhE56.0 andhE

57.5. As it is seen in the plot, the cavity modes excited by a
magnetic field in they direction manifest themselves as two
series of current singularities with characteristic voltage
spacingsDVFS

2 andDVFS
1 . As discussed in the previous sec-

tion, these two voltage spacings correspond to the two pos-
sible velocitiesu2 andu1 for linear~electromagnetic! waves
in the structure. The vertical bars in the plot indicate the
voltage positions of the resonances as predicted by Eq.~10!.
The snapshots show the instantaneous voltage profiles
@wnt(x,t0), cnt(x,t0)] of all the junctions in the two stack
when we are biasing the arrays on a Fiske step of theu2 or
of theu1 family. As it is seen, the voltage profiles along the
x direction are nearly cosinusoidal in form and in phase in
each of the arrays. Moreover, the voltage profiles of the bot-
tom and of the top array are out of phase for the Fiske in the
u2 family or in phase for the Fiske inu1 family, in qualita-
tive agreement with the prediction of the spatial voltage pro-
files given by Eq.~11!.
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From results in Fig. 4 we deduce that it is not necessary to
bias the arrays with equal currents to excite cavity modes in
the structure. In the reported example we did not bias the
bottom array, with the result of oscillations surfing on a zero
mean voltage (VB50) and oscillations in the top array surf-
ing on a finite mean voltage (VAÞ0). Due the coupling
terms present in system Eqs.~4! we could expect that, if not
so different currents were used, both the synchronization of
the ac components and a locking between the mean voltages
of the arrays could be established. The results of a numerical
voltage locking calculation are summarized in Fig. 5. To
identify the current range where voltage locking is achieved,
we plotted on the same graph the voltage of both the arrays
as a function of the variable current@gA(VA) andgA(VB) in
Fig. 5#. As shown in the numerical results, we can excite
voltage locked states in theu2 family of Fiske steps, with
equal or opposite voltage polarities (E2 and O2 states in
Fig. 5!, as well as in theu1 family (E1 andO1 states in Fig.
5!. From numerical simulations it is found that voltage
locked states in theu1 family consist of in-phase cavity
modes and the voltage locked states in theu2 family consist
of out-of-phase cavity modes, whose spatial voltage profiles
are similar to the ones shown in Fig. 4 and again approxi-
mately described by Eq.~11!.

We should remark that theE1 andO1 states are an ex-
ample of synchronization both in they direction ~adjacent
junctions in one array are synchronized! and in thez direc-
tion ~junctions of the bottom array are synchronized with
junctions of the top array! of the structure. Moreover, these

two-dimensional~2D! synchronized linear oscillations have
equal amplitudes, a good feature for what concerns possible
microwave applications.

Due to the in-phase nature of the modes, the amplitude of
the ac signal@see Eq.~11!# expected from the structure is
proportional to 2p times the amplitude of the ac signal from
a single junction. As it is known, the oscillation frequencies
in real junctions are in the microwave range, so our structure,
when operated in theE1 or O1 states, could be of interest as
a microwave oscillator.

B. Cavity modes excited by a magnetic field in thex direction

In the main plot of Fig. 6 are shown numericalI -V curves
of the cavity modes excited by a magnetic field in thex
direction. Same general representation as in Fig. 4 has been
adopted to represent the cavity modes. Here the magnetic
field in the x direction is varied betweenhT57 and hT

510, and we puthE50, andgA5gB . The vertical bars are
the asymptotic voltage positions of the current singularities
as predicted by Eq.~12!. A satisfactory agreement with pre-
dictions of Eq.~12! was found also for otherb values, as it
is seen in the inset of Fig. 6. In the snapshots we report the
voltage profiles of the junctions corresponding to the first
cavity mode resonances of theu2 andu1 family. The volt-

FIG. 4. CalculatedI -V characteristic of the cavity mode reso-
nances excited by a magnetic field in they direction, as recorded in
the top array of the two stack while the bottom array is unbiased.
The vertical bars are the asymptotic voltages of the singularities as
predicted by Eq.~10!. The snapshots freeze the instantaneous volt-
age profiles of the junctions when the two stack is biased on the
singularities.

