
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 17, 2017

An exact line integral representation of the physical optics scattered field: the case of
a perfectly conducting polyhedral structure illuminated by electric Hertzian dipoles

Johansen, Peter M.; Breinbjerg, Olav

Published in:
I E E E Transactions on Antennas and Propagation

Link to article, DOI:
10.1109/8.391140

Publication date:
1995

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Johansen, P. M., & Breinbjerg, O. (1995). An exact line integral representation of the physical optics scattered
field: the case of a perfectly conducting polyhedral structure illuminated by electric Hertzian dipoles. I E E E
Transactions on Antennas and Propagation, 43(7), 689-696. DOI: 10.1109/8.391140

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13726621?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/8.391140
http://orbit.dtu.dk/en/publications/an-exact-line-integral-representation-of-the-physical-optics-scattered-field-the-case-of-a-perfectly-conducting-polyhedral-structure-illuminated-by-electric-hertzian-dipoles(a69a86c5-67fe-4e39-909a-5548fe96bd23).html


An Exact Line Integral Representation of the 
Physical Optics Scattered Field: The Case of 
a Perfectly Conducting Polyhedral Structure 

Illuminated by Electric Hertzian Dipoles 
Peter M. Johansen, Student Member, IEEE, and Olav Breinbjerg, Member, IEEE 

Abs t~c t -  An exact line integral representation of the electric 
physical optics scattered field is presented. This representation 
applies to scattering configurations with perfectly electrically 
conducting polyhedral struchues illuminated by a finite number 
of electric Hertzian dipoles. The positions of the source and 
observation points can be almost arbitrary. The line integral 
representation yields the exact same result as the conventional 
surface radiation integral; however, it is potentially less time 
consuming and particularly useful when the physical optics field 
can be augmented by a fringe wave contribution as calculated 
from physical theory of diffraction equivalent edge currents. The 
final expression for the line integral representation is lengthy but 
involves only simple functions and is thus suited for numerical 
calculation. To illustrate the exactness of the line integral rep- 
resentation, comparisons of numerical results obtained from the 
surface and the line integral representations are performed. 

,I. INTRODUCTION 
HYSICAL optics (PO) is a well-tried and widely used P technique for approximate analysis of the scattering of 

electromagnetic fields by perfectly conducting structures. The 
PO technique consists of two steps: First, the exact surface 
current on the structure is approximated by the PO surface 
current which is equal to 2A x I? on the illuminated part of 
the structure and zero elsewhere (A cenotes the outward unit 
normal vector of the structure and H* the incident magnetic 
field). Second, the PO scattered field is obtained b) evaluating 
a surface radiation integral of the PO surface cqrrent. The 
reported applications of PO in antenna, as well as radar 
configurations, are numerous. Furthermore, several works have 
addressed various theoretical aspects of PO such as the validity 
of the foundation of PO [l], the accuracy of PO [2], the 
formulation of PO for nonperfectly conducting structures [3], 
asymptotic formulation of PO [4], and removal of shadow 
boundary contributions [5] .  

The purpose of this paper is to present an edge-associated 
line integral representation of the electric PO scattered field. 
The line integral representation provides some advantages 
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in comparison with the surface radiation integral. First, its 
numerical calculation is potentially less time consuming than 
that of the surface radiation integral because fewer sample 
points are generally needed. The precise time reduction will 
depend on the scattering configuration. Second, the line in- 
tegral representation is useful in cases where the PO field 
can be augmented by the physical theory of diffraction (PTD) 
field [6] calculated from incremental diffraction coefficients 
[7], [8], FTD equivalent edge currents [9], [lo], or elementary 
edge waves [ 113 because this calculation also consists of an 
evaluation of a line integral along the edge of the structure. 
By combining the two approaches, it is thus possible to obtain 
an accurate approximation to the exact scattered field from the 
evaluation of one line integral. 

The line integral representation is obtained through a math- 
ematically exact transformation of the conventional surface 
radiation integral for the following type of scattering config- 
uration: The structure must be a perfectly electrically con- 
ducting polyhedron. The incident field must be that of one 
or more arbitrarily oriented electric Hertzian dipoles. The 
Hertzian dipoles and the observation point can be positioned 
almost arbitrarily off the structure; a restriction is introduced, 
however, in the course of the derivation. There are two notes 
to be made concerning this configuration. First, the structure 
can be plane, i.e., a flat plate, and in this case the edge can 
be arbitrarily shaped. Second, from the use of a finite number 
of Hertzian dipoles, several basic radiating elements can be 
modeled, e.g., monopoles, dipoles, and turnstiles. 

