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Detailed Noise Statistics for an Optically 
Preamplified Direct Detection Receiver 

Soeren Lykke Danielsen, Benny Mikkelsen, Terji Durhuus, Carsten Joergensen, and Kristian E. Stubkjaer 

Abstract4Ve describe the exact statistics of an optically pream- 
plified direct detection receiver by means of the moment generat- 
ing function. The theory allows an arbitrary shaped electrical 
filter in the receiver circuit. The moment generating function 
(MGF) allows for a precise calculation of the error rate by 
using the inverse Fast Fourier transform (FFT). The exact results 
are compared with the usual Gaussian approximation (GA), 
the saddlepoint approximation (SAP) and the modified Chernoff 
bound (MCB). This comparison shows that the noise is not 
Gaussian distributed for all values of the optical amplifier gain. 
In the region from 20-30 dB gain, calculations show that the GA 
underestimates the receiver sensitivity while the SAP is very close 
to the results of our exact model. Using the MGF derived in the 
article we then find the optimal bandwidth of the electrical filter 
in the receiver circuit and calculate the sensitivity degradation 
due to inter symbol interference (ISI). 

I. INTRODUCTION 
EVERAL approaches have been used to calculate sensi- S tivities of optically preamplified direct detection receivers. 

Personick [ l ]  used the Chernoff bound to evaluate an upper 
bound on the error rate assuming Gaussian distributed ampli- 
fier noise. Recently [2], the modified Chernoff bound (MCB) 
[3], [4] has been used and Yamamoto uses the well known 
Gaussian approximation (GA) [51. 

In this article a complete description of the detection process 
including the filtering in the electrical receiver circuit is given 
by means of the moment generating function (MGF). This 
allows for a precise calculation of the bit error rate using the 
inverse Fast Fourier Transform (FFT). We will refer to this 
method as MGF-FFT. For comparison the receiver sensitiv- 
ities are estimated using the MCB, GA and the saddlepoint 
approximation (SAP) [6]. Assuming that the electrical filter in 
the receiver circuit consists of a perfect integrator, numerical 
calculations show that applying the SAP to the MGF one 
obtains a more correct approximation than is obtained with 
GA and MCB. That GA underestimates the bit error rate 
is also concluded in [7] where GA has been compared to 
the noncentral-negative-binomial (NNB) distribution. Finally, 
SAP is used to calculate sensitivities when the electrical 
filtering consists of a 3rd order Butterworth filter. 

11. RECEIVER MOMENT GENERATING FUNCTION 

The receiver which is investigated here is the standard 
configuration shown schematically in Fig. 1. Pulses at rate 
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Direct detection receiver configuration. Fig. 1. 

B = 1/T, T being the bit period, arrive at the optical 
preamplifier that is described by the noise figure, F ,  and the 
gain, G. The coupling efficiency at the input of the amplifier 
is Fin.  The amplifier is followed by a square shaped optical 
filter of bandwidth Bo. Note that if no filter is used, Bo is 
the bandwidth of the amplifier. A pin diode with the quantum 
efficiency q is followed by an electrical filter with the impulse 
response hR(t)  that shapes the signal. This signal is then 
sampled and a decision is made, whether a mark or a space 
has been received. The loss between the output of the amplifier 
and the pin diode, i.e., the coupling loss at the amplifier output 
and the optical filter loss, is rout. 

Following [8] the distribution of the photon number at the 
preamplifier output is taken to be that of the population of a 
birth-death-immigration (BDI) [ 9 ] .  Furthermore, we assume 
a Poisson distributed input signal to the optical amplifier 
for which the probability that exactly N photons, couples 
to the amplifier in an infinitesimal time interval At centered 
around the time t is given as exp ( - -Ar in ) /N! .  Here 
A = A ( t )  At and A ( t )  is the average rate at which the photons 
arrive. This rate equals p ( t ) / h w ,  where p(t)  is the incident 
signal power while h and w are Planck's constant and the 
light frequency, respectively. As before, Fin is the coupling 
efficiency at the amplifier input. From the BDI process we can 
derive a partial differential equation, as shown in the appendix, 
governing the MGF of the number of photons that leave the 
optical amplifier 

where ae is the stimulated emission rate per photon. a, is 
the absorption rate per photon and asp = a,BoAt is the 
spontaneous emission rate per unit time. MN(s ,  t )  is the mo- 
ment generating function that corresponds to the distribution 
of photons at the output of the amplifier when the number of 
photons that couples to the amplifier input during the time, 
At, centered around t ,  is N .  
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The solution to the differential equation above is given as 