FIG. 5. Numerical voltage locking on Fiske steps of theu2 and
u1 family. The locking is with equal voltage polarities (E2 andE1

states! if bias currents of the same polarities are used, or with op-
posite voltage polarities (O2 and O1 states! if bias currents of
opposite polarities are used.
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age profiles of the bottom array and of the top array are
found out-of-phase for the mode in theu2 family and in-
phase for the mode in theu1 family. Moreover, a vanish-
ingly small spatial modulation along thex direction and an
amplitude modulation of the voltages along the discretized
direction is recorded, as qualitatively expected by Eq.~13!.

1. In-phase cavity modes excited without external magnetic field

Due to the configuration of the electrodes in our structure
@see Fig. 1~b!#, a current passing through one array of the
stack generates a magnetic field in thex direction that enters
the loops of the other array. In other words, a magnetic field
in the x direction can be applied using a solenoid or by
means of the self-fields generated by the current biasing the
structure. This peculiar feature of our hybrid structure is cap-
tured by the mathematical description, Eqs.~4!, of the sys-
tem, since thehT term accounting for the external magnetic
field and terms proportional to the bias currentsgA and gB
play a similar role. This is clearly seen also in the model Eqs.
~1! of the continuous version of our structure@see Fig. 1~a!#
where the self-fields play in the boundary conditions a role
similar to the external magnetic fieldhT. It follows that, if
we bias the bottom array of the two stack with a currentgB
sufficiently high and ifgB@gA , this results in a field applied
along thex direction and proportional togB , as it is shown at
the top of Fig. 7. Such a self-field, though asymmetrical, is

expected to excite cavity mode resonances described by Eqs.
~12! and~13!. This is confirmed by numerical results, as it is
shown in Fig. 7, where withhT50 andgB51.5 we excited
the samev0,1

1 resonance shown in Fig. 6, wherev0,1
1 was

excited forhT57. From the time evolution of the voltage
signals at one edge of the two stack for thev0,1

1 shown at
bottom of Fig. 7 we see that the ac voltage signals in the two
arrays are found to be again described by Eq.~13!.

2. Analysis of microwave signals at one edge of the structure
from v0,m

Á resonances

For what concerns the possible interest of the structure as
a microwave oscillator, it could be interesting to know from
which resonances of thev0,m

6 series a large ac signal can be
expected if all the signals from the single junctions were
superimposed and conveyed from one edge of the structure.
The inspection of the amplitude distribution of the ac signals
predicted by Eq.~13! indicates that the resonances of theu2

family are inadequate to this purpose, because of the cancel-
lation of signals from bottom and top array for eachn. In the
u1 family the signals from the bottom array add with same
sign to the signals from the top array, but signals of the same
array can add destructively. For example, forp55 case, the
total voltage signalsA(t)5(nwnt

(ac) associated to the top ar-
ray and the total signalsB(t)5(ncnt

(ac) associated to the
bottom array are both zero for the odd resonances (v0,1

1 and

FIG. 6. CalculatedI -V curves of the cavity mode resonances
excited by a magnetic field in thex direction, as recorded in the top
array of the two stack. The vertical bars are the asymptotic voltages
of the singularities as predicted by Eq.~12!. In the inset the values
of the asymptotic voltages numerically obtained for two different
discreteness parametersb are compared with the ones expected by
Eq. ~12!. The snapshots froze the instantaneous voltage profiles of
the junctions when they are biased on the marked singularities.

FIG. 7. Top: Magnetic field~self-field! in the x direction due to
the bias currents. Center: A cavity mode resonance excited using
the self-field generated biasing the bottom array withgB@gA in the
absence of an externally applied magnetic field (hT50). Bottom:
Voltage signals at one edge of the two stack when it is biased on the
resonance.
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v0,3
1 ), while the signal of only one junction emerges from the

top and the signal of only one junction emerges from the
bottom array when the two stack is operated on an even
resonance (v0,2

1 andv0,4
1 ).

We remark that in simpler structures, as the ordinary long
Josephson junction, the radiation normally coupled out from
one edge of the junction is substantially of electric nature.
When seen as a resonant cavity, a magnetic field applied
perpendicular to the long dimension~in our notation, a field
applied along they direction! excites cavity modes where the
electric field has a maximum at the edges, while the mag-
netic field has a node at the edges of the junction. In this case
the analysis of the temporal derivative of the phase at one
edge of the junction, proportional to the electric field, is what
matters. In this sense, the analysis we made in the previous
section on the voltage signals at one edge of the two stack in
correspondence of Fiske modes excited by a magnetic field
in they direction is the analysis relevant for applications. On
the other hand, when we apply a magnetic field in thex
direction and we want again to couple the signals from all
junctions at thex50 edge of the two stack, we should ana-
lyze also the magnetic component of the signals along they
~discretized! direction, because in this case it is not zero.

