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Extended Park's Transformation 
for 2x3-phase Synchronous Machine 

and 
Converter Phasor Model 

with Representation of AC Harmonics. 

Hans Knudsen 
NESA / SK Power Company The Electric Power Engineering Department 

Hellerup, Denmark & Technical University of Denmark, Lyngby, Denmark. 

Abstmct - A model of the 2x3-phase synchronous machine is 
presented using a new hamformation based on the eigenvectols of 

stator inductance matrix, and this leads to an equivalent diagram of 
the machine with no mutual couplings in the stator. 

A consistent method is developed to determine model parameters 
from standard machine data. 

the stator inductance matrix. The transformation fully decouples the 
If, 
// 

Fig. 1. 2x3-phase converter-fed synchronous machine. 
A phasor model of the line commutated convear  is presented. 

The converter model includes not only the fundamental frequency, 
but also any chosen number of harmonics without a represention of 
the single thyristors. 

Keywonki - 2x3-phase Synchronous machine model, extended 
Park transformation, parameter identification, convelter phasor 
model, harmonic representation, S.M. commutating inductance. 

I. INTRODUCTION. 

In recent years the converter-fed 2x3-phase synchronous 
machine (fig.1) has been gaining importance as a high power 
drive with high and variable speed. Because of this growing 
industrial interest, the 2x3-phase machine has been the sub- 
ject of many studies recently. However, there has not yet 
been developed a model of this machine which is valid in all 
situations, and where the stator circuits are completely 
decoupled. The advantages of such a model will be the same 
as the advantages gained from Parks two-reaction theory for 
3-phase synchronous machines; i.e. a constant inductance 
matrix with a minimum number of mutual couplings. 
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Consequently the first topic of this paper is to present such 
a model. 

Due to the state changes of the converter thyristors during 
commutations, it is necessary to use very small time steps 
during simulations in order to get a good representation of 
voltages and currents. Furthermore each time a thyristor 
changes state, the network admittance matrix is altered and 
has to be recalculated. These two factors lead to a vast time 
consumption during dynamic simulations. Today the only 
alternative is fundamental frequency phasor models, where 
all harmonics are ignored. It would therefore be desirable to 
have a phasor model, which includes the representation of 
any chosen number of harmonics, from no harmonics up to 
an infinite number of harmonics. The second topic of this 
paper is to present such a converter phasor model. 

II. MACHINE MODEL. 

A .  Machine description and equations. 
The 2x3-phase synchronous machine is designed as shown 

in fig.2, where the magnetic axes of the stator coils are 
shown. The two 3-phase systems are displaced 30"el. 

Using the same method as in [ l]  the self inductance of a 
stator coil or the mutual inductance of any two stator coils in 
an electric machine can be expressed as: 

(1) 
where L,,,,, is the constant part of the self or mutual induc- 
tance, s, is the angle of the magnetic axis of coil x, 8, is the 
instantaneous angle of the rotor, and M, is the rotor angle 
dependent mutual inductance. For self inductances the mag- 
netic axes are equal (s,=sj). All angles are measured relative 
to the magnetic axis of phase a1 as indicated in fig.2. 

Arranging according to the two 3-phase systems, the con- 
stant part Lon*, of the stator inductance matrix I, in (l), is: 

MSsj = LconFt + MB C O S ( ~ ~ ; S ~ S ~ )  

0885-8969/95/$04.00 Q 1994 IEEE 
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13&0) is the well known Park's transformation matrix from 
Odq-values to phase values: 

(7) 

The total transformation matrix 1 can now be formed with 
- T, as the upper left part of the matrix, and a unit matrix Y as 
the lower right part. The rest of the matrix has zeroes in all 
positions. 

T =  (8) 

After including the rotor circuits in the inductance matrix, 
a trivial but cumbersome matrix-multiplication with subse- 
quent trigonometric reductions yields the transformed induc- 
tance matrix 1, = 1 t L 1, 

0 U3 - 

-M2 
0 

c2 
Fig. 2 .  2*3 phase synchronous machine 

I 
~ 

Mz 0 M ,  L, M ,  
I 

-M2 M2 I MI M ,  L, 

L o , ,  = 

The total stator inductance matrix L is thus the cosine term 
in (1) plus the above constant matrix Lon*, where the con- 
stants L,, M,, and M, are defined below. 