Much work addressing the transformation of surface integral 
representations of scattered or diffracted fields into line integral 
representations has been reported. For an account of the 
historical development and a description of the individual 
works, the reader is referred to Rubinowicz [12] and Asvestas 
[13]. Furthermore, a recent paper by the authors [14] reports 
an earlier stage of the work presented herein. 

The present work was inspired by the three papers by 
Asvestas [13], [15], [16]. Asvestas [13] considered the electro- 
magnetic diffraction by an aperture in a perfectly conducting 
plane screen and took as his starting point the Kirchhoff 
diffraction integral for electromagnetic fields as derived by 
Kottler [17]. Through use of a vector calculus theorem [18], 
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Asvestas derived a line integral representation of the mag- 
netic field in front of an aperture illuminated from the back 
by a Hertzian dipole. The key step in the derivation was 
the analytical evaluation of a dyadic integral to obtain an 
explicit dyadic expression. Asvestas also introduced the COT- 

responding dyadic integral for the electric field but did not 
evaluate this. In a recent paper [14], the explicit dyadic 
expression associated with the electric field was reported. 
This expression can be used in combination with Asvestas' 
procedure to express the electric field in terms of a line 
integral for an aperture configuration. In [14] it was also 
employed to obtain a line integral representation of the PO 
scattered field from a perfectly conducting plane structure 
illuminated by a finite number of Hertzian dipoles. Due to 
the procedure employed in [ 141, however, the resulting line 
integral representation therein is subject to restrictions of a 
more severe nature than those found in the present work; 
this is discussed in more detail later. In the present work, 
the dyadic divergence theorem is employed and thus, this 
procedure does not rely on the vector calculus theorem [18] 
used by Asvestas. 

This paper is organized as follows. In Section 11, the 
transformation of the PO surface radiation integral into a 
line integral is erformed for a plane structure. First, the PO 
scattered field Epo,  as given by the conventional surface 
radiation jntegral, is expressed in terms of another surface 
integral E A  which expresses the field in terms of electric 
as well as magnetic surface currents on the structure. To 
accomplish this, the surface integral E A  must be considered 
not only at the observation point itself but also at_the image 
of the observation point. The surface integral E A  is then 
transformed into the Kottler representation which comFrises 
both surface and line integrals. The surface integral IA in 
the Kottler representation expresses the flux of a dyadic 
function 7 through the structure. TWO truncated cones are then 
introduced. The vertices of these coincide with the observation 
and image points, respectively, and the generators extend from 
these points to the edge of the structure; consequently;the 
structure forms the bases of each of these cones, Employing 
the dyadic divergence theorem, the integral I A  :can thus 
be expressed as the sum of a volume integral Iv of the 
divergence of 7 over the volumes of these cones and a surface 
integral f~ of the flux of o_vr the curved surfaces of 
the cones. The volume integral Iv is evaluated to yield two 
contributions: The first of these is the negative of the incident 
field if the source is inside the cone and zero otherwise. The 
second, which is proportional to the solid angle subtended by 
the structure as seen from the observation or image points, 
can be written as a line integral. The remaining surface 
integral f~ is written as a double integral; the outer integral 
is to be evaluated along the edge of the structure while 
the inner, denoted by E, is an integral of the gradient 
of the incident electric field along the generators of the 
cones. - It is the analytical evaluation of this dyadic integral 
W which completes the transformation of the PO surface 
radiation integral. Section III provides an overview of the line 
integral representation. In Section IV a numerical example 

- 

OBSERVATION POINT Fo 
/? 

IMAGE POINT F' 
\ -  . .- 

~ _ -  .- 
Fig. 1. A plane, perfectly conducting plate A illuminated by a Hertzian 
dipole. The unit normal vector 6 is directed into the half-space into which 
the Hertzian dipole is located. The observation point Fo is positioned in the 
same half-space as the Hertzian dipole. The edge unit tangent vector t and 6 
are related via the right-hand rule. The image point F' is the image of Fo 
with regard to the plane of the plate. 

is presented to illustrate the exactness of the line integral 
representation. 