In the two-dimensional stack in Fig. 1~a! the nontrivial
components of the fields in the top junction are related to the
phase derivatives as21

(w)Ez~x,y,t !}w t~x,y,t !, ~32a!

(w)By~x,y,t !}wx~x,y,t !2«cx~x,y,t !, ~32b!

(w)Bx~x,y,t !}2@wy~x,y,t !2«cy~x,y,t !#, ~32c!

and similarly for the bottom junction. In our discrete struc-
ture, the ac component of the electric field at thex50 edge
~see bottom of Fig. 8! are

(w)Ez
(ac)@n#}wnt

(ac)~x50,t !, ~33a!

(c)Ez
(ac)@n#}cnt

(ac)~x50,t !. ~33b!

From these relations, an analysis of expected total signal
based on relation~13! is, indeed, an analysis of the ac elec-
tric field.

To evaluate the magnetic fields of interest, i.e.,(w)Bx(x
50), we first notice that Eqs.~32a! and ~32b! can be sim-
plified when we are concerned with a cavity mode. For the
cavity modes of theu1 family, which we are interested in, is
w (ac)5c (ac), so that we can work with the simplified rela-
tions

(w)Bx~0,y,t !}2wy~0,y,t !, ~34a!

(c)Bx~0,y,t !}2cy~0,y,t !. ~34b!

We can now substitute the partial derivative with respect toy
in Eqs. ~34! with the approximated finite differences to ob-
tain for the ac components of the magnetic field

(w)Bx
(ac)@n#}2~wn11

(ac) 2wn
(ac)!, ~35a!

(c)Bx
(ac)@n#}2~cn11

(ac) 2cn
(ac)!. ~35b!

The amplitudes of the ac component of the magnetic field
evaluated using Eqs.~35! and ~13! for the v0,m

1 resonances
are shown at the top of Fig. 8. The inspection of Fig. 8
indicates that now, in contrast to the electric case, the total
magnetic signals are relevant for the odd resonances, while
they cancel out in the even resonances. Moreover, compa-
rable total signals are expected from consecutive odd reso-
nances. We conclude that for the odd resonances a magnetic
contribution from all the junction of the arrays is expected.

Taking into account also the previous discussion on the
electric components, we can conclude that the total ac signal
from one edge of a two stack operated on the resonance
excited by a magnetic field in thex direction is zero from the
v0,m

2 resonances and other than zero from thev0,m
1 reso-

nances. This signal is of electric nature for the even reso-
nances and of magnetic nature for the odd resonances. The
magnetic signal is expected to be larger than the electric
signal.

C. Fluxon-antifluxon string

In Fig. 9 it is shown the numericalI -V characteristic of
the ZFS1~first zero field step! seen in one array of the stack
while the other is biased with constant current. In the same
figure, the snapshot of the voltage freezes, as we should ex-
pect, a fluxon-antifluxon string that is oscillating with mean
velocityu in the two stack. The analyticI -V curve Eq.~29! is
also reported for comparison. We found that the agreement
with the numerical curves is satisfactory forl 520, while an
evident deviation is seen forl 55, gB50. This is not sur-
prising if we consider the physical interpretation of the re-
sults of the mathematical model.

In fact, if we depict the solitonic dynamics of the fluxon-
antifluxon pairs constituting the string in terms of the motion
of two particles in a bound state, the half difference of the

FIG. 8. Magnetic and electric fields of interest at one edge of the
two stack~bottom! and~top! expected amplitude distribution of the
ac component of the magnetic field when a cavity mode of thev0,m

1

series is excited.

9104 PRB 62G. CARAPELLA et al.



bias currents gives the net Lorentz force acting on the center
of mass, while the half sum can be seen as a force opposing
the internal attractive force between the antipolar solitons. If
the bias currents are not so different to break the pairs, the
internal motion consists of damped harmonic oscillations
around the centers of mass of the bound states. On this basis,
the assumption of perfect~aligned and rigid! fluxon-
antifluxon string is well justified whengB52gA , while it is
only marginally justified when, as in our numerical steps in
Fig. 9, gB50. Moreover, when we assumed infinite length
junctions in the derivation of Eq.~29!, we implicitly ne-
glected the finite size of the solitons, which is obviously
relevant when the junctions are not very long~as in the case
of l 55 of Fig. 9!.