Ls = 's + M A  (3) 
M ,  = m, + MA cos(2d3)  (4) 
M2 = m2 + MA cos(ld6) ( 5 )  

The quantity 1, is the leakage inductance of a stator coil, 
and MA is the average value of the self inductance of a coil 
minus the leakage inductance. The leakage inductances m, 
and m2 are the stator mutual leakage inductances [2], and 
they account for that part of the mutual inductance, that does 
not cross the air gap. These inductances are a supplement to 
the traditional synchronous machine theory. They originate 
primarily from the mutual inductance of stator windings 
sharing the same slots. The stator leakage inductance matrix 
1 is thus identical to L+on,, in ( 2 )  with all capital letters 
replaced with lower-case letters. 

Any number of coils can be chosen to represent the rotor 
circuits. In this paper a rotor representation with one field 
winding F, and one damper winding D and Q in each axis is 
chosen. The self and mutual inductances in the rotor are con- 
stants, and the mutual inductances between stator and rotor 
vary sinusoidally with the instantaneous rotor angle 0,. 

B .  Mode l  transformation. 
The eigenvectors of the stator inductance matrix were 

identified, normalized, and arranged in the extended Parks 
transformation matrix I,, which will diagonalize the stator 
inductance matrix, so that all mutual couplings within the 
stator itself will disappear. 

, 

L= (9) 

where the stator inductances are expressed using the con- 
stants below: 

L, = L,T - M, + 6 M z  + 3 MB (10) 
L, = L,T - M ,  + 6 M 2  - 3 M ,  (1 1) 
L,  = L, = L, - M ,  - 6 M 2  (12) 
L,, = L, = L,T + 2 M ,  (13) 

As can be seen, the special advantage of this extended 
Park's transformation is that it transforms the machine stator 
into a circuit where only one stator coil in each axis links 
the rotor. The indices (na-Odq) are explained at the end of 
this section. 

Using (3)-(5) and the auxiliary constants: 
M d =  3 (MA + M B )  (14) 
M , =  3 (MA - M,) (15) 
1, = 1, - m, + 6 m2 (16) 
1, = I, - m, - 6 m 2  (17) 
I , =  1, + 2 m ,  (18) 

L,  = l n  Md (19) 
L, = 4 + Mq (20) 
L,=  L,=  la (21) 
L,  = L,  = 1, (22) 

the expressions (lo)-( 13) can be simplified into: 

The following set of matrix equations describe the machine 
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behaviour under steady-state, as well as under dynamic and 
transient conditions. 

&=L& 
4 = RZ, + O(l/w_T'pTJ &$ +p&$ 
z, = &t (l/w _T1 p p  & 
p e  = w 
J P O  = T = ~  - T,, 

where the speed voltage term (I/@ If P I )  is: 

l /w T' pT = 

An examination of the matrix equations (23)-(27), together 
with the matrices (9) and (28), show that the transformation 
has split the machine equations into two Odq systems - 
respectively called the normal system (indices no, nd and nq) 
and the anti system (indices aO, ad and aq). The names 
'normal' and 'anti' are chosen since the currents in the normal 
system support each other thereby creating a normal 
rotational field in (he air gap, and since the currents in the 
anti system oppose each other, thereby only leaving leakage 
fluxes in the machine stator. 

Note that the equations for the normal system are corn- 
pletely identical to the equations of a standard 3-phase syn- 
chronous machine. All modelling techniques (rotor model- 
ling, representation of saturation, parameter identification 
etc.) known from 3-phase synchronous machine modelling 
can therefore be used directly without any modifications. 

III. MACHINE PARAMETERS. 

With a machine model now derived the next problem is to 
get parameters for the model. Preferably these should be 
determined from the standard data set supplied by the manu- 
facturer. Only the d-axis parameters are determined here, the 
q-axis parameters can be determined likewise. 