11. DERIVATION OF THE LINE INTEGRAL REPRESENTATION 

In the following, a perfectly conducting polyhedral structure 
illuminated by a finite number of Herpian dipoles is consid- 
ered. The electric PO scattered field Epo is calculated at an 
observation point Fo. Because of the superposition principle 
and the fact that there is no coupling between the PO currents 
on the facets of the polyhedral structure, it is sufficient to 
consider one Hertzian dipole illuminating a plane, perfectly 
conducting plate A. In this case, the plate can be arbitrarily 
shaped. The unit normal vector ii of the plate is chosen to 
be directed into the half-space into which the Hertzian dipole 
is located (see Fig. 1). The half-space includes the plane of 
the plate. It is assumed, however, that the Hertzian dipole is 
not located on the plate itself. Without loss of generality, it is 
further assumed that the observation point Fo is located in the 
same half-space as the Hertzian dipole except on the plate. The 
field in the other half-space can be found using the symmetry 
relations for the field around a plane current sheet [19]. 

The PO scattered field is obtained through evaluation of 
the conventional surface radiation integral (the time factor 
exp( jw t )  is suppressed) 

E P O ( F O )  = 7 ~ ~ x ~ ~ x ~  z ~ ~ ~ X Z ~ Z O ) G ( Z O )  d ~ .  (1) 
J k  

In this expression, the superscript 0 on the curl operators 
indicate: that these act upon the coordinates of the observation 
point, Ro is the vector from the observation point Fo to 
the integration point (see Fig. l),  and Ro is the length 
of this vector. The use of the vector go to describe the 
integration point is in line with the notation of Asvestas 
[ 131 and facilitates the subsequent derivations. Furthermore, 
2 denotes the intrinsic impedance of the ambient medium, k 
is the wave number, and H a  the incident magnetic field from 
the Hertzian dipole. G is the free-space Green's function 

exp( -jkRo) 
4xRo ' 

G(Z0) = 
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Introducing the image point F I ,  i.e., the image of the 
observation point Fo with regard to the plane of the plate 
as shown in Fig. 1, the PO surface radiation inteKa1 (1) is 
now expressed in terms of another surface integral E A ,  to be 
defined below, as in [20] 

E ( Fo 1 -  - Z A ( F o )  + (7 - 2AA). E A ( F I ) .  (3) 

In this expression 7 denotes the unit dyad. The surface integral 
E A  is given by 

,+(FO,I) = Vo?' x A x $ ( j j O , I ) G ( $ , I )  dA 
/ A  

s, z +7V09' x Vo?I x ii x I?(l?oy')G(R'o~') dA (4) 

where ,??+denotes the incident electric field from the Hertzian 
dipole, RI is the vector from the image point FI  to the 
integration point, and RI is the length of this vector. The 
superscript I on the curl operators in (4) indicates that the 
operator acts upon the coordin5es of the image point F I .  It is 
noted that the surface integral E A  ( Fo>') is the electric field at 
the point Fo.' produced by the magnetic and electric surface 
currents, -A x l? and A x Ha, respectively, distributed over 
the plate. Equation (3) states that the PO scattered field at 
the observation point Fo can be determined from the integral 
E'* evaluated both at the observation point Fo and at $e 
image point F'. The reason for introducing the integral E A  
is its close relation to integrals occurring in the analysis of 
diffraction by an aperture in a plane screen. Indeed, E A  (F')  is 
the negative electric field behind the complementary aperture 
to the plate A as determined from the KircJhoff-approximated 
Huygens sources, A x l? and -A x H', in the aperture. 
Asvestas [13] considered the transformation of an integral of 
this type into a line integral, and some of his results can thus 
be used. Expression (4) above for E'A can be transformed into 
the Kottler representation ([13], (6)) 

Jk: 

E ' A ( F O J )  = - 1 [G(l?o~')A. V,??(l?oi') 

- A .  VG(l?o~ ' )E"(~oi I ) ]  dA 
A 

G(Eoi')t^ x Ei(Eoi') d r  . +L 
+ ff .It^. @(l?o~')VG(l?07') a. (5) 

Herein, r denotes the edge of the plate, and t^ is the edge 
unit tangent vector. t^ and ii are related via the right-hand rule. 
Note that the operator Vo>I has been expressed in terms of 
the operator V acting upon the coordinates of the integration 
point on the plate. 