We observe in Fig. 9 oscillations in the fluxon tails, a
phenomenon well known in numerical simulations of single
long Josephson junctions.22 As in the single junctions, also
here the amplitude of the oscillations grows as the length of
the junctions is shortened, or the fluxons are pushed closer to
the limit velocity. In both cases the solutions assumed in
perturbative theory lose their validity. Here, a further devia-
tion from simple theory arises from the internal degree of
freedom ~oscillations around the centers of mass! and the
general complexity of the system.

IV. EXPERIMENT

We have fabricated and tested two stacks of parallel ar-
rays of long Nb/AlOx /Nb Josephson junctions with the ge-

ometry shown in Fig. 1~b!. The fabrication process we used
is similar to the one used in Ref. 13. The two stacks have
'3002nm thick outer electrodes and'902nm thick inter-
mediate electrodes. The critical current density per junction
in the arrays~as estimated from the current rise at the gap
sum voltage! was mostly found to be'70 A/cm2610%. In
the three samples on which we report here, the arrays of the
two stack have five (p55) junctions with physical dimen-
sions L3d5(600320) mm2 separated byDy520 mm.
For all the samples the critical current of the arrays~as mea-
sured atV50) are I cA'I cB520 mA. We estimate Joseph-
son penetration lengthslJA'lJB560 mm, normalized
lengths l A' l B510, and discreteness parameterb'0.1.
From the thickness of the intermediate electrode a magnetic
coupling of the order of«520.5 is expected from relation
~2!. Finally, the critical field is estimated to beBc'0.1 G.

A. Cavity mode resonances: experimental evidence for 2D
synchronized state

Figure 10 shows the cavity modes resonances~or Fiske
steps! excited in one array of a two stack by a magnetic field
in the y direction, while the other array is unbiased. The
cavity modes exhibit two characteristic voltage spacings
DVFS

2 '12 mV and DVFS
1 '20 mV . As noted above@see

Eq. ~14!#, this phenomenon arises from the splitting of the
Swihart velocityc̄ in two velocitiesc̄1 and c̄2 correspond-
ing to an in-phase oscillation or to an out-phase oscillation
mode, as it is shown in the numerical results of Fig. 4. From
data in Fig. 10 and relation~14! we estimate for this two
stack a magnetic coupling«520.47. With similar procedure
«520.49 and«520.60 are estimated in the other investi-
gated two stacks. The observed values agree with«520.5
expected from Eq.~2!.

FIG. 9. Numerical~points! and theoretical~solid lines! I -V
curves of the ZFS1 for different lengths of the two stack. In the
snapshot are shown the instantaneous voltage profiles of the junc-
tions when the two stack is biased at the marked point of the ZFS1.

FIG. 10. Cavity modes resonances in the top@~a!# and in the
bottom@~b!# array of a two stack excited by a magnetic field in the
y direction. Here«520.47 is estimated.
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Biasing one array of the stack with a constant current and
sweeping the other on the Fiske steps, up to four voltage
locked states can be recorded. In other words, four different
Fiske modes can be excited, with equal or opposite voltage
polarities, belonging to thec̄2 as well as to thec̄1 family.
This is shown in Fig. 11, where we labeled asO6 the voltage
locked states with opposite voltage polarities and asE6 the
voltage locked states with equal voltage polarities. As noted
for numerically obtained voltage locked states in Fig. 5, the
E2 and O2 states consist of an out-of-phase oscillation of
the instantaneous voltage profiles of the two arrays, while the
E1 andO1 states consist of an in-phase oscillation. Data in
Fig. 11 refer to the two stack with«520.47; similar results
were obtained for the other investigated devices.

The voltage locked states in Fig. 11 are resembling the
ones observed11 in two stacks of single long Josephson junc-
tions, but here an array of long Josephson junctions plays the
role of the single junction in the experiments reported in Ref.
11. As noted in Sec. III, the observedE1 and O1 states
consist of modes where the adjacent junctions of both the
arrays in the two stack as well as the bottom and the top
arrays oscillate in phase. In other words, the structure experi-
mentally exhibits the desired 2D synchronization in both the
y andz direction. This should compel a great enhancement of
the emitted radiation.