[ 1 + No(l  - e S )  I B o A t  
1 + ( N ,  - G)(I - e') 

MN(s ,  t )  = 

where No = F/2(G-1). The noise figure, F ,  is given as twice 
the spontaneous inversion parameter, nSp = a,/(a, - oa), 
and the gain, G, is given as exp((o, - a a ) T t )  when oe 
and oa are assumed time independent. Tt is the transit time 
of the amplifier and it should be noted that the time, t ,  in 
( 2 )  corresponds to the time at which the photons leaves the 
amplifier i.e., the conversion t --f t+Tt is made going from (1) 
to (2) .  Assuming that N is Poisson distributed, as described 
above, we can find the MGF of the random variable, Y ,  which 
represents the number of photons at the amplifier output 

which leads to 

G( 1 - e') 
.exp -AI'in [ 1 +  No(l - e s )  

In the above equation, GAr;, signifies the average number 
of signal photons while NO is the average number of sponta- 
neously emitted photons per mode. To include the loss between 
the amplifier output and the detector, we simply multiply 
these average numbers by the loss factor, rout. Similarly, 
the quantum efficiency of the detector is accounted for by 
multiplying by 7. To include the electrical filter response, 
hR, of the detector in the expression for the MGF, we do 
as follows: the time axis is divided into infinitesimal intervals, 
At ,  centered around t j .  If a constant value of j ,  k photons 
leave the pre-amplifier at time t j ,  then ideally IC electron 
counts are received by the electrical circuit. When deducing the 
moment generating function, we treat these received electron 
counts as independent pulses passing the receiver circuit at 
time t j .  Therefore, they are weighted as exp(shR(t0 - t j ) k )  
instead of exp(sk) [ 101 where to is the sampling time. Thereby, 
the MGF at the sampling time to corresponding to the average 
number of electron counts arriving in the interval At centered 
around t j  is written as 

k=O 

= MY(ShR(t0 - t j ) ,  t j )  (4) 

where Py ( k )  is the photon number distribution at the amplifier 
output. 

Since the electron amounts are statistically independent the 
total MGF at sample time to is the product of all the MGF 
each covering different time intervals At  

MY(% t o )  = r p Y ( S ,  to, t j )  ( 5 )  
j 

In (6) the signal power incident upon the preamplifier is 
given as xi bih,(t-iT) where hp( t )  is the optical pulse shape 
normalized so that s_'," hp( t )  dt = 1. bi is the energy in the ith 
bit, that is, either the energy in a binary mark, El ,  or in a binary 
space, EO. The relation T = Eo/E1 defines the extinction ratio. 
The factor 2 in the first part of the expression accounts for the 
fact that amplifier noise is added in two polarization's. 

It should be noted that by series expansion of the expression 
(6) the same noise variance components as those of Yamamoto 
[ 5 ]  can be derived. 

111. CONDITIONED MGF OF RANDOM PULSE-SEQUENCE 

With (6) we have a MGF for an optical preamplifier direct 
detection receiver that includes a filter in the receiver. To 
complete the model we modify (6) to allow for random 
bit sequences. Assuming a sequence consisting of 2n + 1 
binary symbols with equal probability for marks and spaces, 
the probability of a given sequence is 1/2(2nf1). Averaging 
over all possible sequence relation's and with the bi being 
independent and identically distributed random variables we 
get by conditioning bo 

where 

Equations (7) and (8) give a complete statistical description 
for the number of electron counts at the decision circuit due 
to the optical signal. In addition to these electron counts 
the electrical circuit itself produces thermal noise which we 
assume to be Gaussian distributed. The additive Gaussian noise 
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at the input to the decision circuit is signal independent and is 
therefore modelled as a random variable X with MGF [4] 

(9) 

Above a2 is the Gaussian noise variance so that o equals 
the number of thermal electron counts generated in T sec. f 
is the frequency normalized to the signal rate B and H R ( ~ )  is 
the Fourier transform of h ~ ( t )  while e is the electron charge. 
Nth is the noise spectral density of the receiver circuit, chosen 
to give a back to back sensitivity of - 21 dBm at B = 10 
Gbit/s ( r  = 0). 