The next step applied by Asvestas for transforming the 
remaining surface integral in (5) into a line integral involves 
the use of a vector calculy theorem [18]. This method is valid 
for ZA(F') but not for E A ( F o )  since the Hertzian dipole is 
located in the same half-space as the observation point Fo. 
In the following, the dyadic divergence theorem is invoked to 
transform both of the integrals dA(F') and ZA(F0)  into line 
integrals. For the integral EA(F') ,  the result is the same as 

OBSERVATION POINT Fo 

HERTZIAN 

IMAGE POINT F' 
\ -  

% _ -  
~ _ -  
\I- 

Fig. 2. Truncated cones V o  and V' with vertices at Fo and F', respec- 
tively. The generators extend from Fo and F' to the edge of the plate. For 
simplicity, only a few generators are shown for V I .  The curved surfaces of 
the cones, Bo and B', have the outward unit normal vectors h g  and h k .  

that of Asvestas; for the integral Z A ( F o ) ,  an additional term 
will be found. 

A. Application of the Dyadic Divergence Theorem 
To use the dyadic divergence theorem, two truncated cones, 

V o  and V I ,  are introduced. These cones have vertices at the 
observation point Fo and the image point F', respectively, 
and the generators extend from these points to the edge of the 
plate A (see Fig. 2). Consequently, the plate A forms the base 
for each of the two truncated cones. The curved surface of 
the cone Vo3' is denoted by Boil. The outward unit normal 
vector of Bo>' is A:?' as shown in Fig. 2. 

The surface integral in the Kottler representation (5) is 
denoted by El', i.e., 

where the dyad F ( l ? o * I )  is 
- - V (  2 0 , I )  = G( $)aI)V,?? (Eo,') I VG(fio,')@ (go,'). 

(7) 
It is observed that the surface integral ff in (6) expresses the 
flux of the dyad 7 out of the base of the cone Vo,  and the 
surface integral f i  in (6) is the flux of the dyad v into the 
base of the cone VI. The volume integral of the divergence 
of 7 over the cone Voi' is denoted by C'' 

cl' = lo,I V . v ( l ? O > I )  dVoiI (8) 

and the flux of the dyad 7 out of the curved surface Bo*' is 
denoted by cl' 

(9) 

Applying the dyadic divergence theorem [21], it is found that 

I A  = qJ -+ I g J .  (10) 

In the expression above, and henceforth, the upper sign applies 
to the superscri t 0 and the lower sign to the superscript I. 
The integrals & and El' are transformed into line integrals. 
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B. Transformution of the Volume Integral $"I 

Since the dyad F(Zo>') of (7) is divergence-free every- 
where except at Fay' and at the location of the Hertzian 
dipole, it will be found that the contributions to the integral 
(8) stem from these points. Insertion of the expression for the 
divergence of the dyad v(l?O?') into volume the integral (8) 
yields 

- v2G(A01')B(do>'))  dVOj'. (11) 

The free-space Green's function satisfies the scalar wave 
equation 

(V2 + k2)G( io" )  = -S(Eo2') (12) 

where S is Dirac's delta function. The incident electric field 
6 obeys the vectorial wave equation 

( 0 2  + ,2>@(ZOJ) = j k Z Z .  I + - S(Z0J - A y )  
(13) 

(= 1:) 
where d is the dipole moment of the Hertzian dipole and Zz" 
is the vector from Fo>' to the location of the Hertzian dipole. 
From the wave equations (12) and (13), the Laplacians of the 
Green's function and the incident electric field can be found 
and inserted into the volume integral (1 1) to yield 

It is now assumed that the Hertzian dipole is located either 
inside or outside the cone V o  and thus not on@e curved 
surface Bo. The implication of this restriction on numerical 
calculations will be discussed following (38). The first volume 
integral in (14) can be shown to yield 

where 

(16) 
1 if the Hertzian dipole is inside V o  

xo={ 0 if the Hertzian dipole is outside Vo 

and x' = 0 as the Hertzian dipole is located in the half-space 
into which ii is directed and thus always outside the cone VI .  

The transformation of the second volume integral in (14) 
into a line integral is described next. The contributions of this 
integral stem from the observation and the image points. It is 
found that these contributions can be expressed as the product 
of the incident electric field at the observation or image points 
and the relative solid angle RO~'(47r)-~ subtended by the plate 
A as seen from these points 

It is noted that Ro = 52'. The solid angle Qo7' can be 
calculated from a line integral using the results of Asvestas 
[15]. Thus, the volume integral (14) is 

where 

with fi being an arbitrary unit vector in the plane of the plate A 
and Roy' = (Ro~')-l~o*'. In summary, the volume integral e'" is expressed as the sum of a constant term (which is the 
negative of the incident field at Fo if the source is inside V o  
and zero otherwise) and a line integral along the edge of the 
plate. 