From the Josephson relationnem5F0
21V, it follows that

the frequency of the emitted signal falls in the range 70
,nem,200 GHz for the voltage-locked states reported in
Fig. 11. Unfortunately, this frequency range is out of the
band of our instrumentation. However, voltage locked states
corresponding to frequencies up tonem'400 GHz were re-
corded in our samples, and also higher frequencies could be
expected@see Eq.~14!# choosing a physical length of the

junctions shorter thanL5600 mm used in the present work.
Moreover, using for a single junction in the structure the
same parameters as those of the Josephson submillimeter
wave tunable local oscillator,25 a power enhancement pro-
portional to the square of the number of junction in the two
stack @i.e., (2p)2] could be obtained for such oscillators if
our structure were operated in theE1 state.

We did not experimentally investigate the cavity mode
resonances excited directly by an external magnetic field in
the x direction. However, some of these resonances have
been excited using the self-fields of one array of the stack as
a magnetic field in thex direction, as shown at the top of Fig.
12. In Figs. 12~a!, and ~b! we show some of the steps re-
corded in the top array of the two stack with«520.47 ob-
tained by feeding a large current through the bottom array of
the stack. As discussed in the previous section~see Fig. 7!,
the ac component of the voltage signals associated to these
resonances is similar to the one obtained by means of an
external magnetic field in thex direction. Some of the reso-
nances emit in the band of our instrumentation. In Fig. 12 we
report the radiation recorded with a room-temperature spec-
trum analyzer when the array is biased on the first resonance
of the c̄1 family, i.e.,v0,1

1 . The radiation was conveyed to a
50-V coaxial cable by means of a microstrip line weakly
coupled through a capacitive gap to one edge of the two
stack. The coupled radiation was found about 50 nW on a
50-V unmatched load. As discussed in the previous section,

FIG. 11. Voltage locked Fiske modes recorded in the two-stack
with «520.47. The magnetic field isBE52 G.

FIG. 12. Microwave radiation received by cavity modes excited
in the top array of the two stack with«520.47 biasing the bottom
array with a positive@in ~a!# or negative@in ~b!# current. The reso-
nances are induced by the self-field in thex direction associated to
the rather large current flowing in the bottom array, as shown in the
top of the figure.
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the radiation coupled from anv0,1
1 resonance is of magnetic

nature and, due to the in-phase nature of the mode, it is really
expected to be appreciable.

B. Experimental evidence for the fluxon-antifluxon strings

In the absence of magnetic field, by sweeping the bias
current of either of the two arrays in the lower region of the
McCumber curve while the other array is biased with con-
stant current on the zero voltage state or on the McCumber
curve, it is possible the transition to a state where the junc-
tions exhibit voltages having the same magnitude but oppo-
site polarities. When the junctions are in this state, a varia-
tion of the bias current in one array results into a variation of
the common voltage value~voltage locking!; this state exists
for a finite range of the bias currents~current steps!.

In Fig. 13~a! there are shown five of such current steps,
that we named zero-field steps~ZFS’s!, recorded in the top
array of the two stack with«520.60, while the bottom
array is biased with a negative constant current. In Fig. 13~b!
we report theI -V curves of the ZFS1 and ZFS2 seen in the
top array of the stack with«520.49 using the current in the

bottom array as a parameter. As the current in the bottom
array is increased, the curves shift down. All the curves es-
sentially fall on the top of each other if represented in terms
of an ‘‘effective current’’ I e5(I A2I B)/2.

The asymptotic voltage of the ZFS1 isVZFS1520.0 mV
in the stack with«520.60 andVZFS1524.0 mV in the
stack with«520.49. These voltage spacings are twice the
voltage spacings of the Fiske steps of thec2 family in the
two-stacks, as we should expect for an oscillatory motion of
solitons with asymptotic velocityc2 @see Eq.~30!#. The glo-
bal picture, also taking into account the voltage polarities
observed@see Eq.~31!#, indicates that the we are concerned
with one oscillating fluxon-antifluxon string in the ZFS1, two
oscillating fluxon-antifluxon strings in the ZFS2, and so on.
In other words, we consider the data in Fig. 13 as the experi-
mental evidence for the fluxon-antifluxon strings discussed
in the previous sections.