The rotor circuit base values have been selected, so that 
the equivalent circuit (fig.3) of the machine nd-axis will be 
galvanically coupled. 

operational inductance of this circuit is: 
Using Laplace-domain equations it can be 

1 +K,s +Q2 
L&) = L, 

1 + K$ + K ~ S ~  

where the K, constants are defined as: 

Fig. 3. nd-axis equivalent diagram. 

Kl = T D + T F + ( - + - ) -  1 1 M d l n  

RD RF Lnd 

TF TD Md ' n  

RD RF Lnd 
5 = T D T F + ( - + - )  - 

1 1  K3 = T D + T F + ( - + - ) M d  
RD RF 

TD 

' D  RF 
K4 = T D T F + ( A + - ) M d  (33) 

and where the leakage time constants are defined as: 
TD = lJR, (34) 
TF = 1JRF (35) 

According to [3] the manufacturer must supply the follow- 
ing standard data set for a 3-phase synchronous machine: 

All data are assumed to have been obtained in a non-satu- 
rated condition. Saturation is to be included later on in the 
machine main reactances M, and M,, as these are the only 
reactances which are seriously subject to saturation. 
Since the machine under consideration in this paper is a syn- 
chronous machine with two 3-phase systems, all tests are 
assumed to have been performed with 3-phase systems 
connected, being respectively short-circuited or open-cir- 
cuited, whenever [3] requires this to be the case for the 3- 
phase machine. 

According to [4] the d-axis open-circuit time constants Tdt 
and T,," can be obtained by solving the following two 
coupled equations (36)-(37). 

shown that the TI TI1 - TITNXd (37) d o d o -  d d ,  
xd 

(29) The equations (36)-(37) actually apply to 3-phase 
machines, but as explained in the end of section 1I.B they 
can be used directly without any modifications due to the 
special transformation. 
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these data do not contain any information regarding the 
coupling between the two 3-phase systems (i.e. the factor 
mJ. It is therefore necessary to make an assumption if stan- 
dard machine data are to be used. 

A reasonable assumption is, that the ratio between m, and 
m2 is approximately the same as the ratio between the MA 
terms in (4)-(5); i.e.: 

m2 = m, cos(d6)/cos(2d3) = -&m, (50) 

This is a reasonable assumption since the ratio between the 
MA terms is determined by the geometrical configuration, 
and the same geometry applies to the mutual leakage induc- 
tances. The consequence of this assumption is that the anti 
system inductance is equal to the zero sequence inductance. 

By multiplying all reactances with the machine base impe- 
dance Zbase, and dividing with the rated electric angular veloc- 
ity 0, the corresponding inductances in physical values are 
calculated. 

= x d  ' basdm (38) 
1, = XI Zba& (39) 

Now the operational inductance in the nd-axis can be 
expressed as: 

I I1 2 ( 1  +TLs)(l +T:s) 1 +(T:+T:'>s + TdTdS 
LJs )  = L,  = L,  

( 1  + ~ h s ) ( i  + T L ~ )  1 + (T~~+T:& + T&T$S~ 

(40) 
As stated in (19) the total nd-axis inductance L,, in steady- 

state is the sum of the stator leakage inductance 1, and the 
mutual inductance M,. Thus: 

(41) 
A comparison of the two above expressions (29) and (40) 

K ,  = TL + TIL (42) 
K ,  = T &  TI: (43) 
K ,  = T&" + TILo (44) 
K ,  = T&,, TILo (45) 

L, = 1, + Md @ M d =  L, - I?,, 

for Lnd(s) shows, that the following relations must apply: 

Manipulating (30)-(33) and (42)-(45) makes it possible to 
reduce them into (46)-(49), where (46)-(47) only contain the 
unknown quantities T, and T,. The equations (46)-(47) are 
easily solved in the same way as (36)-(37), and with the 
known values of T, and T, the two remaining equations 
(48)-(49) are a set of linear equations with respect to R;' 
and R;', which is simple to solve. 

The second order equations stated above always have a 
solution provided the data specified are consistent. If not, 
this means, that no set of model parameters exist for this 
equivalent diagram (fig.3) with exact correspondence to the 
machine impedances and time constants. 