C. Transformution of the Surface Integral c" 
The surface integral in Et' (9) is written as a double 

integral. The inner integral is evaluated along the generators of 
the cones while the cuter integral is evaluated along the edge 
of the plate. Using Ro9' as the vector from Foi' to a point 
of the edge of the plate and introducing r E [O; 11, the points 
along a generator of the cone Vo>' are described by rR'Ol1. 

In the TI'-system, the infinitesimal area element dBo*' can 
be written as 

Using the dyad v do>' of (7), the fact that VG(R'O>') is 
perpendicular to fib?', a d  the expression 

it is found that the surface integral e>' in (9) can be written as 
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where the dyad F(Eo>') is 

W(I?O?') = -Ro>'x V E ' " ( T ~ ~ > ' )  exp(-jkrRol') d r .  

(23) 
Equation (22) shows that a line integral representation of E>' 
existsifit is possible to derive an explicit expression for the 
dyad r(l?oi'). The derivation of this explicit expression is 
the key step in obtaining the line integral representation of 
the electric PO scattered field for illumination by a Hertzian 
dipole. This derivation is performed in Appendix A. 

47r 1' - - 

In. OVERVIEW OF THE LINE INTEGRAL REPRESENTATION 

The final expression for the line integral representation 
of the PO field is obtained by inserting the line integral 
representation of e*' in (18) and g" in (22) into the equation 
for El' in (10) and using this expression in the Kottler 
representation (5) folloyed by application of (3) relating the 
PO field and the field EA.  In terms of the quantities defined 
in Section 11, this yields 

E(Z0) + E($) . (7 - 2fifi) 

+ Q(I?o)(I?(Fo) - @(F' ) .  (7 - 2fifi)) 

+ %G(go) J k  (jk + &)@(g0)Ro) 

+ 2G(g0)(7 - f i f i )  . (i x @(go))  dr 

- e ( F 0 ) x o .  (24) 

The Hertzian dipole with dipole moment d is described by the 
current density 

1 
iHZ = i q p  - @ I )  (25) 

and it radiates the magnetic and electric fields 

fii(p3=G(p3 j k + -  G x @  . (26) 

2(p3 = 

+(k2 - j k p - 1  - p - 2 ) 4  . (27) 

( 3 
-jZG(p') [ (-k2 + 3jkp-' + 3 p )  d .  @b 

k 

where p'= l?Op' - l?;*' is the position vector with respect to 
the location of the Hertzian dipole. Furthermore, p is the length 
of p'and @ = p-lp'. The dyad F(zo3') is (see Appendix A) 

where A' = Rev' x g;>' and B' = Bo>' x i. The functions 
K l r . . . , K 6  are 

K1 = c l p 3 [ j k c 3  + C:(2 + Roy'. @)] 
- C2(Rz")2[C4(1 +jkRz")  + Ci] 

- C 3 2 j k  + 3 p - 1 )  - 2c;j + C2[C4((kRs1 0' ) 2 - 3(jkRz" + 1)) 

- C,2(2jkRz>' + 3 )  - 2Ci] 

- C2(RS1 0' ) 2 [C4((kRz'1)2 - jkRzi '  - 1 )  - Ci] 

- C2(Rsi 0' ) 3 [ 1 +  jkRgi' - C4jkRzi'] 

+ C2Rz>'[(kRgy')2 - 3(jlcRzi' + l)] 

(29) 
K2 = - clp2[c3(k2 - 3jkp-l - 3 p - 2 )  

(30) 
K3 = c 1 p 3 [ c 3 ( k 2 p  - jk - p - ' )  - C:] 

(31) 

(32) 

(33) 

K4 =G1p2[1 + j k p  - C3jkp2] 

K5 = - Ci[(kp)' - 3(jkp + I)] 

K6 =Cl(RoJ . 2;" - Rol')[(kp)2 - 3(jkp + I)] 
- C2R;3'R03' . l?~"[(kR;i')2 - 3(jkR;" + l ) ]  