The ZFS’s in Fig. 13 show a behavior similar to the ones
observed12,13 in two stacks of single long Josephson junc-
tions. However, here a string of fluxon-antifluxon pairs plays
the role of a single fluxon-antifluxon pair in the experiments
reported in Refs. 12 and 13. In other words, in the present
structure locking between two solitons is extended to 2p
solitons, with consequently enhanced robustness of the co-
herent state.

Though obtained assuming a perfect fluxon-antifluxon
string and infinite length junctions, the power balance curve
Eq. ~29! accounts for the major features of the experimental
I -V curves. In fact, Eq.~29! predictsu2 ~in physical units:
c2) as the asymptotic velocity of the steps and the shift of
the I -V curves if the bias current of one of the two arrays is
varied as a parameter. Moreover, from Eq.~29! it is evident
that the force driving the state is the half difference between
the currents, or, in other words, that the curves must fall on
the top of each other if represented using an effective current
axis defined by the half difference of the currents. An ex-
ample of fitting the experimentalI -V curve of the ZFS1 with
the power balance curve is given in Fig. 14.

FIG. 13. ~a! ZFS’s recorded from the top array of a two stack
with «520.6 while the bottom array is biased with a negative
constant current.~b! I -V characteristics of the ZFS1 and ZFS2 from
the top array of a stack with«520.49 using the current biasing the
bottom array as a parameter. The curves fall on the top of each
other when they are replotted using a current axis defined by:I e

5(I A2I B)/2.

FIG. 14. The experimentalI -V characteristics of the ZFS1 in the
stack with«520.49 are plotted together with the power balance
curves Eq.~29!.
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V. CONCLUSIONS

We have investigated a structure consisting of a two stack
of parallel arrays of long Josephson junctions. A model for
this system has been derived starting from the description of
its continuous limit, i.e., a two stack of two-dimensional Jo-
sephson junctions.

Linear wave analysis has shown that, as in the simpler
two stack of single Josephson junctions, there exist two char-
acteristic velocitiesc̄2 and c̄1 for the propagation of elec-
tromagnetic waves in the structure. However, the dispersion
relation from electromagnetic waves is found to be a hybrid
of the ones exhibited in continuous and discrete systems. The
excitation of cavity mode resonances in the structure has
been analyzed from analytic point of view and further dis-
cussed with the help of numerical simulations. Continuous
Fiske modes exhibiting full synchronization in two dimen-
sions (v j ,0

1 resonances! and discrete in-phase Fiske modes
(v0,m

1 resonances! have been recovered. Thev0,m
1 resonances

have been found excitable also without external magnetic
field. The total electromagnetic signal expected from rel-
evantv j ,0

1 andv0,m
1 resonances has been discussed. The total

signal expected at one edge of the structure operated in any
v j ,0

1 resonance is of electric nature and proportional to the
total number of junctions (2p), while the signal expected
from v0,m

1 resonances is appreciable only for odd resonances,
with magnetic nature.

Nonlinear wave analysis has indicated that the basic soli-
tonic solutions of the coupled sine-Gordon equations model-
ing the system are a fluxon-fluxon string, moving with
asymptotic velocityc̄1, or a fluxon-antifluxon string, moving
with asymptotic velocityc̄2. The fluxon-antifluxon string
has been proved to be the stable solution considering the

interaction energy between the solitons constituting the
strings. Moreover, the basic solitonic interactions in the hy-
brid structure has been compared with the ones in simpler
structures, with the result that the attractive interaction of the
fluxon-antifluxon pair is increased with respect to that in two
stack of single junctions while the fluxon-fluxon interaction
is reduced with respect to that in parallel arrays of long junc-
tions. The expected form of theI -V curve accounting for the
oscillatory motion of a fluxon-antifluxon string along the
length of the two stack has been then derived using the
power balance approach. The validity of the theoreticalI -V
curve has been discussed with the help of numerical simula-
tions.

The excitation of linear and nonlinear modes has been
experimentally demonstrated in two stacks of five-junction
arrays. In particular, the two more desired excitations ex-
pected in the hybrid structure, namely the 2D synchronized
Fiske modes and the 2D phase-locked solitonic mode
~fluxon-antifluxon string! have been experimentally demon-
strated stable in the structure. TheirI -V curves as well as
microwave radiation received from some cavity mode have
been found in agreement with the theoretical and numerical
predictions.