Now the model parameters have been determined for the 
nd-axis. The nq-axis parameters follows simply in the same 
way, and the parameters for the zero sequence axes nO and 
a0 are easily determined from the zero sequence impedance. 

Thus the only problem left is to obtain parameters for the 
ad and the aq axes. At this point it must be noted, that since 
the standard data sets are defined for 3-phase machines, 

(51) 

Preferably a simple standard test should be developed and 
specified to determine 1, exactly. 

IV. CONVERTER MODEL. 

A .  Converter description. 
The six-pulse AC-DC converter (fig.4) is a well known 

thyristor configuration, for which the AC side steady-state 
conditions are described by the following set of equations 
[SI. These equations are based on an assumption of an infi- 
nite DC circuit inductance; i.e. a constant DC current. This 
phasor model is used in a variety of simulation programs. 

2u + sin(2a) - sin(2(a+u)) 
cos(2a) - cos(2(a + U ) )  

(53) fan('pmJ = 

In = Im - 8 F?l ( 5 5 )  
x 2n(cos(a) -cos(a +U)) 

where: 

I l l  I 

Fig. 4. Six-pulse AC-DC converter. 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on February 9, 2010 at 11:21 from IEEE Xplore.  Restrictions apply. 



130 

e -j(n+l)a - e  -j(n+l)(a+u) e -j(n-l)a - e  -j(n-l)(a+u) 
Fn = (56) 

n + l  n-1 

and where the phase of E, is referred to the respective com- 
mutating voltage U,,,. The quantity a is the ignition delay 
angle, U is the commutation overlap angle, and qtOt is the 
power angle between the fundamental frequency current I, 
and the commutating voltage U,,,. 

Likewise the following steady state relation applies on the 
DC side: 

U D C  -RcoJDc = R d D C  + U,, (57) 

and 

Section 1V.D shows how to determine the commutating 
inductance U,,,, and section V.A and V . B  shows, how to 
determine the commutation inductances. 

B .  Fundamental frequency model. 
The converter fundamental frequency conditions are as 

shown in the vector diagram in fig.5 with U,,,, I, and qtOt. 
The phasor U,,,, is the converter fundamental frequency ter- 
minal voltage. When seen from the infinite bus (U,,,) the 
converter could be replaced with a Thevenin equivalent with 
the (variable) Thevenin inductance L,, and the Thevenin 
voltage UTh. 

The Thevenin voltage U,, is determined as the active part 
of the commutating voltage a,,; i.e. U,, is the projection of s,, in the direction of &. 

'Th  = g o m , a c t .  = &om cOs(%os exP( j%o> (59) 
LTh = sin(%s ucon/(*d,)* (60) 

This Thevenin equivalent is however supposed to be con- 
nected directly to the infinite bus behind the commutating 
inductance L,,,, but in any realistic simulation this node is 
not available. Instead the only available node is the converter 
terminal. Therefore the converter equivalent must be con- 
nected here. 

This leads to the problem that the converter equivalent 
inductance must be adjusted so that there still is the correct 
Thevenin inductance between the (imaginary) infinite bus, 
behind the commutation inductance, and the converter The- 
venin source. This leads to the inductance L,,, of the con- 
verter equivalent. 

Leon = LTh - Lcom (61) 

Thus a Thevenin equivalent, with the Thevenin voltage U,, 
and the inductance L,,,, will inject the same fundamental fre- 
quency currents into the network as the actual converter. 

C. Representation of harmonics. 
The general flaw with this model, as well as with all other 

converter models that do not include a physical model of 
each thyristor, is that it only includes the fundamental fre- 
quency terms. 

If however harmonic currents with the same amplitude and 
phase as the converter harmonic currents are injected at the 
converter terminals into the commutation inductance and 
thus into the network, then the harmonic effects of the con- 
verter will be represented by this current injection. This 
scheme can be used to include harmonics in the model 
described above. 