(34) 

where R;?' is the length of E;?'. The quantities C1, . . . , C, 
are 

Cl = (R07'p5)-1 exp(-jk(Ro.' + p ) )  (35) 
C2 = (Ro*'(Rz9')6)-' exp(-jkRgl') (36) 

(37) 
(38) 

c3 = ( p  + R O J  .$)-I 

c, = ( 1  - R O J  . ROJ s )-' 

with fig,' = (ROT' S I  -1g0!' s -  
The integrand of the line integral (24) is lengthy but consists 

of simple functions and is thus suited for numerical evaluation. 
The dyad E( R') has a removable singularity if R' . Ri = 1 
[see (63)], i.e., if the Hertzian dipole is located at the extension 
of the line from F' to the edge of the plate. There is a 
nonremovable singularity in @(Ro) if Ro Rg = 1. This 
corresponds to the Hertzian dipole being on the surface of the 
cone Vo. This case was excluded, however, in the course of 
the derivation in Section II-B. 

The line integral representation of the PO scattered field 
(24) is to be evaluated along the edge. It is important to note, 
however, that this fact does not imply that the PO scattered 
field physically originates from the edge or the edge-adjacent 
region of the plate. In general, there will be contributions to 
the PO scattered field from surface points, e.g., the reflected 
field from the surface stationary point, as well as from the 
edge, e.g., the PO-diffracted field from the edge stationary 
points. The line integral representation (24) includes all these 
contributions due to the exact derivation. The form of (24) 
seems unsuited, however, for interpreting the various terms 
appearing in the integrand in (24) physically. In particular, no 
single term provides the asymptotic representation. The quan- 
tity exp(-jk(Ro>' + p ) )  describing the phase variation from 
the source via the edge of the plate to the observation point 
is contained in most of the terms in (24). Consequently, all 

- +  

- - I  
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these terms must be taken into consideration if an asymptotic 
expansion were to be carried out. 

The restriction that the Hertzian dipole cannot be located on 
the surface of the cone V o  has an implication on numerical 
calculations as the time savings provided by the line integral 
representation may reduce if the Hertzian dipolejs close to 
the surface of the cone Vo. In this case the dyad w(got1) of 
(28), and thus the integrand in (24), becomes highly peaked, 
and consequently. many sample points may be required in the 
numerical calculation of the line integral (24) to achieve a 
good accuracy. For observation points where the condition is 
very close to being satisfied, this may even result in a larger 
calculation time for the line integral representation than the 
surface radiation integral. The line integral representation will 
remain valid, however, even though the integrand is highly 
peaked. The validity of the line integral representation is 
violated only if the Hertzian dipole is on the surface of the cone 
V o  and this condition is rarely satisfied exactly in practice. 

As mentioned in the Introduction, the restriction on the 
validity of the above-derived line integral is less severe than 
that of the line integral in [14]. The line integral representation 
in this paper is valid for source points which are not located 
on the surface of the cone Vo,  whereas the representation in 
[14] is valid only for source points located outside this cone. 

In this paper the source is a Hertzian dipole. It might be 
possible, however, to achieve a line integral representation of 
the electric PO field for another type of point source. In this 
case the incident electric and magnetic fields, ,?? and Zi, in 
(24) are the fields due to this source. The most difficult part 
in achieving a line integral representation for a point source 
other than the Hertzian dipole is the analytical calculation of 
the dyad E(Eoq1) foi this type of source. 

2 

t n 

Fig. 3. Hertzian dipole illuminating a rectangular plate of dimensions 2X by 
3X (A being the wavelength). The Hertzian dipole is positioned at (lX,2X,lX) 
and possesses the dipole moment (l,l,l) Am. The observation points are 
located at r = 4X in the 4 = 50 degrees plane. 
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IV. NUMERICAL CALCULATIONS 

To illustrate that the line integral representation is exact, 
the electric PO scattered field is calculated from both the line 
integral (24) and the surface integral (l), and the results are 
compared. For the numerical comparison the configuration 
under consideration is defined as follows: In a rectangular 
zyz-coordinate system with a spherical r&$-coordinate system 
associated in the usual manner, a perfectly conducting rect- 
angular plate with its corners positioned at (O,O,O),' (2X,O,O), 
(2A,3A,O), and (0,3X,O) (A is the wavelength) is illuminated by 
a Hertzian dipole located at (lX,2X,lX) with dipole moment 
c? = (1,1,1) Am (see Fig. 3). The observation points are 
located at T = 4X, in the 4 = 50 degrees plane with 0 
ranging from 0 to 90 degrees with one degree step. For this 
configuration, the Hertzian dipole is located inside the cone 
V o  for 8 E [O; 57.271 and outside the cone for 8 €157.27; 901. 
The amplitudes (for A- lm) of the 2-, y-, and z-components of 
the electric PO field are shown in Fig. 4. As expected, perfect 
agreement is obtained between the two methods of calculation. 
Similar agreement is found for the phase. 