ACKNOWLEDGMENTS

The authors wish to thank M. Cirillo, Universita` di ‘‘Tor
Vergata,’’ Italy, who provided the photomasks used to fab-
ricate the device. They also acknowledge stimulating discus-
sions with N. F. Pedersen, DTU, Denmark. One of the au-
thors, G. Costabile, wishes to thank the Technical University
of Denmark, Lyngby, Denmark, for the warm hospitality.
This work was partially supported by a MURST COFIN98
program~Italy!.

1A. Barone and G. Paterno´, Physics and Applications of the Jo-
sephson Effect~John Wiley & Sons, New York, 1982!.

2M. Cirillo, N. Gro”nbech-Jensen, M. R. Samuelsen, M. Salerno,
and G. Verona Rinati, Phys. Rev. B58, 12 377~1998!.

3R. D. Parmentier, inSolitons in Action, edited by K. Lonngren
and A. C. Scott~Academic Press, New York, 1978!.

4S. Pnevmatikos and N. F. Pedersen, inFuture Directions of Non-
linear Dynamics in Physical and Biological Systems, Vol. 312
of NATO Advanced Study Institute, Series B: Physics, edited by
P. L. Christiansen, J. C. Eilbeck, and R. D. Parmentier~Plenum
Press, New York, 1993!.

5S. Sakai, P. Bodin, and N. F. Pedersen, J. Appl. Phys.73, 2411
~1993!.

6N. Gro”nbech-Jensen, M. R. Samuelsen, P. S. Lomdahl, and J. A.
Blackburn, Phys. Rev. B42, 3976~1990!.

7N. Gro”nbech-Jensen, D. Cai, A. R. Bishop, A. W. C. Lau, and P.
S. Lomdahl, Phys. Rev. B50, 6352~1994!.

8N. Gro”nbech-Jensen, J. A. Blackburn, and M. R. Samuelsen,
Phys. Rev. B53, 12 364~1996!.

9A. V. Ustinov, H. Kohlstedt, and C. Heiden, Appl. Phys. Lett.65,
1457 ~1994!.

10S. Sakai, A. V. Ustinov, H. Kohlstedt, A. Petraglia, and N. F.
Pedersen, Phys. Rev. B50, 12 905~1994!.

11G. Carapella and G. Costabile, Appl. Phys. Lett.71, 3409~1997!.
12G. Carapella, G. Costabile, A. Petraglia, N. F. Pedersen, and J.

Mygind, Appl. Phys. Lett.69, 1300~1996!.
13G. Carapella, Phys. Rev. B59, 1407~1999!.
14S. P. Benz and C. J. Burroughs, Appl. Phys. Lett.58, 2162

~1991!.
15H. S. J. van der Zant, D. Berman, and T. P. Orlando, Phys. Rev.

B 49, 12 945~1994!.
16A. V. Ustinov, M. Cirillo, B. H. Larsen, V. A. Obozonov, P.

Carelli, and G. Rotoli, Phys. Rev. B51, 3081~1995!.
17P. Caputo, A. E. Duwell, T. P. Orlando, A. V. Ustinov, N. C. H.

Lin, and S. P. Yukon,Proceedings of ISEC ’97, edited by H.
Koch and S. Knappe~Physikalische-Technische Bundesansalt,
Braunschweig, 1997!.

18R. Monaco, S. Pagano, and G. Costabile, Phys. Lett. A131, 122
~1988!.

19G. Carapella, G. Costabile, and P. Sabatino, Phys. Rev. B58,
15 094~1998!.

20M. A. Itzler and M. Tinkham, Phys. Rev. B51, 435 ~1995!.
21G. Carapella, G. Costabile, S. Sakai, and N. F. Pedersen, Phys.

Rev. B58, 6497~1998!.
22S. Pagano, Ph.D. thesis, The Technical University of Denmark,

1987.

9108 PRB 62G. CARAPELLA et al.



23N. Gro”nbech-Jensen, D. Cai, and M. R. Samuelsen, Phys. Rev. B
48, 16 160~1993!.

24D. W. McLaughlin and A. C. Scott, Phys. Rev. A18, 1652
~1978!.

25V. P. Koshelets, S. V. Shitov, L. V. Filippenko, A. M. Baryshev,
H. Golstein, T. de Graauw, W. Luinge, H. Shaeffer, and H. van
de Stadt, Appl. Phys. Lett.68, 1273~1996!.

PRB 62 9109LINEAR AND NONLINEAR EXCITATIONS IN TWO . . .