At this point, Y ,  is the random variable that represents the 
number of electron counts due to the filtered signal and noise 
originating from the optical preamplifier. X is the random 
variable that represents the thermal noise generated in the 
electrical receiver circuit. Letting the random variable, 2, 
represent the number of electron counts at the input to the 
decision circuit, 2 results by adding Y and X .  Therefore 
the MGF of 2 for marks and spaces can be written as 
Mz0, , ( s )  = M y ( s ,  tolbo = Eo, l )Mx(s)  where the time 
dependence of MZ has been suppressed for simplification. 

IV. SADDLEPOINT APPROXIMATION AND UPPER BOUND 
(MCB) ON THE AVERAGE ERROR PROBABILITY 

The errors at the decision occur with the probability 
B E R  = p0PeO + plPel where po, 1 are a priori probabilities 
for marks and spaces taken to be a half. PeO and P e l  are 
conditional error probabilities that can be found directly from 
the MGF using the FFT or by approximations such as MCB 
and SAP. 

P,o and Pel can be written as 
+m 

PeO = ~ z o ( z )  dz (10.1) 

Pel = Pz, (x) dz (10.2) 
D 

.I_, 

Peq = (-l),- / -MZq(s )e - sDds ,  

where D is the decision threshold and PZO(Z) and Pzl (z )  are 
the conditional probability density functions that can be found 
from (7)-(9) by using the inverse Laplace transform. Carrying 
out the integration in (10.1-2) gives 

cq +io0 1 
2lri cq- - ioO s 

q = 0, 1; CO > 0, c 1  < 0 (11) 

CO and c1 in (11) are chosen to be the saddlepoints of the 
integrals so that the contour of the integrals passes through 
these saddlepoints. By series expansion of the integrals we get 
the saddlepoint approximation [6] 

pe, s [ 2 ~ k i ( s , ) ] - ~ / ~  exp [qq(s , ) ]  q = 0, 1 (12) 

where the functions 9 0 , 1  are defined as 
1 

exp(9,(s)) = (-l)q-Mz,(s)exp(-sD) q = 0, 1 
S 

(13) 

in which SO, 1 in (12) are the saddlepoints that are found by 
setting the derivatives of 90 and 9 1  to zero. Finding these 
s-values and the optimal threshold, enables an approximation 
of the error rate. 

The MCB is found by evaluating the upper bound of the 
integrals in (1 1). This is done by using that the absolute value 
of an integral never exceeds the value of the absolute integral. 
The result is [3], [4] 

q = 0, 1. 

Again this bound is minimized with respect to SO, 1 and D. 

v. CALCULATIONS AND DISCUSSION 

In case the electrical filter is that of an ideal integrator of 
duration T ,  sensitivities have been calculated using all the 
methods outlined above, i.e., SAP, MCB, GA and MGF-FFT. 
The latter will also be referred to as the exact method. The 
FFT used in the calculations can determine the probability 
density function at photon probabilities down to lop2’ which 
is considered acceptable to predict B E R  of lo-’. A noise 
figure of 3 dB is assumed for the optical amplifier and a signal 
rate of 10 Gbit/s ( r  = 0) is used in all cases. System losses 
are neglected so that rin = 1 and rout = 1 while 7 = 1. 
The optical pulse shape is taken to be a NRZ sequence. Two 
values of the optical filter bandwidth have been investigated. 
For optical filter bandwidths of 10 and 125 GHz, the mean 
number of photons necessary to achieve a B E R  of lo-’ are 
given in Fig. 2(a) and 2(b), respectively, as a function of the 
optical amplifier gain. 

The exact method and the SAP are almost identical for 
all gain values. For large gain values the exact sensitivities 
and those found by using SAP both converge towards 41 and 
62 counts for optical filter bandwidths of 10 and 25 GHz, 
respectively. 