Now if a harmonic current source is connected to the con- 
verter terminals, then these currents will be split between the 
commutating inductance L,,, and the converter equivalent 
inductance L,,, according to the current division ratio 
between these inductances. This happens regardless of the 
commutating voltage a,, and the converter Thevenin vol- 
tage UT,, since these both are fundamental frequency voltage 
sources and thus constitute a short-circuit to ground for all 
harmonics. See fig.6 for the total equivalent diagram. 

The harmonics can therefore be included in the converter 
model by injection of the harmonic currents (55) rescaled by 
the harmonic scaling factor harmfact, which is the reciprocal 
of the current division ratio. 

hmmfact = ( L c o m + L c o J L c o n  (62) 
This harmonic scaling factor ensures that exactly the cor- 

rect amount of harmonic currents are injected into the net- 
work. The surplus is short circuited to ground through the 
converter fundamental frequency equivalent. 

In phasor domain simulation programs it is necessary to 
include each harmonic individually, and therefore it is pos- 
sible to decide exactly how many harmonics to include. In 
real time domain simulation programs this is also possible, 
but here another possibility is to include all harmonics in one 
single operation. 

This is possible since it is possible to determine the exact 
line current with all harmonics as well as the fundamental 
frequency current. The difference between these two currents 
must then be all the harmonic currents (fig.7), and 

4 

Fig. 5. Fundamental frequency phasor diagram. 
Fig. 6. Converter equivalent diagram. 
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i 
Fig. 7. Converter line, harmonic, and fundamental fre- 

quency currents. 

these currents must be rescaled with the harmonic scaling 
factor harmfact. 

In a simulation of the motor drive in fig.1 this converter 
model must be used 4 times; once for each converter. 

D. Commutating voltage. 
The model described above represents the converter inclu- 

ding any chosen number of harmonics. An evaluation of the 
equations shows, that one of the most important values to be 
known is the commutating voltage &,,. Fig.5 shows that the 
following relation must apply: 

u c o m  cos((p~oS = ' term c o s ( c ~ , o 3  (63) 
It is straight-forward to determine l&,, - and thereby l&,, 

using (63) - if the model is implemented in a phasor domain 
simulation program, since the voltage phasor is a variable 
which is inherently available regardless whether there are 
any harmonics included in the model or not. If however the 
model is implemented in a real time domain simulation pro- 
gram then it is necessary to perform some sort of voltage 
detection in order to determine the voltage phasor. This can 
of course be performed at the converter terminals, but if har- 
monics are included in the model then the phasor detection 
will be troubled by the presence of the harmonics. 

For this reason it is desirable to apply the voltage detection 
directly to the commutating voltage, but as already explained 
this is not possible, since this voltage is at an imaginary 
node behind the commutation inductances. Fortunately there 
is a small work-around for this problem. 

The insertion of two inductances in series - one with minus 
the estimated commutating inductance L',,, and the other 
with plus this value - between the converter equivalent and 
the converter terminal (see fig.8) does not change the behav- 
iour of the network, since this detection circuit is a 

detection nodes PHIn -1 
Fig. 8. Converter AC side equivalent diagram with 

detection circuit. 

perfect short circuit, but now the voltage at the middle point 
of this circuit is identical to the commutating voltage pro- 
vided the value of the estimated commutating inductance is 
correct. This is a pure fundamental frequency voltage, which 
is easy to detect. 

A secondary advantage with this detection node is that it 
can be used to verify that the estimated commutating induc- 
tance L',,, is correct. This is important since this value is 
used in the converter equivalent. If the estimated 
commutating inductance is wrong, and if harmonics are 
included in the simulation, then the voltage at the detection 
node will not be purely fundamental frequency. Thus by 
monitoring the harmonic contents at this node it can be 
determined whether the estimated commutating inductance is 
correct. 

V. COMMUTATING INDUCTANCES. 

A .  Network commutating inductance. 
The network commutating inductances are determined by 

the network and primarily by the transformer that supplies 
the converter (fig. 1). The transformer leakage inductance (the 
short circuit impedance XSh) is a good measure for the net- 
work commutating inductance even though the network 
behind the transformer also accounts for a small part of the 
commutating inductance. 