V. CONCLUSIONS 

An exact line integral representation of the physical op- 
tics scattered field has been derived. This was accomplished 

e(%.) 
0.0 , I I I I , I I I I I I I / I , I I I I , ( I ) I , I I I I , I I J I I I I ~ ~ I ~ ( ( (  

0 10 20 30 40 50 60 70 80 90 

Fig. 4. 
field versus the observation angle B for the configuration shown in Fig. 3. 

The amplitudes of the 2-, y-. and r-components of the electric PO 

through a transformation of the conventional surface radiation 
integral. Employing an image point technique, the surface 
radiation integral was first expressed in terms of the radiation 
integral occurring in the analysis of aperture diffraction. Use 
of Asvestas' results next led to the Kottler-representation. 
Invoking the dyadic divergence theorem, a volume integral 
and a surface integral were then obtained. The volume integral 
was evaluated to yield simple terms involving the incident 
field and the relative solid angle subtended by the scattering 
structure. The surface integral led to an integral of the gradient 
of the incident electric field. The analytical evaluation of this 
dyadic integral, which is the key step in the transformation, 
was finally performed. 

The numerical evaluation of the line integral representation 
is potentially less time consuming than that of the surface 
radiation integral. For polyhedral structures that are large in 
terms of wavelengths, the time savings can be significant. For 
some locations of source and observation points, however, the 
time savings may vanish due to a highly peaked behavior of 
the integrand. Future work will therefore address this problem. 
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APPENDIX A The integrals 1 2 ,  15, and I6 are calculated using the substitution 

t = r R o " + f  U r =  t2 - (Rz3')2 (49) 
CALCULATION OF THE DYAD F(W) 

2(ROJt - @,I  . E:?') The gradient of the electric field (27) is 

-jZG(d and 
k VJ?(p3 = 

+ ( j k 3  + 6k2p-l - 1 5 j k ~ - ~  - 1 5 ~ - ~ ) d .  @@ followed by integration by parts. The results are, using 
Cl, .  . . , C4 defined in (35)-(38) + ( - j k 3  - 2k2p-l + 3 j k ~ - ~  + 3 ~ - ~ ) , 3 i i ] .  (39) 

I2 =Clp3 [jkC3 + C,"(2 + BO9' . /?)I 
Insertion of (39) into the equation for F ( I ? O > I )  of (23) yields - C2(Rs' 0 1  ) 2 [C4(1 +jkRz>')  + Cz] 

-Ci(2jkRgi' + 3) - 2Ci] 

(51) 

- - ' 0 , I  - 3 '2 
( 4 ~ ) ~ k  

r5 =Clp2 [ c 3 ( k 2  - 3jkp-l - 3p-2) 
W ( R  )-- 

- C32jk  + 3p-1) - 2Ci] 

d .  ~ O J ~ J  7 + p , ~  ~ ~ o , I ) I ~  - C2 [C4 ( ( I c R ~ ) ' ) ~  - 3(jkRgiI + 1 ) )  

(52) 
- K  

where the integrals Il , . . . , I6 are and 

1 (Ro*1)2 - ( f ' ) 2  
f" 1 ( 5 5 )  f 11 =l h ( k 2 f - 3  - 3jkf-4 - 3 f - 5 ) ~ d r  (41) 

1 are used together with integration by parts and the substitution 
(42) (49). The results are 1 2  = 1 h(k2f-3 - 3jkf-4 - 3f-5) d r  
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Finally, the results for I~,.,.,IG, using the integrals 
17,. . ,110, are inserted into (40). After subsequent reduction, 
the result given in (28) is obtained. 

The dyad m( $) has a removable singularity for R I .  Ri = 
1. In this case 

. ( -0 .5 jk  + k 2 p )  
1 

+ C2(Ri)3((Ri)2k2 - 1.5jkRi - 1'1. (63) 

For Ro . R$' = 1, the dyad E(g0) has a nonremovable 
singularity. 
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