The MCB is more complex because the factor 
exp(s202/2)/ (sa), which is found by inserting (9) and 
(13) into (14), is gain dependent since the absolute values of 
SO, 1 decreases when G is increased. Hence, for larger gain 
values so is less than one and, consequently, the bit error 
rate calculated from the MCB will increase. 

The results indicate three characteristic gain regions for the 
Gaussian approximation: low gain values (0-20 dB), medium 
gain values (20-30 dB) and gain values larger than 30 dB. 
For low amplifier gain values the Gaussian distributed thermal 
noise dominates the optical amplifier noise. As a result the 
curves in Fig. 2(a) and 2(b) are identical in this region. 
For amplifier gain values between 20 and 30 dB (typical 
gain values for an optical amplifier) the estimate of GA is 
different from the prediction of the exact method. In this gain 
region it is seen that GA predicts a higher receiver sensitivity 
although the worst case deviation is only 9 counts (0.6 dB) 
when Bo = 10GHz and 4 counts (0.23 dB) when Bo = 
125 GHz. Comparison of Fig. 2(a) and 2(b) shows that the 
difference between the GA and the exact method reduces for 
the larger optical filter bandwidth. For large gain values the 
GA converges towards 42 and 64 counts for optical filter 
bandwidths of 10 and 125 GHz, respectively. As in [7] we 
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Fig. 2. Sensitivities expressed by the mean number of counts at 10 Gbit/s 
and an optical amplifier noise figure of 3 dB. (a) is for Bo = 10 GHz while 
(b) is for Bo = 125 GHz. 7 = 1, T = 0 and the filter i s  that of an ideal 
integrator. Results are shown for S A P  (. . ..), Gauss (-), MCB (- - - -), and 
exact method (---). 

therefore conclude that even in the limit (many counts) the 
distribution of electron counts is not that of a Gaussian random 
variable, despite of the predictions of the central limit theorem. 

The discussion above and Fig. 2(a) and 2(b) shows that 
SAP is a good approximation while for gain values larger 
than 20 dB, MCB clearly underestimates the sensitivity. Since 
the complexity of using the SAP and the MCB is the same, 
SAP is the preferable method. 

The advantage of the GA is its simplicity. However, in more 
complex systems such as wavelength division multiplexing 
(WDM) systems where crosstalk is present the GA becomes 
more complex while the complexity of the SAP and the MCB 
remains the same: for statistically independent signals the 
MGF for each of these signals should simply be multiplied 
to form the MGF that is used in the SAP and the MCB. 

Furthermore, the GA cannot predict the errors caused by 
nonideal electrical filtering such as intersymbol interference 
(ISI). The (7)-(9) presented in this article do on the other 
hand allow for any electrical filtering. 

As an example of using (7)-(9) with a more realistic elec- 
trical filter we have calculated sensitivities by implementing a 
3rd order Butterworth filter in the MGF. The electrical filter 
bandwidth is optimized by calculating the sensitivities of the 
receiver when the filter bandwidth is swept from 0.6-0.9 times 
the bit rate, B, with a step of 0.005B. This is done for the case 
of an optical preamplifier gain of 40 dB and a signal power of 
-41 dBm coupled to the preamplifier. The sampling time is 

300 3 1  

i ' ' ' ' l ' ' ' ' l ' ' ' ' ~ ' ' ' ' ~ ' ' ' ' ~  

15 20 25 30 35 40 

Gain (dB) 
Fig. 3 .  Comparison of sensitivities using 3rd order Butterworth filter (-) 
and an ideal integrator (. . ..), respectively. B = 10 Gbit/s, Bo = 125 GHz, 
7 = 1, F = 3 dB and T = 0. 

chosen as the maximum point of the convolution of hp( t )  and 
h ~ ( t )  and at the sampling time the convolution is normalized 
to one. This leads to an optimal filter bandwidth of 0.695 times 
the bit rate. In Fig. 3 sensitivities using the Butterworth filter 
and an ideal integrator are compared for an optical bandwidth 
of 10 GHz and a signal rate of 10 Gbit/s (T = 0). The length 
of the bit sequence is 27 - 1. A degradation of the detection 
process due to the non ideal electrical filtering is observed and 
the difference between the curves is as much as 1 dB at low 
gain values and 1.8 dB at high gain values. 