B .  Synchronous machine commutating inductance. 
Now the 2x3-phase synchronous machine commutating 

inductance must be determined from the machine parameters. 
The easiest way to do this is to recall, that the commutation 
process is a subtransient process, so it must be possible to 
determine the commutation inductance matrix L,, in phase 
values from the subtransient inductance matrix r' in the rotor 
reference frame by transforming this matrix back to phase 
values using the extended Parks transformation. 

where: 
Lorn = m d  1"Z" (64) 

(65) l"= DiugonalMatrix[ {l,,, I d ' :  lqf:  I,,, 1, 12 ] 
A calculation of Lo, shows, that the self and mutual 

la1 = ( I ,  + 1, + lmr" + ldeV" cos(28J) / 3 (66) 
lbI = (I,, + 1, + lmr" + ldevevll ~ 0 ~ ( 2 8 ; 4 d 3 ) )  / 3 (67) 
lalbl = (2 1, - la - l,,," + 2 lde,," ~ 0 ~ ( 2 8 ; 2 d 3 ) )  / 6 (68) 

E,," = ?h(lfl*" + 1,'Y (69) 
l d e v e y ( l  = %(lfld'? - lnq'> (70) 

inductances of e.g. phase a1 and bl is: 

where: 

For any given rotor angle 8, the instantaneous commuta- 
tion inductance L,,, between phase a1 and b l  can now be 
determined according to the following expression. 

= %(la + lavr"+ ldev '1~~s(28 ,+d3) )  
Lcom,olbl = %('a1 +'bI -2 l a lb l )  

(71) 
It is noted that the anti sequence inductance 1, appear in 
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Line voltage Ualcl (V) & Phase current I,, (A) 
-4 

5 10 1s 20 25 r) 3s 
-2000 

4 0  

Fig. 9. Measured voltage and current. Time (ms) 

Line voltage Ualcl (V) & Phase current I,, (A) 
w m ~  

-2wo 

Fig. 10. Simulated voltage and current Time (ms) 
with all harmonics. 

Line voltage Ualcl (V) & Phase current I,, (A) 
-i 

q!.+ .................. N...+ .......... * 

- D  c. 10 11 V 1 x1 36 3 0  
-2003 4 

Fig. 11. Simulated voltage and current Time (ms) 
with harmonics up to 37'h. 

the commutation inductance expression. This was to be 
expected since the anti sequences are excited during commu- 
tation. Since the amplitude of the sinusoidal variation in (71) 
is small compared to the constant terms for non-salient pole 
machines, the sinusoidal part is disregarded in the following. 

VI. PRACTICAL RESULTS. 

A set of current and voltage curves were measured at a 7.2 
MW feed water pump motor at the Fynsvaerket Power Plant 
in Odense, Denmark (fig.9). Because of a limited bandwidth 
in the voltage measuring equipment, high frequency terms in 
the voltage peaks are not visible. 

The synchronous machine model and the converter phasor 
model was implemented in EMTP (Electro Magnetic Tran- 

sients Program). Shown here are two simulations of the 
measured steady-state (fig. 10 & 11) with respectively all 
harmonics included, and harmonics up to the 37'h included. 
Except for the missing ripple at the simulated currents - due 
to the fact that the phasor model is based on an assumption 
of constant DC current - the simulations show within a mar- 
gin of 4 % the same voltage and current traces as the 
measured curves when considering amplitude, phase, posi- 
tion of voltage peaks, and the number of harmonics 
included. It seems therefore that the models are sufficiently 
good representations of the machine and the converter, and 
that the EMTP implementation works. 

V II. CONCLUSION S. 

A model of the 2x3-phase synchronous machine has been 
developed and tested, and a consistent parameter identifica- 
tion procedure based on standard manufacturer data has been 
derived. A phasor model of the 6-pulse line-commutated 
AC-DC converter with representation of any number of AC 
side characteristic harmonics has been developed. The 
models have been implemented in EMTP, and have been 
verified in the steady-state by comparing measured and 
simulated results from a 7.2 MW feed water pump motor. 
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