VI. CONCLUSION 

A MGF describing the exact statistics of an optically pream- 
plified direct detection receiver including an arbitrary electrical 
filter have been derived. By applying the inverse FFT, SAP and 
MCB to the receiver MGF, exact and approximated receiver 
sensitivities for different values of the optical amplifier gain 
have been compared. With a perfect extinction ratio, a bit rate 
of 10 Gbit/s, a noise figure of 3 dB and using an ideal integrator 
as the electrical filter we have shown that the SAP gives almost 
exact results; the deviation from the exact results are at most 
1 and 2 photon(s)/bit. With an optical filter bandwidth of 10 
and 125 GHz the SAP underestimates the receiver sensitivity 
by 0.09 and 0.07 dB, respectively. 

lnside the gain region from 20-30 dB the GA predicts 
sensitivities that are up to 0.6 and 0.23 dB worse than the 
sensitivities found by using the MGF-FFT for optical filter 
bandwidths of 10 and 125 GHz, respectively, while outside 
this gain region the GA is very close to the exact results. 

The moment generating function derived in this article 
makes it possible to find the optimal electrical filter bandwidth 
giving the best sensitivity. With a bit rate of 10 Gbit/s the 
optimal bandwidth of a 3rd order Butterworth filter is found 
to be 0.695 times the bit rate assuming a perfect extinction 
ratio, a noise figure of 3 dB and no loss in the system. Using 
this filter bandwidth, the effect of IS1 is analyzed by comparing 
sensitivities using the Butterworth filter and an ideal integrator. 
For an optical filter bandwidth of 10 GHz the sensitivity 
degradation due to IS1 is found to be 1 dB at low gain values 
and 1.8 dB at gain values higher than 30 dB. 
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Finally we emphasize that the methods based on the mo- 
ment generating functions described here is well suited for 
describing crosstalk in WDM networks since the MGF of a 

of the each individual MGF. 

Introducing m’ = m - 1, m” = m + 1 and recognizing 

(A44 

(A4b) 

the following: 

sum of statistically independent signals is simply the product MN(S, t )  = C P N ,  m(t)esm 
m 

i )  s 
APPENDIX 

DERIVATION OF (1) 

In the following the partial differential (1) describing the 
moment generating function of the number of photons that 
leave the optical amplifier is derived. 

As in [8] the output of the optical amplifier is modelled as 
a BDI process with the following birth, death, and emigration 
rates: 

1) oe is the stimulated emission rate per photon. When 
modelling the BDI process this is therefore the birth rate. 

2) oa is the absorption rate per photon. When modelling 
the BDI process this is therefore the death rate. 

3) oSp is the spontaneous emission rate per unit time. 
Since the spontaneous emission rate per mode equals 
the stimulated emission rate per photon, and since the 
number of temporal modes in the time interval At is 
Boat, asp equals oeBoAt. When modelling the BDI 
process oSp is the emigration rate. 

Given that N photons exist at time t ,  PN, ,(t + 6t), denote 
the probability that m photons exist at time t + S t .  Using re, 
aa and asp, PN, ,(t + 6 t )  is found from 

where o(St)/Gt --f 0 as St + 0. 
Letting 6t -+ 0 we get 

m 
_. 

~ M N ( s ,  t )  - ~ P N >  m esm - 
d t  

m 
at 

Equation (A3) can be rewritten into (1) 
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dPN,  m ( t )  - - - [ ( o e  + oa)m + c s p ] P ~ ,  m(t) 

+ [oe(m - 1) + O s p ] p N ,  m-l(t) 
+ [ O a ( m  + 1 ) ] p N ,  m+l(t). 

d t  
Soeren Lykke Danielsen, photograph and biography not available at the time 

(A2) of publication. 

Multiplying with esm and summing over all m greater than 
or equal to zero gives 

~ P N ,  m ( t )  esm 

= - c ( o e  + o , ) m P ~ ,  m(t)esm - o s p Z P ~ ,  m(t)esm 

Benny Mikkelsen, photograph and biography not available at the time of 
publication. 

d t  
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m 

m m 

+ e s c f l e ( m  - 1)PN, m-l(t)es(m-l) 
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publication. + e s c a s p P N ,  m-l(t)es(m-l)  
m 
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